Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 54 (1999)

Artikel: Uber das Falschen von Wiirfeln
Autor: Behrends, Ehrhard

DOl: https://doi.org/10.5169/seals-4695

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 12.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-4695
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

© Birkhéuser Verlag, Basel, 1999
Elem. Math. 54 (1999) 15 — 29
0013-6018/99/010015-15 $1.50+0.20/0 | Elemente der Mathematik

Uber das Fiilschen von Wiirfeln

Ehrhard Behrends

Ehrhard Behrends ist 1946 geboren. Seit 1973 ist er Professor an der Freien Univer-
sitat Berlin. Sein Hauptarbeitsgebiet ist die Funktionalanalysis, er hat aber auch schon
tiber Topologie, Ergodentheorie und Wahrscheinlichkeitsrechnung gearbeitet. Unter
seinen Publikationen finden sich vier Biicher. Seine Interessen ausserhalb der Mathe-
matik liegen im Bereich der Musik. Freizeit und Beruf berithren sich manchmal; so
organisierte er am Internationalen Mathematiker-Kongress in Berlin Veranstaltungen
zum Thema “Mathematik und Musik”.

1 Einleitung

Wir gehen aus von einem handelsiiblichen Wiirfel, also einem, auf dessen Seiten die
Zahlen von 1 bis 6 aufgedruckt sind. Er soll fair genannt werden, wenn alle Zahlen mit
gleicher Wahrscheinlichkeit, d.h. mit Wahrscheinlichkeit 1/6, beim Wiirfeln erscheinen.
Bekanntlich lassen sich Wiirfel aber auch manipulieren: Durch Verwendung inhomogener
Materialien, Magneten usw. konnen die Wahrscheinlichkeiten verandert werden.

Wenn zwei faire Wiirfel vorliegen und sie gleichzeitig geworfen werden, ergeben sich
als Augensumme Zahlen zwischen 2 und 12, und es ist nicht schwer, fiir jede dieser
Zahlen k die Wahrscheinlichkeit des Auftretens auszurechnen. Man addiert einfach die
Wahrscheinlichkeiten derjenigen Moglichkeiten, die zum Ergebnis k fithren, wobei man
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die Wahrscheinlichkeit jedes einzelnen Zahlenpaares als 1/36 ansetzt. So ergeben sich
fiir 2,3,...,11,12 die Werte 1/36,2/36,...,2/36,1/36.

Wie sieht das bei gefialschten Wiirfeln aus? Auch da kann man die Augensummen-
Wahrscheinlichkeiten leicht bestimmen, und diese Zahlen werden offensichtlich im all-
gemeinen von 1/36,2/36,...,2/36,1/36 verschieden sein.

Als Ausgangspunkt fiir die in diesem Artikel zu besprechenden Ergebnisse wollen wir
zwel mit den Summen-Wahrscheinlichkeiten zusammenhéngende Probleme formulieren.
Als erstes stellen wir uns die Frage, ob es durch geeignetes Félschen zweier Wiirfel
méglich ist, daB fiir die Augensumme die Ergebnisse 2, ..., 12 alle die gleiche Wahr-
scheinlichkeit haben. Und dann kiimmern wir uns um das Problem, ob sich — geschick-
tes Félschen vorausgesetzt — die Summen bei manipulierten Wiirfeln genauso verhal-
ten kdnnen wie die zweier fairer, ob also als Summen-Wahrscheinlichkeiten auch dann
1/36,2/36,...,2/36,1/36 auftreten konnen, wenn nicht notwendig die Wahrscheinlich-
keiten fiir 1, ..., 6 auf beiden Wiirfeln jeweils 1/6 sind.

Es wird sich herausstellen, dah die Antwort in beiden Féllen “nein” lautet. Der Beweis
ist mit elementaren Mitteln leicht zu fiihren, hier soll es aber um eine jeweils nahelie-
gende Verallgemeinerung gehen. Um die zu formulieren, numerieren wir unsere Wiirfel
zundchst um: Statt mit 1,...,6 sollen sie mit 0, ...,5 beschriftet sein. Klar, daB das
inhaltlich nicht das Geringste dndert, spéter werden aber dadurch einige Formulierungen
etwas iibersichtlicher. Als nichstes gehen wir von einem Wiirfel mit sechs Flachen zu
einem mit # Flichen iiber, wobei n irgendeine natiirliche Zahl ist; die Flichen sind dann
von 0 bis 7 — 1 durchnumeriert. (Um so etwas zu realisieren, kdnnte man eine kleine
Siule verwenden, deren Querschnitt ein regelmiBiges 7-Eck ist, und “wiirfeln” bedeutet
dann, diese Saule iiber den Tisch zu rollen.) Und schlieBlich wollen wir auch die Sprache
der Wahrscheinlichkeitsrechnung verwenden. Aus einem "n-Wiirfel" mit der Beschrif-
tung O,...,n — 1 wird ein Wahrscheinlichkeitsma auf {0,...,n — 1}, das wir uns
durch Vorgabe der Zahlen p; := P({j}) definiert denken, und zum “Wiirfeln mit zwei
Wiirfeln” miissen wir uns daran erinnern, wie man die Verteilung der Summe unabhéin-
giger Zufallsvariablen berechnet. Hier liest sich das so: Sind Wahrscheinlichkeitsmafie
auf {0,...,n — 1} durch po,...,p,—1 und auf {0,...,m — 1} durch go,...,qn 1 ge-
geben, so korrespondiert “Summe der Augenzahlen” zu einem Wahrscheinlichkeitsmal
auf {0,...,n+m — 2}, wobei sich diec Wahrscheinlichkeiten fiir j =0,...,n+m —2
als rj = pog; + p1gj—1 + - - + p;go berechnen lassen; dabei ist hier und im folgenden
pi=¢q; :=0fiiri >n,j > m gesetzt.

