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Über das Fälschen von Würfeln

Ehrhard Behrends

Ehrhard Behrends ist 1946 geboren. Seit 1973 ist er Professor an der Freien Universität

Berlin. Sein Hauptarbeitsgebiet ist die Funktionalanalysis, er hat aber auch schon
über Topologie, Ergodentheorie und Wahrscheinlichkeitsrechnung gearbeitet. Unter
seinen Publikationen finden sich vier Bücher. Seine Interessen ausserhalb der Mathematik

liegen im Bereich der Musik. Freizeit und Beruf berühren sich manchmal; so

organisierte er am Internationalen Mathematiker-Kongress in Berlin Veranstaltungen

zum Thema "Mathematik und Musik".

1 Einleitung

Wir gehen aus von einem handelsüblichen Würfel, also einem, auf dessen Seiten die
Zahlen von 1 bis 6 aufgedruckt sind. Er soll fair genannt werden, wenn alle Zahlen mit
gleicher Wahrscheinlichkeit, d.h. mit Wahrscheinlichkeit 1/6, beim Würfeln erscheinen.

Bekanntlich lassen sich Würfel aber auch manipulieren: Durch Verwendung inhomogener
Materialien, Magneten usw. können die Wahrscheinlichkeiten verändert werden.

Wenn zwei faire Würfel vorliegen und sie gleichzeitig geworfen werden, ergeben sich
als Augensumme Zahlen zwischen 2 und 12, und es ist nicht schwer, für jede dieser
Zahlen k die Wahrscheinlichkeit des Auftretens auszurechnen. Man addiert einfach die
Wahrscheinlichkeiten derjenigen Möglichkeiten, die zum Ergebnis k führen, wobei man

Ita vita est hominum, quasi quom ludas tesseris:
Si Mud, qvod maxume opus est, iactu non cadit,
illud, quod ceciclit forte, ni arte ut corrigas.

Im Menschenleben ist es wie beim Würfelspiel
Fällt so. wie du"s gerade brauchst, der Wurf nicht aus.

muss deine Kunst da:; Zufallsglück berichtigen.

Das "corriger la fortune", das "Fälschen von Würfeln" ist ein alles Handwerk, das

nicht immer mit reinen Motiven ausgeübt wird. Hier, im Beitrag von Ehrhard Behrends
werden nur lautere Absichten verfolgt: Die Fragen sind abstrakter Natur und sie führen

zu einem attraktiven mathematischen Problem mit überraschenden Weilerungen, usi
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die Wahrscheinlichkeit jedes einzelnen Zahlenpaares als 1/36 ansetzt. So ergeben sich
für 2,3,..., 11,12 die Werte 1/36,2/36,... ,2/36,1/36.
Wie sieht das bei gefälschten Würfeln aus? Auch da kann man die Augensummen-
Wahrscheinlichkeiten leicht bestimmen, und diese Zahlen werden offensichtlich im
allgemeinen von 1/36,2/36,... ,2/36,1/36 verschieden sein.

Als Ausgangspunkt für die in diesem Artikel zu besprechenden Ergebnisse wollen wir
zwei mit den Summen-Wahrscheinlichkeiten zusammenhängende Probleme formulieren.
Als erstes stellen wir uns die Frage, ob es durch geeignetes Fälschen zweier Würfel
möglich ist, daß für die Augensumme die Ergebnisse 2,..., 12 alle die gleiche
Wahrscheinlichkeit haben. Und dann kümmern wir uns um das Problem, ob sich - geschicktes

Fälschen vorausgesetzt - die Summen bei manipulierten Würfeln genauso verhalten

können wie die zweier fairer, ob also als Summen-Wahrscheinlichkeiten auch dann

1/36,2/36,..., 2/36,1/36 auftreten können, wenn nicht notwendig die Wahrscheinlichkeiten

für 1,..., 6 auf beiden Würfeln jeweils 1/6 sind.

