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A simple method for solving the diophantine equation
Y2 =X*+aX? +bX? +cX +d

Dimitrios Poulakis
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1 Introduction
We consider the diophantine equation

where f(X) is a polynomial of degree four with integer coefficients. For f(X) monic
and not a perfect square Masser [2] has shown that any integer solution (x,y) of the
above equation satisfies

x| < 26H(f)?

where H(f) denotes the maximum of the absolute values of the coefficients of f(X). As
far as we know, this bound is the best one for |x| that exists in the literature. It follows that
for small values of H(f) the integer solutions of Y? = f(X) can be obtained by a direct
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computer search. In the case where the discriminant of f(X) is not zero, Tzanakis [4]
has recently given a practical method for computing all integer solutions of Y2 = f(X).
This method relies on a lower bound for linear forms in elliptic logarithms. It is easily
applicable once one knows a Mordell-Weil basis for the elliptic curve associated with
the equation Y2 = f(X). Some interesting numerical examples are given in [4].

The purpose of this note is to describe a very simple and elementary method for com-
puting the integer solutions of Y? = f(X) in the case where f(X) is monic and not
a perfect square. We give two quadratic polynomials depending on the coefficients of
f(X) with the property that their roots determine a region to which the x-coordinates
of the integer solutions (x,y) of Y2 = f(X) belong. From this the integer solutions of
Y? = f(X) can be obtained by a direct computer search. More precisely we prove the
following result:

Theorem 1. Let a1, as, a3, a4 be integers such that the polynomial f(X) = X*+a; X? +
B X% + a3 X + a4 is not a perfect square. Let

I (X) = 16X + 8(ay — 8az +4aya, —a3)X +8ay — 2a7 + 1 — 64ay + 1643 + a} — 8aya?
and
M (X) = 16X* + 8(a; + 8as — dmay +a; )X + 8ay — 2a7 — 1+ 64ay — 1645 — af + 8aa?.

For i = 1,2 denote by my, w2 the roots of the polynomial 11;(X). If w7z are real,
we set I; = |min, 7] (or I = [mp,min)); otherwise I; = (. Then, if (x,y) is an integer
solution of i = f(x), one has x € ; UL U {x,}, where

o 64ay — 1643 — af + 8a,a2
O T 8(—8a; + dmas —a3)

Remark. If g; is odd, then it is easily seen that x, is not an integer.

In practice, the region for x obtained from Theorem 1 is much smaller than the one
obtained from the inequality in [2]. Therefore, in numerous cases we do not actually
need a computer to carry out the necessary computations; see the numerical examples
in section 2. The examples (1) and (2) have been taken from [4]. It is apparent from
[4] that the solution of these equations by the method applied there requires extensive
computations.

2 Applications
In this section we solve some diophantine equations, using Theorem 1.
(1) Consider the equation
Y? = f(X) = X* —8X* +8X + 1.
We have the quadratic polynomials

I (X) = 16X? — 512X + 897 and TI(X) = 8X* + 512X — 1025.
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The zeros of 11; (X) lie in the open interval (1,31) and the zeros of I1,(X) in (—34,2).
Further, xo = 15/8. Thus, if x, y are integers with 3> = f(x), then Theorem 1 gives
—33 < x < 31. On the other hand we have y2 = x* + 1 (mod 8). If x is odd, then
x = 1,43 (mod 8) and we deduce y* = 2 (mod 8). Since this congruence has no
solution, we obtain a contradiction. Thus x is even. We check one by one the even
values from —33 to 31, and we obtain as the only possibilies x = 0,2, —6. Therefore,
the only integer solutions of Y2 = f(X) are (x,y) = (0,%1),(2,%1), (—6,+31). Note
that the bound of [2] yields |x| < 13312.