Nach diesen Vorbereitungen kdnnen wir die obigen Probleme wie folgt verallgemeinern:

Problem 1: Féalschen zum Simulieren der Gleichverteilung

Es seien n und m natiirliche Zahlen. Gibt es Wahrscheinlichkeiten py, ... ,pn—1 bzw.
go,- - - Gu—1, S0 dafs alle v; :=poq; +p1gi—1+---+pigo,f=0,...,n+m—2 gleich sind?
Problem 2: Falschen mit dem Ziel, die Summe fairer Wiirfel zu simulieren

Seien k,n,m € N mit n+m = 2k. Ist es moglich, Wahrscheinlichkeiten po, . ..,pn—
und o, . .., Gu—1 So zu finden, daf3 die pog; +p1gi—1 +--- +pigo,j = 0,...,2n =2
so sind wie bei der Summe zweier Gleichverteilungen auf {0,...,k — 1}, also gleich

1/k2,2/k2,...,2/k2, 1/ K22
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Das erste Problem geht auf eine Frage von P. Lévy zuriick. Eine erste Antwort stammt
von Raikov ([9]): Ist k eine Primzahl, so gibt es keine nichttriviale Losung (d.h. eine
mit 7, m > 1). Dieses Ergebnis ist in mehreren Lehrbiichern zu finden, die sich mit der
Darstellung von Zufallsvariablen durch Summen unabhingiger Variablen beschiftigen
(z.B. in[1], [6]. [7]. [8]). Weniger bekannt scheint zu sein, daB das Problem in der allge-
meinen Form auch schon vor langer Zeit untersucht wurde (in [3], zitiert meines Wissens
nach nur in [7]). Der vergleichsweise einfach zu behandelnde Fall # = m = 6 ist in der
Verkleidung des zu Beginn geschilderten Wiirfelproblems Standard-Ubungsaufgabe in
der elementaren Wahrscheinlichkeitstheorie; die dlteste Quelle scheint mir [4] zu sein.

Das zweite Problem ist nur in [10] untersucht worden und wird dort im Spezialfall n =
m = k vollstandig geldst. (Dort gibt es allerdings einen Fehler: Dem Computerprogramm
ist entgangen, dabB es nichttriviale Losungen auch fiir den Fall # = m = k = 13 gibt.)

Der Aufbau ist wie folgt. In Kapitel 2 werden die Probleme in Fragen iiber Polynome
bzw. in eine Aussage der elementaren Zahlentheorie (additive Darstellbarkeit von Zahlen)
umformuliert. Kapitel 3 enthilt eine vollstindige Losung des Problems 1, wobei auch
der Fall von mehr als zwei Wiirfeln erledigt wird. Die Methoden sind dhnlich wie in [3]
(wo es allerdings nur um zwei Wiirfel geht).

Das Problem 2 wird in Kapitel 4 gelost. Der Zugang ist etwas elementarer als in [10], da-
durch wird die Beweisstrategie etwas klarer; wie dort wird auch hier nur der Spezialfall
n =m = k vollstindig diskutiert. In Kapitel 5 schlieBlich gibt es noch einige Erginzun-
gen: Erweiterungen der vorher bewiesenen Ergebnisse, aber auch weitere Informationen
zum Thema "Manipulieren von Wiirfeln".

Von den Lesern wird an Vorkenntnissen zum Verstindnis nur recht elementare Mathe-
matik erwartet. Komplexe Zahlen spielen eine wichtige Rolle, und bei der Erklarung,
wie ich zu der Aussage von Lemma 4.1(i) komme (allerdings nicht fiir den Beweis),
sollte man sich an die Hauptachsentransformation erinnern.

2 Ubersetzung des Problems in Fragen iiber Polynome
und die Darstellbarkeit von Zahlen

Nachstehend werden Polynome P(x) = po + p1X + - + p,—1x" ! mit nichtnegativen
Koeffizienten eine wichtige Rolle spiclen. Derartige Polynome entsprechen eineindeutig
den WahrscheinlichkeitsmaBen auf {0, ...,n — 1}, wenn wir noch P(1) = 1 verlangen.

Fiir die Behandlung unserer Probleme ist die folgende elementare Tatsache wichtig:
Sind P(x) = po + pix + - + ppax™ " und Q(x) = go + qux + -+ + Gruyx™!
Polynome, die zu WahrscheinlichkeitsmaBen auf {0,...,n — 1} bzw. {0,...,m — 1}
gehdren, so korrespondiert zu dem in der Einleitung behandelten Wahrscheinlichkeitsmal
auf {0,...,n+m — 2} (der Summenverteilung) gerade das Polynom P (x)Q(x).

Problem 1 wird also so iibersetzt: Gibt es zu vorgelegten Zahlen #,m Polynome P(x) =
Po+pix+ -+ paa1x™ ! und Q(X) = go + Gi1X + - + g1 ¥™ ' mit nichtnegativen
Koeffizienten mit P(1) = Q(1) und P (x)Q(x) = (1+x+- - -+x""2) /(n+m—1)? Oder
gleichwertig (nachdem die auftretenden Polynome mit 1/p,—1,1/Gn— bzw n+m —1
multipliziert wurden): Kann man 1+ x + - - -+ x™"*™~2 als Produkt A(x)B(x) schreiben,
wobei A(x) = a0+ -+ X" 241" B(x) = bot++ - A-Dm—2X™ 2 4+x" a5, b; > 07
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Die Ubersetzung von Problem 2 lautet entsprechend: Gibt es zu k € N Polynome
A) =0+ -+ nox" 2+ 2" B(x) = bo + - - + bm_ox™ 2 + x™1 mit a,,b; >0
und A(X)B(X) — (1 Fxbmee xk*l)Z?

In beiden Fillen spielen also Polynome der Form C(x) = 1 +x +-- -+ x*~! eine Rolle.
Da (1—x)C(x) = 1 —xF gilt, sind die Nullstellen von C(x) bekannt: Es handelt sich um
die von 1 verschiedenen k-ten Einheitswurzeln, also die Zahlen (; := exp(27ij/k), j =
1,..., k — 1. Damit kennen wir aber auch die Nullstellen der in der Problemumformu-
lierung auftauchenden Polynome A(x), B(x), es muB sich ebenfalls um die ¢; handeln.
Das hat interessante Konsequenzen:

Lemma 2.1 A(x) = a0+ +a, 2x" 2 +x" ' und B(x) = bo+- - -+ by_ox™ 2+ x™"!
seien Polynome mit a;,b; > 0.