Es wird sich herausstellen, daß die Antwort in beiden Fällen "nein" lautet. Der Beweis
ist mit elementaren Mitteln leicht zu führen, hier soll es aber um eine jeweils naheliegende

Verallgemeinerung gehen. Um die zu formulieren, numerieren wir unsere Würfel
zunächst um: Statt mit 1,..., 6 sollen sie mit 0,..., 5 beschriftet sein. Klar, daß das

inhaltlich nicht das Geringste ändert, später werden aber dadurch einige Formulierungen
etwas übersichtlicher. Als nächstes gehen wir von einem Würfel mit sechs Flächen zu
einem mit n Flächen über, wobei n irgendeine natürliche Zahl ist; die Flächen sind dann

von 0 bis n — 1 durchnumeriert. (Um so etwas zu realisieren, könnte man eine kleine
Säule verwenden, deren Querschnitt ein regelmäßiges n-Eck ist, und "würfeln" bedeutet

dann, diese Säule über den Tisch zu rollen.) Und schließlich wollen wir auch die Sprache
der Wahrscheinlichkeitsrechnung verwenden. Aus einem "n-Würfel" mit der Beschriftung

0,..., n - 1 wird ein Wahrscheinlichkeitsmaß auf {0,..., n - 1}, das wir uns
durch Vorgabe der Zahlen p} := P ({;'}) definiert denken, und zum "Würfeln mit zwei
Würfeln" müssen wir uns daran erinnern, wie man die Verteilung der Summe unabhängiger

Zufallsvariablen berechnet. Hier liest sich das so: Sind Wahrscheinlichkeitsmaße
auf {0,..., n - 1} durch p0,... ,pn-i und auf {0,..., m - 1} durch q0,..., qm-\
gegeben, so korrespondiert "Summe der Augenzahlen" zu einem Wahrscheinrichkeitsmaß
auf {0,..., n + m — 2}, wobei sich die Wahrscheinlichkeiten für j 0,..., n + m — 2

als r] poqj + p\q;-\ + ¦ ¦ ¦ + P;qo berechnen lassen; dabei ist hier und im folgenden

pi qj := 0 für i > n, j > m gesetzt.

Nach diesen Vorbereitungen können wir die obigen Probleme wie folgt verallgemeinern:

Problem 1: Fälschen zum Simulieren der Gleichverteilung
Es seien n und m natürliche Zahlen. Gibt es Wahrscheinlichkeiten po, ¦ ¦ ¦ ,Pn-\ bzw.

q0,. ¦ ¦ ,qm-\, so daß alle r} ¦.=poq;+p\q;--i -\ \-p}qo,j O,...,n + m-2 gleich sind?

Problem 2: Fälschen mit dem Ziel, die Summe fairer Würfel zu simulieren

Seien k,n,m G N mit n + m 2k. Ist es möglich, Wahrscheinlichkeiten po, ¦ ¦ ¦ ,pn-i
und qo,..., qm-\ so zu finden, daß die poqj + piqj-i + • • • + Pjqo,j 0,..., 2n - 2

so sind wie bei der Summe zweier Gleichverteilungen auf {0,..., k — 1}, also gleich
l/k2,2/k2,...,2/k2,l/k2?
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Das erste Problem geht auf eine Frage von P. Levy zurück. Eine erste Antwort stammt

von Raikov ([9]): Ist k eine Primzahl, so gibt es keine nichttriviale Lösung (d.h. eine

mit n,m> 1). Dieses Ergebnis ist in mehreren Lehrbüchern zu finden, die sich mit der

Darstellung von Zufallsvariablen durch Summen unabhängiger Variablen beschäftigen
(z.B. in [1], [6], [7], [8]). Weniger bekannt scheint zu sein, daß das Problem in der
allgemeinen Form auch schon vor langer Zeit untersucht wurde (in [3], zitiert meines Wissens

nach nur in [7]). Der vergleichsweise einfach zu behandelnde Fall n m 6 ist in der

Verkleidung des zu Beginn geschilderten Würfelproblems Standard-Übungsaufgabe in
der elementaren Wahrscheinlichkeitstheorie; die älteste Quelle scheint mir [4] zu sein.

Das zweite Problem ist nur in [10] untersucht worden und wird dort im Spezialfall n

m k vollständig gelöst. (Dort gibt es allerdings einen Fehler: Dem Computerprogramm
ist entgangen, daß es nichttriviale Lösungen auch für den Fall n m= k 13 gibt.)

