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A simple method for solving the diophantine equation
Y2 X4 + aX3 2

Dimitrios Poulakis

Dimitrios Poulakis was born in 1956 in Athens (Greece). After his studies in mathematics

at the University of Ioannina, he received his PhD from the University of
Paris XI in 1983. He then went back to the University of Ioannina, where he taught
mathematics for three years. Since 1988 he is at the department of mathematics of
the Aristotle University of Thessaloniki. His main research interests are Diophantine
Equations and Arithmetic Algebraic Geometry.

1 Introduction
We consider the diophantine equation

Y2=/(X),

where f(X) is a polynomial of degree four with integer coefficients. For /(X) monic
and not a perfect square Masser [2] has shown that any integer solution (x, y) of the
above equation satisfies

|x| <26H(/)3,

where H(f) denotes the maximum of the absolute values of the coefficients of/(X). As
far as we know, this bound is the best one for \x\ that exists in the literature. It follows that
for small values of H(f) the integer solutions of Y2 f(X) can be obtained by a direct

Die Frage Diophanls nach don ganzzahligcn Lösungen einer gegebenen algebraischen
Gleichung liai historisch immer wieder Anlass zu wichtigen Enlwicklungsschrillcn in
der Zülilcnllicoric gegeben: das Fermai-Problem liefert dafür ein wohlbekanntes und

cindrückliclics Beispiel. Dar. Fcrmat-Problcm illustriert auch treffend die mallicmalik-
historischc Erfahrung, dass die Behandlung diophantischcr Probleme in der Regel
schwierig ist. Vor diesem Hintergrund ist es immer überraschend, wenn für spezielle
Gleichungen eine vollständige Antwort gefunden werden kann: Dimilrios Poulakis
beschreibt im vorliegenden Beilrag eine einfache Methode, die für eine ganze Klasse

von algebraischen Gleichungen sämtliche ganz/ahligen Lösungen liefert, usi
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computer search. In the case where the discriminant of f(X) is not zero, Tzanakis [4]
has recently given a practical method for computing all integer solutions of Y2 f(X).
This method relies on a lower bound for linear forms in elliptic logarithms. It is easily
applicable once one knows a Mordell-Weil basis for the elliptic curve associated with
the equation Y2 f(X). Some interesting numerical examples are given in [4].

The purpose of this note is to describe a very simple and elementary method for
computing the integer solutions of Y2 f(X) in the case where f(X) is monic and not
a perfect square. We give two quadratic polynomials depending on the coefficients of
f(X) with the property that their roots determine a region to which the x-coordinates
of the integer solutions (x,y) of Y2 f(X) belong. From this the integer solutions of
Y2 f(X) can be obtained by a direct computer search. More precisely we prove the

following result:

Theorem 1. Let a\, a2, a3, a4 be integers such that the polynomial f(X) X4+«iX3 +
CI2X2 + CI3X + CI4 is not a perfect square. Let

IIi (X) 16X2 + 8(«i - 8fl3 + 4flifl2 - a\)X + 8a2 - 2a\ + 1 - 64a4 + 16a2 + a4 - 8a2a2

and

n2(X) 16X2 + 8(«i + 8fl3 - 4fl!fl2 + a\)X + 8a2 - 2a\ - 1 + 64a4 - 16a2 -a\ + 8a2a2.

For i 1,2 denote by tt,i, tt,2 the roots of the polynomial II,(X). 7/"7r,i,7r,2 are real,
we set l{ [ttji TTß] (or J, [^2,^11]); otherwise J, 0. Then, if{x,y) is an integer
solution ofy2 f(x), one has x G I\ U I2 U {x0}, where

64a4 - 16aj -a\ + &a2a2

8(-8a3
_

Remark. If a.\ is odd, then it is easily seen that x0 is not an integer.

In practice, the region for x obtained from Theorem 1 is much smaller than the one
obtained from the inequality in [2]. Therefore, in numerous cases we do not actually
need a computer to carry out the necessary computations; see the numerical examples
in section 2. The examples (1) and (2) have been taken from [4]. It is apparent from
[4] that the solution of these equations by the method applied there requires extensive

computations.

2 Applications
In this section we solve some diophantine equations, using Theorem 1.

(1) Consider the equation

Y2 /(X) X4 - 8X2 + 8X + 1.