(i) Gilt A(x)B(x) = 14+x+- - -+x""=2 oder, falls n+m die Form 2k hat, A(x)B(x) =
(Lx+-4x*"12 soista; = a1 (j =0,...,n — 1) sowie b; = by—1-;(j =
0,...,m—1).

(i) Aus A(x)B(x) =1+x+ - +x"""2 folgt zusitzlich a;,b; € {0, 1} fiir alle j.

Beweis.

(i) Betrachten wir etwa das Polynom A(x). Es soll A(x) = x"1A(1/x) gezeigt wer-
den, woraus dann durch Koeffizientenvergleich alles folgt. Wir wissen schon, daf alle
Nullstellen ¢ von A(x) Einheitswurzeln sind und daB 1 keine Nullstelle ist. Da die Ko-
effizienten von A reell sind, ist mit ¢ auch die konjugiert komplexe Zahl ¢ Nullstelle.
Nun ist [¢| = 1, und deswegen stimmt ¢ mit 1/¢ iiberein. Durch Betrachtung der Ab-
leitungen von A(x), die auch Polynome mit reellen Koeffizienten sind, folgt noch, daB
die Nullstellen ¢ und ¢ mit der gleichen Vielfachheit auftreten.

All das liefert die fiir uns wichtigen Informationen iiber die n — 1 Faktoren in der
kanonischen Darstellung [](x — ¢) von A(x) (¢ durchliuft dabei die Nullstellen von
A(x), wobei die Vielfachheiten zu beriicksichtigen sind):

e Ersetzt man in dem Produkt jedes ¢ durch 1/¢, so treten die gleichen Faktoren auf;

das ergibt x" T A(1/x) = 2" [](1/x = ¢) = [T(1 = ¢x) = [I(=O) TT(x = 1/¢) =
A(0)A(x).

e Im Produkt A(0) = J](—() existiert zu jedem nicht-reellen Faktor —( ein Fak-
tor —¢, und als reeller Faktor ist nur —(—1) moglich; folglich ist dieses Produkt
gleich 1.

So ist wirklich x"'A(1/x) = A(x) gezeigt.

(ii) Aus a;,b; > 0 folgt sofort durch Betrachtung des Koeffizienten des Produkts bei x/,
dah a;,b; € [0,1].

Angenommen, es gibe einen Index j mit 0 < 4; < 1. Bezeichnet jo das kleinste j mit
dieser Eigenschaft, so ist — wegen Teil (i) — jo > 0. Nunist b+by 1o+ - -+ +a =
Lfirl =1,---,n+m—2 (wobei wir wieder a;,b; = 0 fiir { > 7, j > m gesetzt haben).
Aus dieser Gleichung folgt durch Induktion nach [: b; € {0,1} fiur [ = 0,...,j, — 1
sowie 0 < by, < L.
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Das hat aber einen Widerspruch zur Folge, wenn wir nun den Koeffizienten von x"~!
im Produkt auswerten, wobei wir Teil (i) des Lemmas anwenden: 1 = b1 + bp_oa1 +
s bmflfjoﬂjo > bl + bmflfjolljo =1+ bjoa}'o > 1. O

Wegen 2.1(i) miissen wir uns bei der Behandlung unserer Probleme eins und zwei nur
um Polynome kiimmern, die von vorn nach hinten die gleichen Koeffizienten haben wie
umgekehrt. In Analogie zur entsprechenden Bezeichnung bei Worten spricht man dann
von Palindrom-Polynomen.

Teil (ii) des Lemmas fiihrt noch zu einer weiteren Vereinfachung von Problem 1. Von
den Koeffizienten von A(x) und B(x) sind sicher nur die Indizes i, j interessant, fiir die
a=1= b]'. Setze 14 = {ila; = 1},1Ip := {]|b] =1} A(x)B(x) = 1+x+-- o2
heift dann, dabB jedes j € {0,...,n+m — 2} auf eindeutige Weise als j = j1 + j», /i €
I14, j» € Ilp, geschrieben werden kann. Und so hat sich Problem 1 in ein Problem der
elementaren Zahlentheorie verwandelt.

3 Filschen zum Simulieren der Gleichverteilung

Wir fassen noch einmal zusammen, wobei wir das bisher behandelte Problem 1 leicht
verallgemeinern:

Problem I': Es seien s, k1, . .., ks natiirliche Zahlen und ko := ki +--- + ks. Gibt es
Mengen I, C {0,. .., k. }, so dah jedes j in {0,..., ko} cindeutig als j = j1 +---+ s
mit j, € II, geschrieben werden kann? Wir werden II;,. .., Il in so einem Fall eine
(ki,..., ks)-Familie (zu {0, ..., ko}) nennen.

Zu welchen ko gibt es s > 2, ky,..., ks € Nmit k; +---+ ks = k, so dah eine
(ki,..., ks)-Familie existiert?

Der bisher diskutierte Fall entspricht s = 2, k; = n — 1,k = m — 1. Die Verallgemeinerung ist
eine Umformulierung der Frage, ob man die Gleichverteilung auf {0, ..., ko} durch Falschen von s
Wiirfeln erzeugen kann. Lemma 2.1 rechtfertigt zwar zunichst nur die Ubersetzung im Falle zweier
Wiirfel, enthélt aber auch schon die allgemeinere Variante, wenn man es im Falle von s Polynomen

A(x),...,As(x) auf Aj(x) und Az(x)Az(x)- - - As(x) anwendet.