Der Aufbau ist wie folgt. In Kapitel 2 werden die Probleme in Fragen über Polynome
bzw. in eine Aussage der elementaren Zahlentheorie (additive Darstellbarkeit von Zahlen)
umformuliert. Kapitel 3 enthält eine vollständige Lösung des Problems 1, wobei auch
der Fall von mehr als zwei Würfeln erledigt wird. Die Methoden sind ähnlich wie in [3]

(wo es allerdings nur um zwei Würfel geht).

Das Problem 2 wird in Kapitel 4 gelöst. Der Zugang ist etwas elementarer als in [10],
dadurch wird die Beweisstrategie etwas klarer; wie dort wird auch hier nur der Spezialfall
n m k vollständig diskutiert. In Kapitel 5 schließlich gibt es noch einige Ergänzungen:

Erweiterungen der vorher bewiesenen Ergebnisse, aber auch weitere Informationen
zum Thema "Manipulieren von Würfeln".

Von den Lesern wird an Vorkenntnissen zum Verständnis nur recht elementare Mathematik

erwartet. Komplexe Zahlen spielen eine wichtige Rolle, und bei der Erklärung,
wie ich zu der Aussage von Lemma 4.1(i) komme (allerdings nicht für den Beweis),
sollte man sich an die Hauptachsentransformation erinnern.

2 Übersetzung des Problems in Fragen über Polynome
und die Darstellbarkeit von Zahlen

Nachstehend werden Polynome P(x) p0 + p\X + ¦ ¦ ¦ + pn-\Xn~l mit nichtnegativen
Koeffizienten eine wichtige Rolle spielen. Derartige Polynome entsprechen eineindeutig
den Wahrscheinlichkeitsmaßen auf {0,..., n - 1}, wenn wir noch P(l) 1 verlangen.

Für die Behandlung unserer Probleme ist die folgende elementare Tatsache wichtig:
Sind P(x) po + Pix + ¦ ¦ ¦ + Pn-ix""1 und Q(x) q0 + qxx + • • • + qm-iXm-1
Polynome, die zu Wahrscheinlichkeitsmaßen auf {0,... ,n — 1} bzw. {0,... ,m — 1}
gehören, so korrespondiert zu dem in der Einleitung behandelten Wahrscheinlichkeitsmaß
auf {0,..., n + m - 2} (der Summenverteilung) gerade das Polynom P(x)Q(x).
Problem 1 wird also so übersetzt: Gibt es zu vorgelegten Zahlen n, m Polynome P(x)
p0 + f\X -\ h pn-ix""1 und Q(x) q0 + s\\X -\ h qm-\Xm~l mit nichtnegativen
Koeffizienten mit P(l) Q(l) undP(x)Q(x) (l+x+- • •+x"+m-2)/(n+m-l)?Oder
gleichwertig (nachdem die auftretenden Polynome mit l/p„_i, \/qm-\ bzw n + m - 1

multipliziert wurden): Kann man 1 + x H h xn+m~2 als Produkt A(x)B(x) schreiben,
bo+- ¦ ¦+bm-2xm-2+xm-\a],b] > 0?



18 Elem. Math. 54 (1999)

Die Übersetzung von Problem 2 lautet entsprechend: Gibt es zu k G N Polynome

A(x)=ao + --- + an-2Xn-2 + xn-\B(x) bo + --- + bm-2xm-2 + xm-1 mit «/,&,- >0
und A(x)B(x) (1 + x + ¦ ¦ ¦ + xk-lfl
In beiden Fällen spielen also Polynome der Form C(x) 1 + x + ¦ ¦ ¦ + xk~l eine Rolle.
Da (1 -x)C(x) 1 -xk gilt, sind die Nullstellen von C(x) bekannt: Es handelt sich um
die von 1 verschiedenen k-ten Einheitswurzeln, also die Zahlen Q := exp(27rij/k),j
1,..., k — 1. Damit kennen wir aber auch die Nullstellen der in der Problemumformu-
lierung auftauchenden Polynome A(x),B(x), es muß sich ebenfalls um die (j handeln.
Das hat interessante Konsequenzen:

Lemma 2.1 A(x) ao-\ \-a„-2xn-2+xn-1 undB(x) bo-\ hbm_2xm~2+xm~1
seien Polynome mit a},bj > 0.