(2) Consider Fermat’s equation

Y2 =f(X)=X*+4X>+ 10X + 20X + 1
(see [3]). The zeros of the quadratic polynomials

I (X) = 16X? — 480X + 561 and II,(X) = 16X* + 544X — 465

lie in the set (—34,1) U (1,29). Further, x, = 5/8. Let x, y be integers with 1> = f(x).
Then Theorem 1 implies —33 < x < 0 or 2 < x < 28. On the other hand we have yz =
x* 4 4x3 + 1 (mod 5), whence it follows that x # 4( (mod 5). Thus —33 < x < 28 and
x # —31,-26,-21,—-16,—11,—-6,1,4,9,14,19,24. Checking the remaining values for
x one by one, we deduce that the only integer solutions of Y? = f(X) are

(x,y) = (0,£1),(1,£6),(—3,£2), (—4,£9).
In this case the bound of [2] gives |x| < 208000.
(3) The discriminant of the polynomial

F(X)= (X +1*X*+15) = X* +2X° +16X* + 30X + 15

is zero. Thus the method of [4] is not applicable to the equation Y2 = f(X). On the other
hand the bound of [2] gives |x| < 702000. In order to apply Theorem 1, we consider
the quadratic polynomials

I (X) = 16X? — 944X 42761 and TI,(X) = 16X* + 976X — 2521.

Their zeros lie in the interval (—64,56) and xo = 11/4. By Theorem 1, we have that
the integer solutions (x,y) of Y? = f(X) satisfy —64 < x < 56. If x is even, then y
is odd and > = 3 (mod 4), which is a contradiction. Thus x is odd. Suppose 3 divides
x. Then 3 divides y and we deduce that 9 divides 15 which is not true. So 3 does not
divide x. Similarly we deduce that 5 does not divide x. Let p be an odd prime divisor
of x. Then 15 is a quadratic residue modulo p. Since

15\ _ (15\ _ (15 _ (15\ _ (15\ _/15\ _[(15\ |
13) \19/) \23) \29) \31) \37) \41/ 7
it follows that the primes 13, 19, 23, 29, 31, 37 and 41 do not divide x. Hence

x € {£1,47,+11,+17,+43, +47, +49, +53, —59, —61}.

Checking the elements of this set one by one, we obtain that the only integer solutions
of Y? = f(X) are (x,y) = (1,£8), (—1,0), (7,£64), (=7, £48).
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3 Proof of Theorem 1

We shall use an argument that goes back to an idea of H.L. Montgomery [1, page 576].
Write
FX)=(X*+ 01X +b2)* + X +ar.

Equating coefficients of terms of same degree, we get

_a & _H
b1*27 b2*2
and 3 2 4 2
g Bl | A T L e
Co = a3 7 +8’ C1 = a4 1 64+ 3
Putting
B(X):X2+b1X+b2 and C(X):CoX+C17
we have

f(X) =B(X)* + C(X).
Since f(X) is not a perfect square, the linear polynomial C(X) is not zero.
Consider the quadratic polynomials
IL(X)=16B(X) + 1 —64C(X)
= 16X* + 8(a; — 8a3 + 4ma, — a3)X
+ 8y —2a% + 1 — 64ay + 1643 + a} — 8a.a?

and
IL(X) = 16B(X) — 1+ 64C(X)

= 16X* + 8(a; + 8a3 — daya, + @)X
+ 8, — 247 — 1+ 64a, — 16a3 — af + Sa.at.

For i = 1,2 let mj;, 7, be the roots of the polynomial IT;(X). If 71,7, are real, set
I; = [mn, 7] (or I = [mp,min]); and I; = @ otherwise. Then, if (x,y) is an integer
solution of 1 = f(x), one has

¥ =Bx)* +C(x).

Suppose that x does not lie in [; UI,. Then IT; (x) > 0 and II;(x) > 0, whence it follows

that
—16B(x) +1 < 64C(x) < 16B(x) + 1.

Adding everywhere 64B(x)?, we get
(8B(x) — 1)* < (8y)* < (8B(x) + 1)

Since 8B(x) and y are integers, the above inequality implies > = B(x)?. Thus C(x) = 0.
The polynomial C(X) is not zero. If ¢y = 0, then we get ¢; = 0 and therefore C(X) is
zero, which is a contradiction. Thus ¢y # 0, and we obtain x = —c;/¢o. The theorem
follows.
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