Einige einfache Beispiele und Tatsachen ergeben sich schnell. Zum Beispiel miissen alle
I1, die Zahlen 0 und k, enthalten, da andernfalls 0 bzw. k, iiberhaupt nicht darstellbar
wiren. Andererseits: AuBer 0 gibt es keine Zahl j, die in mehr als einem II, enthalten
ist (denn sonst hitte j zwei verschiedene Darstellungen). Damit ist iibrigens die Frage
nach der Existens einer (5, 5)-Familie (d.h. Problem 1 fiir gefalschte sechsseitige Wiirfel)
bereits negativ beantwortet.

Sei o, das kleinste strikt positive Element von II,. Da alle o, voneinander verschie-
den sind und mindestens eins gleich 1 sein muf (warum?), diirffen wir annehmen, dab
1 = o < -+ < g In so einem Fall wollen wir von einer (ki,---, ks)-Familie in
kanonischer Reihenfolge sprechen.

Hier ein Beispiel: II; := (111),1I, := (1001) ist eine (2,3)-Familie in kanonischer
Reihenfolge fiir (111111). (Ab hier verschliisseln wir Teilmengen von {0, ..., 7} durch
die Werte der zugehdrigen charakteristischen Funktion; die eben angegebenen 11,11,
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zum Beispiel sind also die Mengen {0, 1,2}, {0, 3}). Entsprechend sind (1111), (10001),
(10000000100000001) cine (3,4, 16)-Familic und (110011), (101) eine (5,2)-Familie
(beide in kanonischer Reihenfolge).

Ubrigens wollen wir ausdriicklich den Fall s = 1 zulassen, die triviale Familie.

Wir beschreiben nun alle Moglichkeiten, Familien in kanonischer Reihenfolge zu finden
(womit Problem 1’ dann vollstindig gelost sein wird). Zuniichst geben wir einen konkre-
ten Algorithmus an, solche Familien zu finden, und dann zeigen wir im schwierigeren
zweiten Teil, dah alle so entstehen.

Sei ko € N. Wir nehmen an, dab ko + 1 = g ---g als Produkt natiirlicher Zahlen
mit ¢,81,...,8 > 2 geschrieben ist (Achtung: Die Reihenfolge der g; wird sich als
wichtig erweisen). Dann kann jedes j € {0,---,ko} auf cindeutige Weise als j =
i+ g+ 3o+ g1 - - &1 geschrieben werden, wo 0 < j. < g;. Das ist eine
offensichtliche Verallgemeinerung der wohlbekannten g-adischen Entwicklung, die dem
Fall g = ¢y = --- = & entspricht.

In unserer Terminologie heifit das: Setzt man

-~

H] = {07H.,g1 = 1}71/_\[2 = {078172817"'7(82 = 1)8’1} ::gl{O,...,gz — 1},

allgemein R
HT = (nglngz o gl){O, 8 1}
sowie N
kr =@ —-1)g—---& fir 7=1,....¢,
so ist (ﬁh...,ﬁt) eine (Eh...ft)-Familie. Sie ist in kanonischer Reihenfolge, da
gl <ngl < o,

Seinun2 <s < tund Ay, ..., A eine disjunkte Zerlegung von {1, ..., ¢} in nichtleere
Teilmengen, derart dab kein A, zwei aufeinanderfolgende Zahlen enthilt und jeweils
das kleinste Element von A, kleiner als das von A, ist (z. B. {1}, {2}, {3} im Fall
s =t =3 oder {1,3},{2} fir s = 2, = 3). So etwas soll in diesem Abschnitt eine
alternierende s-Zerlegung von {1, ...t} heifien.

Setze [, == Y7 ca, Il dabei ist die Summe von Zahlenmengen M, N als M + N :—
{m+nlm € M,n € N} erklart. Es ist offensichtlich, dab dann II;,...,II; eine
(ki,..., ks)-Familie mit k; + - - + ks = ko ist, wenn wir k, := Zrer %, definieren.
Unsere Voraussetzung an die A, impliziert auch sofort, dah sie kanonisch geordnet ist.
So also erhilt man Beispicle. Zum spateren Zitieren wollen wir die eben gefundene
Familie die zu (g1,...,8: A, ..., As) gehérige Familie nennen.

Beispiel: N N N
Sei ko = 23 und ko+1 als 4-2-3 geschrieben. Dannist IT; = (1111),II, = (10001),II; =
(10000000100000001). Die einzige alternierende 3-Zerlegung (A; = {i}) fiithrt zur
(3,4,16)-Familie ﬁl,ﬁ27ﬁ3, und die eindeutig bestimmte 2-Zerlegung von {1,2,3},
also {1,3}, {2}, liefert (11110000111100001111), (10001).
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2. Wieder sei ko = 23, diesmal versuchen wir es mit ko + 1 =2-2-3-2. Hier sind die
Il wie folgt: TI; = (11), T, = (101), TI5 = (100010001), TL, = (1000000000001). Die
alternierende 2-Zerlegung {1,3},{2,4} fithrt auf die (9, 14)-Familie (1100110011),
(101000000000101).

Schwieriger ist die Umkehrung, wir formulieren sie als
Theorem 3.1 Sei 11y,... 115 eine (ky, ..., ks)-Familie in kanonischer Reihenfolge.

@) Esgibtt > 1,81,...,8 > L mit k+1 =g -- - g und eine alternierende s-Zerlegung
Ay, A von {1, ..t} so daf3 T, ... 1s die zu (g1,...,8: 0, ..., ) ge-
horige Familie ist.

(i) IL,... I, bestimmen (g1,...,8, A1, ..., ;) eindeutig.
Der Beweis folgt gleich, zunichst benétigen wir als Vorbereitung zwei Lemmata.

Lemma 3.2 Es seien v, ko € N, v < ko, und 11 C {0,. .., ko —r} so, daf$ {0,...,r}, 11
eine (t, ko — v)-Familie ist. Dann ist v + 1 ein Teiler von ko + 1, und 11 ist die Menge
(r+10{0,....n—1}, won:= (ko + 1)/(r +1).