(i) GiltA(x)B(x) 1+xH \-xn+m~2 oder, falls n+m die Form 2k hat, A{x)B{x)
(1 + xH \-xk~1)2, soistüj =an-\-j (j 0,...,n- 1) sowie bj bm_i_;(;
0, ...,m- 1).

(ii) Aus A{x)B{x) 1 + xH hx"+m~2 folgt zusätzlich a]1b] G {0,1} für alle j.

Beweis.

(i) Betrachten wir etwa das Polynom A{x). Es soll A{x) x"^1A(l/x) gezeigt werden,

woraus dann durch Koeffizientenvergleich alles folgt. Wir wissen schon, daß alle
Nullstellen von A(x) Einheitswurzeln sind und daß 1 keine Nullstelle ist. Da die
Koeffizienten von A reell sind, ist mit Ç auch die konjugiert komplexe Zahl Nullstelle.
Nun ist ICI 1, und deswegen stimmt Ç mit 1/Ç überein. Durch Betrachtung der
Ableitungen von A(x), die auch Polynome mit reellen Koeffizienten sind, folgt noch, daß

die Nullstellen Ç und Ç mit der gleichen Vierfachheit auftreten.

All das liefert die für uns wichtigen Informationen über die n - 1 Faktoren in der
kanonischen Darstellung FJ(x - von A(x) (C durchläuft dabei die Nullstellen von
A(x), wobei die Vielfachheiten zu berücksichtigen sind):

• Ersetzt man in dem Produkt jedes Ç durch 1/C, so treten die gleichen Faktoren auf;
das ergibt x"-1A(l/x) x"-1 [KV* - 0 11(1 - (x) U(-Ç) U(x - I/O
A(0)A(x).

• Im Produkt A(0) n(~C) existiert zu jedem nicht-reellen Faktor -( ein Faktor

-C, und als reeller Faktor ist nur -(-1) möglich; folglich ist dieses Produkt
gleich 1.

So ist wirklich x""1A(l/x) A(x) gezeigt.

(ii) Aus Uj,bj > 0 folgt sofort durch Betrachtung des Koeffizienten des Produkts bei x>,

daß fl/,b;- G [0,1].

Angenommen, es gäbe einen Index j mit 0 < a; < 1. Bezeichnet j0 das kleinste j mit
dieser Eigenschaft, so ist - wegen Teil (i)-/'o > 0. Nunist&;+&;_ifli + - • +&ifl;_i+fl;
lfür/ l,--,n + m-2 (wobei wir wieder a,, b] 0 für i > n,j > m gesetzt haben).
Aus dieser Gleichung folgt durch Induktion nach /: b\ G {0,1} für / 0,... ,j0 - 1

sowie 0 < &j0 < 1.
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Das hat aber einen Widerspruch zur Folge, wenn wir nun den Koeffizienten von xm l

im Produkt auswerten, wobei wir Teil (i) des Lemmas anwenden: 1 bm-\ + bm-2a\ +
¦¦¦ + frm-i-ioaio • • • > bm-i + bm-i-}oa}o 1 + b]oa]o > 1. D

Wegen 2. l(i) müssen wir uns bei der Behandlung unserer Probleme eins und zwei nur
um Polynome kümmern, die von vorn nach hinten die gleichen Koeffizienten haben wie
umgekehrt. In Analogie zur entsprechenden Bezeichnung bei Worten spricht man dann

von Palindrom-Polynomen.

Teil (ii) des Lemmas führt noch zu einer weiteren Vereinfachung von Problem 1. Von
den Koeffizienten von A(x) und B(x) sind sicher nur die Indizes i,j interessant, für die

m 1 by Setze nA := {i\m l},nB := {j\b} l}.A(x)B(x) l+x+- • -+xn+m-2
heißt dann, daß jedes j G {0,..., n + m - 2} auf eindeutige Weise als j j\ + j2,j\ €

IIa )2 € Üb geschrieben werden kann. Und so hat sich Problem 1 in ein Problem der
elementaren Zahlentheorie verwandelt.

3 Fälschen zum Simulieren der Gleichverteilung
Wir fassen noch einmal zusammen, wobei wir das bisher behandelte Problem 1 leicht
verallgemeinern:

Problem V': Es seien s, k\,..., ks natürliche Zahlen und k0 := k\ + ¦ ¦ ¦ + ks. Gibt es

Mengen Ua c {0,..., ka}, so daß jedes j in {0,..., k0} eindeutig als j j\ + ¦ ¦ ¦ + js

mit ja e Ua geschrieben werden kann? Wir werden IIi,..., IIS in so einem Fall eine

(fci,..., ks)-Familie (zu {0,..., k0}) nennen.