We have the quadratic polynomials

IIi(X) 16X2-512X + 897 and II2(X) 8X2 + 512X - 1025.
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The zeros of IIi (X) lie in the open interval (1,31) and the zeros of Il2(X) in (—34,2).
Further, x0 15/8. Thus, if x, y are integers with y2 f(x), then Theorem 1 gives
-33 < x < 31. On the other hand we have y2 x4 + 1 (mod 8). If x is odd, then

x ±1,±3 (mod 8) and we deduce y2 2 (mod 8). Since this congruence has no
solution, we obtain a contradiction. Thus x is even. We check one by one the even
values from -33 to 31, and we obtain as the only possibilies x 0,2, -6. Therefore,
the only integer solutions of Y2 /(X) are (x,y) (0,±l), (2,±1), (-6, ±31). Note
that the bound of [2] yields \x\ < 13312.

(2) Consider Fermat's equation

Y2 /(X) X4 + 4X3 + 10X2 + 20X + 1

(see [3]). The zeros of the quadratic polynomials

Ü! (X) 16X2 - 480X + 561 and II2(X) 16X2 + 544X - 465

lie in the set (-34,1) U (1,29). Further, x0 5/8. Let x, y be integers with y2 /(x).
Then Theorem 1 implies -33 < x < 0 or 2 < x < 28. On the other hand we have y2

x4 + 4x3 + 1 (mod 5), whence it follows that x ^ 4( (mod 5). Thus -33 < x < 28 and

x ^ -31, -26, -21, -16,-11, -6,1,4,9,14,19,24. Checking the remaining values for
x one by one, we deduce that the only integer solutions of Y2 /(X) are

In this case the bound of [2] gives |x| < 208000.

(3) The discriminant of the polynomial

/(X) (X + 1)2(X2 + 15) X4 + 2X3 + 16X2 + 30X + 15

is zero. Thus the method of [4] is not applicable to the equation Y2 /(X). On the other
hand the bound of [2] gives |x| < 702000. In order to apply Theorem 1, we consider
the quadratic polynomials

Ü! (X) 16X2 - 944X + 2761 and n2(X) 16X2 + 976X - 2521.

Their zeros lie in the interval (-64,56) and x0 11/4. By Theorem 1, we have that
the integer solutions (x, y) of Y2 /(X) satisfy -64 < x < 56. If x is even, then y
is odd and y2 3 (mod 4), which is a contradiction. Thus x is odd. Suppose 3 divides

x. Then 3 divides y and we deduce that 9 divides 15 which is not true. So 3 does not
divide x. Similarly we deduce that 5 does not divide x. Let p be an odd prime divisor
of x. Then 15 is a quadratic residue modulo p. Since

f) - (M) - (S) - -¦
it follows that the primes 13, 19, 23, 29, 31, 37 and 41 do not divide x. Hence

X G {±1, ±7,±11, ±17,±43, ±47,±49,±53,-59,-61}.

Checking the elements of this set one by one, we obtain that the only integer solutions
of Y2=/(X) are (x,y) (1,±8), (-1,0), (7,±64), (-7,±48).

ë) - (S) - (M) - (M
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3 Proof of Theorem 1

We shall use an argument that goes back to an idea of H.L. Montgomery [1, page 576].
Write

/(X) (X2 + hX + b2f + CoX + ci.

Equating coefficients of terms of same degree, we get

2

1 ~ 2~' 2 ~ ~2 ~ ¥
and

flifl2 flj a2 af a2fl2

Putting
B(X) X2 + bxX + b2 and

we have

/(X)=B(X)2 + C(X).

Since f(X) is not a perfect square, the linear polynomial C(X) is not zero.

Consider the quadratic polynomials

IIi(X) 16B(X) + 1 - 64C(X)
16X2 + 8(«i - 8fl3 + 4flifl2 - «?)X

+ 8fl2 - 2fl2 + 1 - 64fl4 + 16a2 + af - 8a2a2

and
n2(X) 16B(X) - 1 + 64C(X)

16X2 + 8(«i + 8fl3 - 4fl!fl2 + «i )X

+ 8fl2 - 2a2 - 1 + 64fl4 - 16a22 -a\ + &a2a2.

For f 1,2 let tt,i, tt,2 be the roots of the polynomial II,(X). If ttü,tti2 are real, set

I, [7T{i,7T{2] (or I, [7T,2,7r,i]); and I, 0 otherwise. Then, if (x,y) is an integer
solution of y2 f(x), one has

Suppose that x does not lie in Ix UI2. Then IIi (x) > 0 and U2(x) > 0, whence it follows
that

-16B(x) + 1 < 64C(x) < 16B(x) + 1.

Adding everywhere 64B(x)2, we get

(8B(x) - I)2 < (8i/)2 < (8B(x) + I)2.

Since 8B(x) and y are integers, the above inequality implies y2 B(x)2. Thus C(x) 0.

The polynomial C(X) is not zero. If c0 0, then we get C\ 0 and therefore C(X) is

zero, which is a contradiction. Thus c0 ^ 0, and we obtain x —C\/c0. The theorem
follows.
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