Beweis: Die Eindeutigkeit der Darstellung impliziert |j' — j”/| > r fiir verschiedene
Elemente j/,j"” aus II, und wegen der Forderung, daf alle Elemente aus {0,. .., ko}
als Summen von Elementen aus {0,...,7} bzw. II darstellbar sein sollen, konnen die
Liicken nicht gréBer als r 4 1 sein. O

Lemma 3.3 1,11 sei eine zuldssige Familie fir {0, ..., ko} mit 1 € 1. Wihle r so,
daf3 {0,...,v} CII, aber r + 1 &€ I1. Dann gilt

@O r+lell
@) dus {i,i+1,...,i+7'} CII folgt v’ <.

(i) Firi € Wmiti— 1 ist {i,....i 17} elL
(iv) 7 + 1 teilt jedes j € T1 und jedes j' € Tl mit j' — 1 & IL.

Beweis: (1) Das ist klar, da sonst 7 + 1 nicht als Summe darstellbar wére.

(i) Wire einmal {i,...,i+r+1} € II, so hitte i 71 zwei verschiedene Darstellungen
als j; + j, mit j; € IL, j, € 11, namlich als (i +r+ 1)+ 0 und als § + (r + 1).

(iii) Angenommen, das wire nicht der Fall. i € II soll das kleinste Element sein, wo
zwar i — 1 ¢ II, aber {i,...,i +r} ¢ II; fur i/ € II,i’ < i,i’ — 1 ¢ II gilt also
{#',...,i"+r} C TI. Wiahle #' so groh wie moglich, dah {i,i+1,...,i+7'} C II, nach
Annahme ist dann ¥’ < 7.

Schreibe i + ' + 1 als j, + j, mit j € 1, j, € Il Wegen j + 7' + 1 ¢ Tl ist j» > 0 und
folglich j, > r+1. Also ist j; < i. Wir behaupten, daB j; —1 ¢ II. Im Fall j; = 0 ist das
klar, und im Fall j; > 0 betrachten wir die Identitdt i ++" = (i +7")+0 = (j; — 1) + ja.
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Sie bedeutet im Fall j; — 1 € II zwei verschiedene Darstellungen von i + #’. Also
ist 1 € I1,j1 — 1 ¢ IL, j; < i, und daraus dirfen wir {j,,...,j; +r} € II folgern.
Insbesondere gilt j, + (r — ') € M und j; + (r — ') < i (wegeni — 1 ¢ II), und das
verschafft uns zwei verschiedene Darstellungen von i +r + 1 als { + (r + 1) und als
(h+r—=1r)+jp,woi,i+r—r ell,r+1,j, € I1. Dieser Widerspruch zeigt (iii).

(iv) Setze I’ := {i € M|i — 1 ¢ I}, wobei IT" = {0} moglich ist. Wegen (ii) und
(i) ist jedes j € II eindeutig als j' + j” darstellbar, woj’ € {0,...,r} und j” € II'.
Folglich ist ({0,...,7},II' + II) eine zulissige Familie, und die Behauptung folgt aus
dem vorstehenden Lemma. O

Wir kommen nun zum Beweis von Theorem 3.1, wir fiihren ihn durch Induktion nach
ko. Fur ko =0 ist alles klar, und wir nchmen an, daf ko nun so vorgelegt ist, dah die
Aussage fur alle ko < ko schon bewiesen ist; weiter sei eine zuldssige Familic wie im
Theorem gegeben. Da die triviale Familie zu (ko + 1,{1}) gehért, diirfen wir s > 2
annchmen.

Um 3.13) zu zeigen, sind &1,...,8 > 2 und eine disjunkte Zerlegung A,,..., A, von
{1,...,t} so zu finden, daB g, --- g+ = ko + 1 und

(1) A, # 0 fir alle o.

(2) Kein A, enthilt zwei aufeinanderfolgende Elemente.

(3) Das kleinste Element von A, ist kleiner als das kleinste Elment von A, ;.
(4) Setzt man II, := (g ---1){0,...,g — 1}, so ist II, — >orea, -

Dazu definieren wir I1 := II; und I:= I, +-- -+ 1II;. Nach Annahme ist 1 € II, so daB
wir Lemma 3.3 anwenden diirfen: Es gibt ein r > 1 so, daB (mit den BezNeichnungen des
Lemmas) IT = {0,...,7} + I, und r + 1 teilt alle Elemente von I1’ + I1. Insbesondere
teilt 7+ 1 das groBte Element 1 von IT-+ [T, und damit teilt 7+ 1 auch ko+ 1 = n+r+1.

Setze ko == n/(r + 1); das ist unser Kandidat, um die Induktionsvoraussetzung anzu-
wenden. Wir definieren 11, := IT'/(r + 1)(:= {j/(r + 1)|j € I'}), 11, := 11,/ (r+ 1) fiir
o > 1. Wir nehmen fiir den Augenblick an, dabB alle f[a mindestens zwei Elemente ent-
halten. (Tatséichlich konnte TT; = {0} sein, wenn néimlich IT; = {0, ..., 7} war; um diese
Moglichkeit kiimmern wir uns gleich). Dann bildet I, ..., 0 eine (ki,. .., k;)-Familie
fiir {0,..., ko}, wobei k; := (ki —r)/(r + 1, ko == ko /(r+ 1) fiir o > 1.

Darauf wird nun die Induktionsvoraussetzung angewandt. (Die bezieht sich zwar nur
auf Familien in kanonischer Reihenfolge, doch driickt sich das eventuell notwendige
Umsortieren nur dadurch aus, dabB fiir die hier relevanten A-Mengen nicht notwendig
die kleinsten Elemente eine monotone Folge bilden.) Die gesuchten g1, . . ., entstehen
nun so, dab man zu den ¢’s der Induktionsvoraussetzung die Zahl r+1 als erstes Element
hinzunimmt, und die A-Mengen entstechen aus den jetzt gefundenen durch Translation
um 1 (wobei man zu A; noch 1 hinzufiigen muf). Dah dann wirklich (1) bis (4) erfiillt
sind, ist unschwer einzusehen. Beim Nachweis, daB A; keine zwei aufeinanderfolgenden
Elemente enthilt muf man sich an 7 + 1 ¢ II;, d.h. 1 ¢ II, erinnern.

