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Bemerkung zu beschrinkt homogenen Funktionen

Konrad Schlude

Konrad Schlude wurde 1968 geboren. Er studierte Mathematik und Informatik an
der Universitit in Freiburg im Breisgau. Zur Zeit ist er als Assistent am Institut
fiir Theoretische Informatik an der ETH Ziirich, wo er sich vor allem mit verteil-
ten Algorithmen und Datenstrukturen und deren Anwendung auf Verkehrsprobleme
beschaftigt.

Definition. 1) Sei f : R" — R eine stetige Funktion, f heisst beschréinkt homogen
beziiglich einer Menge A C R™ und eines s € R, falls gilt:

fOx)=Xf(x), VAeA.

Dabei heisst A die Homogenititsmenge und s der Homogenitéitsgrad. Gilt A = R, dann
heisst f homogen.

Bemerkung. Der Ubergang zu Polarkoordinaten macht deutlich, dass es ausreicht, die
Funktion auf einem Strahl f : R" — R zu betrachten.

Beispiel. Die Funktion f(x) := sin(In(x)) ist beschrankt homogen mit Homogenitits-
menge A = {¢*™ | v € Z} und Homogenititsgrad s = 0. Die Funktion /1(x) := x°f(x)
ist beschrinkt homogen mit Homogenititsgrad 5. Funktionen dieses Konstruktionstyps
werden logarithmisch-periodisch genannt [1].

1) Diese Definition ist etwas allgemeiner als die in [1]
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Gibt es neben diesen logarithmisch-periodischen Funktionen weitere Beispiele beschrankt
homogener Funktionen? Mit einer trivialen Homogenititsmenge A = @ oder A = {1}
ist jede stetige Funktion f : R — R beschréinkt homogen; sieht man jedoch von diesen
Féllen ab, so beantwortet der folgende Satz die Frage mit einem Nein.

Satz. Sei f:R* — R eine beschrankt homogene Funktion mit nichttrivialer’) Homo-
genitdatsmenge A und Homogenitdtsgrad s. Dann gilt:

flx) =g(In(x))x*, xeR",

wobei g : R — R eine von f abhdingende periodische Funktion ist.
Beweis. Definiere 1 : RT — R durch k(x) := f(x)/x°. Dann gilt:

[ Xfx)
h(xx) = Day - xr h(x) , YAeA.
Es ist also & eine beschrinkt homogene Funktion mit Homogenitéitsgrad 0 und Homoge-
nititsmenge A. Betrachte nun die Funktion g : R — R definiert durch g(x) := iz(e*) und
die Menge © = {In(\) | A € A}. Sei 6 € ©\ {0}, dh @ =In(\) fiirein A € A\ {1}.
Dann gilt:
g(x + 0) = h(e*e’) = h(e*\) = h(e*) = g(x) .

Folglich ist g eine periodische Funktion, und #(x) = g(In(x)).

Vorkommen von beschrinkt homogenen Funktionen. Beschrinkt homogene Funk-
tionen kommen u.a. in der Elektronik und Quantenoptik in Verbindung mit den zeitlich
modulierten linearen Oszillatoren vor. Als konkretes Beispiel kann der sogenannte Euler-
sche ,,Down-Chirp” Oszillator [2] erwidhnt werden, dessen Frequenz mit der Zeit umge-
kehrt proportional abnimmt. Das Bewegungsgesetz eines solchen Oszillators ist von der
Form x(t) = av/fcos(bInt). Die Homogenititsmenge {¢*™/" | v € Z} dieser Funktion
bringt eine Selbstihnlichkeit der Schwingungen an all den Zeitskalen zum Ausdruck, die
durch Dehnung oder Stauchung mit den Faktoren e>™/? erhalten werden [2]. Wie in [1]
gezeigt wurde, sind unter den Losungen der Emden-Fowler Differentialgleichung und
der Riccatischen Differentialgleichung beschrankt homogene Funktionen zu finden.

Herzlich bedanke ich mich bei Herrn Dr. Magyari fiir seine Unterstiitzung und die An-
regung zu diesem Thema.
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