Zu welchen k0 gibt es s > 2, k\,..., ks e N mit k\ + ¦ ¦ ¦ + ks k, so daß eine

(fci,..., ks)-Familie existiert?

Der bisher diskutierte Fall entspricht s 2, k\ n — l,ki m — \. Die Verallgemeinerung ist
eine Umformulierung der Frage, ob man die Gleichverteilung auf {0,..., kç} durch Fälschen von s

Würfeln erzeugen kann. Lemma 2.1 rechtfertigt zwar zunächst nur die Übersetzung im Falle zweier

Würfel, enthält aber auch schon die allgemeinere Variante, wenn man es im Falle von s Polynomen

Ai(x'),... ,As(x) auf A\{x) und A2(x)A^(x) ¦ ¦ ¦ As{x) anwendet.

Einige einfache Beispiele und Tatsachen ergeben sich schnell. Zum Beispiel müssen alle
nCT die Zahlen 0 und ka enthalten, da andernfalls 0 bzw. k0 überhaupt nicht darstellbar
wären. Andererseits: Außer 0 gibt es keine Zahl j, die in mehr als einem T[a enthalten
ist (denn sonst hätte j zwei verschiedene Darstellungen). Damit ist übrigens die Frage
nach der Existens einer (5,5)-Familie (d.h. Problem 1 für gefälschte sechsseitige Würfel)
bereits negativ beantwortet.

Sei o.a das kleinste strikt positive Element von nCT. Da alle o.a voneinander verschieden

sind und mindestens eins gleich 1 sein muß (warum?), dürfen wir annehmen, daß
1 a\ < ¦ ¦ ¦ < as. In so einem Fall wollen wir von einer [k\, ¦ ¦ ¦, ks)-Familie in
kanonischer Reihenfolge sprechen.

Hier ein Beispiel: IIi := (111),U2 := (1001) ist eine (2,3)-Familie in kanonischer

Reihenfolge für (111111). (Ab hier verschlüsseln wir Teilmengen von {0,..., r} durch
die Werte der zugehörigen charakteristischen Funktion; die eben angegebenen II i, U2
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zum Beispiel sind also die Mengen {0,1,2}, {0,3}). Entsprechend sind (Uli), (10001),
(10000000100000001) eine (3,4,16)-Familie und (110011), (101) eine (5,2)-Familie
(beide in kanonischer Reihenfolge).

Übrigens wollen wir ausdrücklich den Fall s 1 zulassen, die triviale Familie.

Wir beschreiben nun alle Möglichkeiten, Familien in kanonischer Reihenfolge zu finden
(womit Problem 1' dann vollständig gelöst sein wird). Zunächst geben wir einen konkreten

Algorithmus an, solche Familien zu finden, und dann zeigen wir im schwierigeren
zweiten Teil, daß alle so entstehen.

Sei k0 G N. Wir nehmen an, daß k0 + 1 g\ ¦ ¦ -gt als Produkt natürlicher Zahlen
mit t,g\,... ,gt > 2 geschrieben ist (Achtung: Die Reihenfolge der gj wird sich als

wichtig erweisen). Dann kann jedes j G {0, • • •, k0} auf eindeutige Weise als j
j\ + jigi + J3g2g\ H h jtgt-i ¦ ¦ ¦ gi geschrieben werden, wo 0 < jT < gT. Das ist eine

offensichtliche Verallgemeinerung der wohlbekannten g-adischen Entwicklung, die dem
Fall g g\ ¦ ¦ ¦ gt entspricht.