Der Fall IT" = {0} erfordert nur geringe Modifikationen, insbesondere ist A; := {1} zu
setzen.
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(i) Auch das wird durch Induktion gezeigt. I1;,. .., Il sei in kanonischer Reihenfolge
und entstehe sowohl aus (gi,...,8: A1, ..., As) als auch aus ('1,....8' v A, ,Alg).
Dann ist g = g, die eindeutig bestimmte Zahl 7, fiir die {0,...,7} C II;, aber r+ 1 ¢
I1;. Konstruiere dann ﬁl 55 bt f[s wie im vorstchenden Beweis.

Die dafiir nach Induktionsannahme gesicherte Eindeutigkeit der Darstellung liefert sofort
(g17~~ ~7gt;A17~ ‘ 7lDS) == (glh.. ~7g/t’;A/17” .7A/s/). O

Fiir alle, die von dem eher technischen Beweis verwirrt sind, folgt hier eine

Zusammenfassung:

Starte mit einer (k,..., ks)-Familie IT;, ... I, (sic muB nicht in kanonischer
Reihenfolge sein). o(1) sei das o, fiir das 1 € T, und g; — 1 wird als dasjenige
r definiert, fiir das {0,...,7} C Il,(). aber r + 1 ¢ Il,(. Betrachte eine neue

Familie 111", ..., 11, wo 11%))) = {i € Tq)[i — 1 & M)}, 115 = T, /gy fir

o # o(1) (dabei kann T13), = {0} sein). So wie (1) und g aus Iy, II;
entstanden, werden nun o(2) und g aus ng), ..., T gewonnen. Das Verfahren
setze man fort, solange noch von {0} verschiedene 1157 auftreten.

So erhilt man g1,...,8,0(1),...,0(t). Setzt man noch A, :=

{r|lo(r) = o}, so ist das eine alternierende s-Zerlegung, und die vorgelegte
Famile entsteht aus (g1,...,8: A1, .., Ag).

Beispiel: Seien IT; = (1100110011), I, = (101000000000101).
Wir erhalten

o(1)=1, & =2,11” = (10101), H<2> (11000011);
o(2)=2, $=2, H<3 = (111),1¥ = (1001);
o(3)=1, g=31"=0), H(4 (11);

o) =2, g=2,17 =(0),1 = (0).

Damit ist I1;, II, diejenige Familie, die aus (2,2,3,2;{1,3},{2,4}) entsteht.

Fiir den Fall s = 2 formulieren wir unsere Ergebnisse noch als

Korvollar 3.4 Es seien ki, ko, ko natiirliche Zahlen mit ki + ko, = ko sowie 1I; C
{0,..., ka1 }, T, € {O,..., ko} mit 1 € I, so dafs jedes j € {0, ..., ko} eindeutig als
j=j1+ jo mit ) € 1Ly, j» € 11, geschrieben werden kann. Dann gibt es gy, . .., mit
Qe = ko+1, SO da/}

ki=@-1)+ (g -8+ (& — 1)upes -,
kr=(%—1)g1 + (8 — 1)$38281 + (85 — 1)85828:8381 - -

Rekursiv erhilt man ki, ky so: Setze ki == ¢ — Lki" == 0,k;" == g —r1k-—1"
Q1 — Lk =g ke fir T =2,...,t Dann ist (ki,kz) = (k', k") oder
(ki,k2) = (k¢"", ki), je nachdem, ob t gerade oder ungerade ist.
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Das ist also die Losung, die wir fiir Problem 1 anbieten kénnen: Genau dann kann man
einen fairen (ko + 1)-seitigen Wiirfel durch die Summe eines ( k; + 1)-seitigen und eines
(k2 + 1)-seitigen Wiirfels simulieren, wenn k;, k, wie vorstehend beschrieben aus einer
multiplikativen Darstellung von k, + 1 entstehen.

4 Problem 2: Filschen mit dem Ziel, die Summe

fairer Wiirfel zu simulieren
Wir fixieren #,m, k mit n + m = 2k und kimmern uns um die Existenz nichtnegativer
a;,bj, so daB A(x)B(x) = (1+amx+ -+ a, X" (1 +bix+ -+ by 1x™ 1) =
(1+x+---+x¥"1)2 den trivialen Fall n = m = k,a; = b; = 1 wollen wir dabei nicht
beriicksichtigen. Beispiele fiir solche Situatiuonen liefert Kapitel 3: Ist 1++x+- - -x* 1 =
A (x)Bo(x) mit nichttrivialen Ao (x), Bo(x), so ist (Ao(x))?, (Bo(x))? eine zuldssige Wahl
fiir A(x), B(x) in der hier vorliegenden Situation. Die Identitit (1+x)(1+x?) = 1+x+
x% 4 x* etwa ergibt eine Méglichkeit, die Summe von zwei fairen vierseitigen Wiirfel
als Summe gefilschter Wiirfel (mit drei bzw. fiinf Flichen) zu simulieren. So werden
sicher nicht alle A(x), B(x) entstehen (insbesondere keine Beispiele im Fall # = m), und
deswegen muf} das Problem noch etwas naher analysiert werden, um zu einer allgemeinen
Beweisstrategie zu kommen.
Dazu erinnern wir uns daran, daB die Nullstellen von A (x) und B(x) k-te Einheitswurzeln
sind und daB mit jedem ¢ auch ¢ Nullstelle sein muB. Schreibt man also 14x4- - -4x* 1
als Produkt (1 —mx +x3)(1 —mx +x%) - - (1 —mx +x2)(1+ x) (der letzte Faktor tritt
nur dann auf, wenn k gerade ist), so werden A(x) und B(x) ebenfalls aus derartigen
Faktoren zusammengesetzt sein, und insgesamt — fiir A(x) und B(x) zusammen — muf
jedes der Polynome 1 —mx +x2,1 —mx +x2,...,1 —mx +x? (und evtl. 1+ x) genau
zweimal aufgetreten sein.