In unserer Terminologie heißt das: Setzt man

fii := {0, • • • ,# - 1},II2 := {<),#, 2#,..., (g2 - l)gl} =: #{0, ...,#- 1},

allgemein
Hr :=(gr-lgr-2 •••#){<), ---.St-I}

sowie
^̂r := [gr ~ %r-l ' ' ' g\ für T 1, t,

so ist (IIi, • • •, nt) eine (k\,..., fct)-Familie. Sie ist in kanonischer Reihenfolge, da

gi < gigi <¦¦¦
Sei nun 2 < s < t und Ai,..., As eine disjunkte Zerlegung von {1,..., t} in nichtleere

Teilmengen, derart daß kein Aa zwei aufeinanderfolgende Zahlen enthält und jeweils
das kleinste Element von Aa kleiner als das von ACT+i ist (z. B. {1}, {2}, {3} im Fall
s t 3 oder {1,3}, {2} für s 2,t 3). So etwas soll in diesem Abschnitt eine

alternierende s-Zerlegung von {1,..., t} heißen.

Setze nCT := J2TeAa nr; dabei ist die Summe von Zahlenmengen M,N als M + N :=
{m + n\m G M,n e N} erklärt. Es ist offensichtlich, daß dann IIi,..., üs eine

(k\,..., fcs)-Famirie mit k\ + ¦ ¦ ¦ + ks k0 ist, wenn wir ka := J2TeAa kT definieren.
Unsere Voraussetzung an die Aa impliziert auch sofort, daß sie kanonisch geordnet ist.

So also erhält man Beispiele. Zum späteren Zitieren wollen wir die eben gefundene
Familie die zu [g\,... ,gt; A\,..., As) gehörige Familie nennen.

Beispiel:
Seiko 23 und ko+l als 4-2-3 geschrieben. Dannist îïi (1111), n2 (10001), n3
(10000000100000001). Die einzige alternierende 3-Zerlegung (A; {i}) führt zur

(3,4,16)-Familie ni,n2,n3, und die eindeutig bestimmte 2-Zerlegung von {1,2,3},
also {1,3}, {2}, liefert (11110000111100001111), (10001).
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2. Wieder sei k0 23, diesmal versuchen wir es mit k0 + 1 2 • 2 • 3 • 2. Hier sind die

nT wie folgt: îïi (11), n2 (101), n3 (100010001), n4 (lOOOOOOOOOOOl). Die
alternierende 2-Zerlegung {1,3},{2,4} führt auf die (9,14)-Familie (1100110011),
(101000000000101).

Schwieriger ist die Umkehrung, wir formulieren sie als

Theorem 3.1 Sei H\,..., IIS eine k\,..., ks)-Familie in kanonischer Reihenfolge.

(i) Es gibt t > l,g\,... ,gt > 1 mit fc + 1 g\ ¦ ¦ ¦ gt und eine alternierende s-Zerlegung

Ai,..., As von {1,..., t}, so daß IIi,..., IIS die zu (g\, ¦ ¦ ¦ ,gt', Au As)
gehörige Familie ist.

(ii) IIi,..., ns bestimmen (g\,... ,gt, Ai,..., As) eindeutig.

Der Beweis folgt gleich, zunächst benötigen wir als Vorbereitung zwei Lemmata.

Lemma 3.2 Es seien r,k0 G N, r < k0, und U c {0,..., k0 - r} so, daß {0,..., r}, II
e/«e (r, ko — r)-Familie ist. Dann ist r + 1 e/w Teiler von ko + 1, m«ö? II /rf <i/e Menge
(r + l){0,..., n - 1}, wo n := (k0 + 1)1 (r + 1).

Beweis: Die Eindeutigkeit der Darstellung impliziert \j' - j"\ > r für verschiedene
Elemente j',j" aus n, und wegen der Forderung, daß alle Elemente aus {0,..., k0}
als Summen von Elementen aus {0,..., r} bzw. II darstellbar sein sollen, können die
Lücken nicht größer als r + 1 sein. D

Lemma 3.3 II, II sei eine zulässige Familie für {0,..., ko} mit 1 G II. Wähle r so,

daß {0,..., r} C II, aber r+lgIL Dann gilt

(i) r + 1 G IÎ.

(ii) Aus {i,i + 1,...,i + r'} c U folgt r' < r.

(iii) Für i G II mit i - 1 £ II ist {i, ...,i + r}eIL
(iv) r + 1 teilt jedes j G Û und jedes j' e U mit j' - l ^ II.

Beweis: (i) Das ist klar, da sonst r + 1 nicht als Summe darstellbar wäre.

(ii) Wäre einmal {i,..., i+r+l} G n, so hätte i+r+l zwei verschiedene Darstellungen
als ;'i + ;2 mit ;'i G n, ;2 G n, nämlich als (i + r + 1) + 0 und als i + (r + 1).

(iii) Angenommen, das wäre nicht der Fall, i G II soll das kleinste Element sein, wo
zwar i - 1 ^ II, aber {i,... ,i + r} ^ II; für f G n,f < f,f - 1 ^ n gilt also

{/', ...,i' + r}cn. Wähle r' so groß wie möglich, daß {i, i + 1,..., i + r'} c n, nach
Annahme ist dann r' < r.

Schreibe i + r' + 1 als j\ + j2 mit j\ G n, j2 G È. Wegen ; + r' + 1 ^ n ist ;2 > 0 und

folglich ;2 > r +1. Also ist jx < i. Wir behaupten, daß jx - 1 ^ n. Im Fall ;'i 0 ist das

klar, und im Fall j\ > 0 betrachten wir die Identität i + r' (i + r1) + 0 {jx - 1) + j2.
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Sie bedeutet im Fall ji - 1 e n zwei verschiedene Darstellungen von i + r'. Also
ist ;'i g n,y'i — 1 ^ n, j\ < i, und daraus dürfen wir {j\,..., j\ + r} g U folgern.
Insbesondere gilt j\ + (r - r1) e U und j\ + (r - r1) < i (wegen i - 1 <£ n), und das

verschafft uns zwei verschiedene Darstellungen von i + r + 1 als i + (r + 1) und als

O'i +r - r!) + j2, wo f,;'i + r - r' g n,r + 1,;2 G È. Dieser Widerspruch zeigt (iii).

(iv) Setze W := {i g U\i - 1 ^ n}, wobei n' {0} möglich ist. Wegen (ii) und

(iii) ist jedes ; G n eindeutig als ;' + /" darstellbar, wo;' G {0,... ,r} und /" G n'.
Folglich ist ({0,..., r}, n' + È) eine zulässige Familie, und die Behauptung folgt aus

dem vorstehenden Lemma. D

Wir kommen nun zum Beweis von Theorem 3.1, wir führen ihn durch Induktion nach
fco. Für fc0 0 ist alles klar, und wir nehmen an, daß k0 nun so vorgelegt ist, daß die

Aussage für alle fc0 < k0 schon bewiesen ist; weiter sei eine zulässige Familie wie im
Theorem gegeben. Da die triviale Familie zu (k0 + 1,{1}) gehört, dürfen wir s > 2

annehmen.

Um 3.1(i) zu zeigen, sind g\,- ¦ ¦ ,gt > 2 und eine disjunkte Zerlegung Ai,..., As von
{1,..., t} so zu finden, daß gi ¦ ¦ ¦ gt k0 + l und

(1) ACT ± 0 für alle a.

(2) Kein Aa enthält zwei aufeinanderfolgende Elemente.

(3) Das kleinste Element von Aa ist kleiner als das kleinste Elment von ACT+i.

(4) Setzt man fîr := (#-_! • • -£i){0, ...,gT- 1}, so ist Ua EreA, nr-

Dazu definieren wir II := Iii und Ù :=U2-\ \-Us. Nach Annahme ist 1 e II, so daß

wir Lemma 3.3 anwenden dürfen: Es gibt ein r > 1 so, daß (mit den Bezeichnungen des

Lemmas) n {0,..., r} + ü', und r + 1 teilt alle Elemente von ü' + n. Insbesondere

teilt r +1 das größte Element n von n + È, und damit teilt r +1 auch ko + l =n + r+l.
Setze ko '¦= n/(r + 1); das ist unser Kandidat, um die Induktionsvoraussetzung
anzuwenden. Wir definieren fij := U'/(r+ 1)(:= {j/(r + 1)|; g n'}), tla := Ua/(r+ 1) für
a > 1. Wir nehmen für den Augenblick an, daß alle fla mindestens zwei Elemente
enthalten. (Tatsächlich könnte Èi {0} sein, wenn nämlich Iii {0,..., r} war; um diese

Möglichkeit kümmern wir uns gleich). Dann bildet fti,..., Ës eine k\,..., £S)-Familie
für {0,..., fco}, wobei h := (fci -r)/(r+ 1, ka := ka/(r+ 1) für er > 1.