Unser Problem lautet also wie folgt: Sei k € Nund ¢; := exp(2nj/k) firj=1,..., k-
1. Wir setzen ; == ¢; + ¢ und [ == k/2 — 1 bzw. | := (k — 1)/2 fir gerades bzw.
ungerades k. Ist dann die Folge 1 —mx+x%, 1 —mx+x%,.. ., 1 —mx+x2, 1 —mqx + x2
(die fiir gerades k noch um 1 + x,1 + x fortzusetzen ist) so disjunkt in zwei Teile zu
zerlegen, daB beim Ausmultiplizieren Polynome (7 — 1)—ten und (m — 1)-ten Grades
mit nichtnegativen Koeffizienten entstehen?

Wie man zeigen kann, daB das fiir “kleine” #,m, k nur auf die triviale Weise geht,
wird spiter im Beweis von Theorem 4.2 erldutert werden. Ansonsten sind Beispiele fiir
nichttriviale Zerlegungen leicht durch Ausprobieren zu finden, etwa im Fall k = 6,n =
8,m =4 14+2x+ - +2x7+x1% = (1+2x+ 322+ 323+ 3x* + 305+ 200 +27) (1 +23) =
(122 +x3+x* +x°+x7)(1+2x+2x% +x3). Verzichtet man auf die Bedingung 1 = 1,
so scheint es fiir jedes k zahlreiche A(x), B(x) zu geben; das legen jedenfalls die mit
Computerhilfe gefundenen Ergebnisse nahe, Beweise gibt es dazu vorlaufig nicht. Die
Suche wird dabei durch folgende Beobachtung etwas eingeschriankt: Ist k ungerade, so
sind nur quadratische Faktoren zu beriicksichtigen, d. h. auch n und m miissen ungerade
sein; und ist k gerade, so miissen A(x), B(x) beide den Faktor 1 + x enthalten, denn
andernfalls konnten keine Polynome ungeraden Grades entstehen.

Wir betrachten nun nur noch den Fall n = m = k. ¢, g seien zwei benachbarte, nicht-
reelle k-te Einheitswurzeln, und 7 := (4,7’ := ¢’ +{. Dannist 1+ x+- -+ xF1 =
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(1—nx+4x2)(1—n'x+x2)Co(x) fiir ein geeignetes Polynom Co(x). Wir werden versuchen,
Ax) und B(x) als (1 — o'x +x2)(1 — n’x + x*)Co(x) und (1 — nx + x*)(1 — nx +
x2)Co(x) zu definieren. Dann ist klar, dah beide Polynome Grad k — 1 haben und daB
A(x)B(x) auf nicht-triviale Weise (1 + x + - -- + x*~1)? darstellt. Warum aber sollten
die Koeffizienten nicht-negativ sein. Betrachten wir etwa A(x). Es ist doch, wenn wir
Cx) = (1 =n'x+x*)Co(x), e := 0 —n setzen, A(x) = (1 — (n+ €)x +x*)C(x), und
(1—nx+23)C(x) =1 +x+ - +xF1 hat nichtnegative Koeffizienten. Fiir “kleines”
e, d. h. “grofes” k, sollten dann aus Stetigkeitsgrinden auch in A(x) keine negativen
Koeffizienten vorkommen.

Dieses Storungsargument wollen wir etwas prézisieren. Dazu fixieren wir das bisherige

¢, setzen wie bisher 7 := ¢ 4 ¢ und schreiben das dann auftretende C(x) als 1+ ¢;x +
e CpaxR A k3,

Im Polynom (1 — nx + x?)C(x) sind alle Koeffizienten 1 , und wir moéchten, daB sie

in (1 — (n+ €)x + x*)C(x) nichtnegativ sind. Das lauft auf ec; < 1 hinaus, und damit

ist zu hoffen, daB wir eine Abschitzung fiir die |c;| finden konnen, die es uns gestattet,

|(n —n")cj| < 1 zu beweisen.

Zunéchst ist nicht klar, waraum das gehen sollte: Fiir grobe k kann zwar n—1’ als beliebig
klein angenommen werden, doch kénnten die ¢; gleichzeitig zu groB werden. Dab die
Idee aber dennoch zu verwirklichen ist, wird durch das folgenden Lemma vorbereitet:

Lemma 4.1

() Esgilt ¢; = ¢ +

T 7 *1 <><1 ﬁ”]

(i) Die c; liegen im Intervall [

C)C 0
]. Insbesondere sind

= e n)\/2+v’ﬁ’ (2771)\/2“7
die |c;| durch p(n) = ZL o= \/_ beschrankt.

Beweis: (1) Durch Koeffizientenvergleich folgt rekursiv: ¢ = 1,61 = 1+ 1,62 = 1+
N1, 03 = 1+nc—c1,...,¢; = 1+9cj—1 —¢j—2, wobei wir den letzten Ausdruck nach
der Festsetzung ¢_; = ¢_, = 0 fiir alle j verwenden diirfen.

Die behauptete Gleichung ist nun leicht zu erledigen: Man definiere d; als den rechts
stehenden Ausdruck und rechne direkt nach, dabd | =d > = 0,d; = 14+-nd;1 —d;_o;
klar daB dann d; = ¢; fiir alle j gelten muB.

Interessanter als der vorstehende Beweis ist der Weg, wie die Formel gefunden wurde. Hier eine

Skizze: Ich habe fir jedes j den Vektor w; := (C/'C*_I) betrachtet und dann w;,; = Muw; + ((1))
i

als Rekursionsformel erhalten, wobei M die Matrix (—771 (1)) bezeichnet. Alles lauft dann auf die

Bestimmung von (E + M + M2 + ... + M7*1)((1)) hinaus, und dafiir wurde die Formel fiir die

geometrische Reihe angewandt: (E — M/)(E — M)_l((l)). Dabei darf E — M wirklich invertiert
werden, denn die Determinante ist 2 — 7 > 0. Nun sind die Eigenwerte von M gerade die Zahlen
¢,C. Also kann M auf Hauptachsen transformiert werden, und die Eintrige der M/ kann man leicht

durch ¢/, ausdriicken.

(11) Mit 5 = W besagt (1) dab C] der um W
Realteil von £¢/ ist. (Das IidBt iibrigens eine interessante Interpretation zu: Die ¢; sind

= 1/(2 — n) verschobene
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die Realteile von gewissen oder allen Punkten eines reguliren k-Ecks, das 1/(2 — )
als Mittelpunkt und 2|¢| als Durchmesser hat; wieviele Ecken dabei wirklich auftreten,
hingt davon ab, wieviele verschiedene ¢/ vorkommen.)

Folglich liegt CZ im Intervall [1/(2 —n) —|€],1/(2 —n) + [£]], und die Behauptung folgt
aus |€| = m O

Als Folgerung aus dem Lemma und den vorstehenden Uberlegungen erhalten wir so Teil
(i) des folgenden Theorems, durch das Problem 2 im Fall n = m vollstindig gelost wird,

Theorem 4.2

() Es gebe zwei nichtreelle k-te Einheitswurzein ¢,(’ so, daf3 die Zahlen n .= ( +
¢, = '+ ¢ verschieden sind und |o(n)l, ()] < 1/|n — | gilt. Dann ist
Problem 2 nichttrivial l6sbar.

(ii) Diese Bedingung ist fiir alle k > 12 erfiillt.
(iii) Auch fiir k = 10 laf3t sich das Problem auf die angegebene Weise losen, auch wenn
die Abschditzung in (i) fiir keine Wahi von ¢, (' gilt.

(iv) Fiir die noch verbleibenden k gibt es keine nichttrivialen Losungen.

Zusammen: Man kann die Summe zweier Gleichverteilungen auf {0, ..., k — 1} nicht-
trivial als Summe von Verteilungen auf {0, ...,k — 1} genau dann erzeugen, wenn k
nicht zur Menge {1, ...,9,11} gehort.

Beweis: Fiir den Nachweis von (ii) bemerken wir zunichst, daB ¢ auf [—1,2[ mono-

ton steigt, da die Ableitung dort positiv ist. Insbesondere gilt fiir —1 < n < 0 die

Abschiitzung ¢(n) < ¢(0) = (1+ v2)/2.

Wir wollen nun eine untere Schranke fiir die k suchen, so daB folgende Konstruktion
=

moglich ist: Man findet zwei benachbarte k-te Eineitswurzeln ¢, ¢ , so dab fiir die zu-

gehorigen 7,7’ sowohl 7,7’ € [—1,0] als auch | — /| < 2/(1 + v/2) gilt.

Sind ¢ und ¢’ die I-te und die (I + 1)-te k-te Einheitswurzel, so ist

|n — 7’| = 2|cos(2nl/k) — cos(2m(l + 1)/ k| < 4= /k,

wobei wir fiir die Abschitzung den Mittelwertsatz verwendet haben. So erhalten wir die
Bedingung k > 27(1 + v/2) ~ 15.17, und folglich ist (i) fiir alle k > 16 erfiillt.

Die verbleibenden Fille werden durch konkrete Rechnung erledigt: Far k = 12, 13,
14, 15 ist die Bedingung (i) erfiillt, wenn wir sie jeweils auf die 4-tc und 5-te k-te
Einheitswurzel anwenden. Fiir kK = 10 ist (i) nicht erfullbar. Trotzdem kann man auch
hier durch die gleiche Idee eine nichttriviale Darstellung von (1 + x + --- + x°)? als
Produkt zweier Polynome 5-ten Grades gefunden werden: Man muf nur ¢, ¢’ als 3-te
und 4-te 10-te Einheitswurzeln wihlen (explizit ist das in [10] ausgerechnet).

Der Nachweis von (iv) kénnte ebenfalls einem Computer anvertraut werden (und das ist
sicherheitshalber auch wirklich geschehen), 148t sich mit etwas Geduld aber auch ohne
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Rechnerhilfe fithren. Als Beispicl betrachten wir k = 8: Lassen sich 1 — v2x +x2,1 —
V2x+x2, 14+ x2,1+x2, 1+ vV2x +x%, 1+ v2x +x2, 1+ x, 1 + x zu zwei Polynomen
A(x), B(x) 7-ten Grades mit nichtnegativen Koeffizienten zusammenfassen, so daB beide
von 14x+---+x7 verschieden sind? Angenommen, so eine Zerlegung wiirde existicren.
Da der Grad jeweils 7 ist, muB 1+ x Faktor von A(x) und B(x) sein, andererseits muf
mindestens einer der irreduziblen Faktoren in A(x) oder B(x) quadratisch vorkommen,
denn sonst wiirde der triviale Fall vorliegen. Die Moglichkeit, daB (1 — +/2x + x?)2
als Faktor vorkommt, scheidet aus, denn sowohl in (1 — v/2x + x2)2(1 + x?)(1 + x)
als auch in (1 — v2x + x2)>(1 + v2x + x2)(1 + x) gibt es negative Koeffizienten.
Wiirde schlieBlich (14 +/2x +x?)? in (zum Beispiel) A(x) vorkommen, so wire B(x) =
(1 —v2x 4+ x*)(1 +x2)(1 + x) oder = (1 — v2x + x)(1 + x?)?(1 + x), und in beiden
Féllen treten negative Koeffizienten auf. O

5 Einige Erginzungen und Probleme

Die hier behandelten Probleme kamen in der Verkleidung der gefalschten Wiirfel daher.
Wie schon erwihnt, ist das ein Spezialfall der allgemeineren Fragestellung, ob und wie
man vorgelegte Zufallsvariable als Summen unabhidngiger Zufallsvariablen schreiben
kann. Das ist fundamental wichtig, wenn man G<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>