Darauf wird nun die Induktionsvoraussetzung angewandt. (Die bezieht sich zwar nur
auf Familien in kanonischer Reihenfolge, doch drückt sich das eventuell notwendige
Umsortieren nur dadurch aus, daß für die hier relevanten A-Mengen nicht notwendig
die kleinsten Elemente eine monotone Folge bilden.) Die gesuchten g\,.. .,gt entstehen

nun so, daß man zu deng's der Induktionsvoraussetzung die Zahl r+1 als erstes Element

hinzunimmt, und die A-Mengen entstehen aus den jetzt gefundenen durch Translation
um 1 (wobei man zu Ai noch 1 hinzufügen muß). Daß dann wirklich (1) bis (4) erfüllt
sind, ist unschwer einzusehen. Beim Nachweis, daß Ai keine zwei aufeinanderfolgenden
Elemente enthält muß man sich an r + 1 ^ Iii, d.h. 1 ^ Üi erinnern.

Der Fall W {0} erfordert nur geringe Modifikationen, insbesondere ist A] := {1} zu
setzen.
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(ii) Auch das wird durch Induktion gezeigt. IIi,..., IIS sei in kanonischer Reihenfolge
und entstehe sowohl aus (gi,... ,gt; A\,..., As) als auch aus (g/l,...,gJt,;A'\,...,A's>).
Dann ist gi g^ die eindeutig bestimmte Zahl r, für die {0,..., r} c IIi, aber r + 1 ^
IIi. Konstruiere dann Ëi,..., Ës wie im vorstehenden Beweis.

Die dafür nach Induktionsannahme gesicherte Eindeutigkeit der Darstellung liefert sofort

(#,...,#; A!,...,Ds) #!,... ,g't,; A\,..., A's>). D

Für alle, die von dem eher technischen Beweis verwirrt sind, folgt hier eine

Zusammenfassung:
Starte mit einer (k\,..., ks)-Familie IIi,..., IIS (sie muß nicht in kanonischer

Reihenfolge sein). a(l) sei das a, für das 1 G nCT, und g\ - 1 wird als dasjenige

r definiert, für das {0,... r} c n^), aber r + 1 ^ Ha(\)- Betrachte eine neue

Familie uf\..., uf\ wo ng} := {i G nff(1)|f - 1 £ Ua(r)}, nl2) := Ua/gl für

a ^ a(l) (dabei kann IP2^ {0} sein). So wie a(l) und g\ aus IIi,... ,IIS

entstanden, werden nun a(2) und g2 aus IIj us gewonnen. Das Verfahren

setze man fort, solange noch von {0} verschiedene Uy auftreten.

So erhält man g\,... ,gt, a(l),..., a(t). Setzt man noch Aa :=
{t\(j(t) a}, so ist das eine alternierende s-Zerlegung, und die vorgelegte
Famile entsteht aus (gï,... ,gù A\,..., As).

Beispiel: Seien ni (1100110011), n2 (101000000000101).

Wir erhalten

cr(l) 1, g! =2,n|2) (10101), Uf] (11000011);

a(2) =2, g2 2,n<3) (111), nf (1001);

a(3) l, g3 3,ir|4) (0),n(4) (ll);
a(4)=2, g4 2,n|5) (0),nf (0).

Damit ist II1, U2 diejenige Familie, die aus (2,2,3,2; {1,3}, {2,4}) entsteht.

Für den Fall s 2 formulieren wir unsere Ergebnisse noch als

Korollar 3.4 Es seien kuk2,k0 natürliche Zahlen mit k\ + k2 k0 sowie ü] c
{0,..., k\}, n2 C {0,..., k2} mit 1 G IIi, so daß jedes j G {0,..., k0} eindeutig als

j j\ + j2 mit j\ G IIi, ji & n2 geschrieben werden kann. Dann gibt es g\,... ,gt mit
gi ¦ ¦ ¦ gt k0 + 1, so daß

kl (gi " 1) + C§3 " I)g2gl + (g5 " I)g4g3g2gl • • •

^2 (g2 " l)gl + (g4 " I)g3g2gl + (& " I)g5g4&g3gl

Rekursiv erhält man k\, k2 so: Setze k\ := gt — 1, fci" := 0, kT' := gt-T+\kT-\" +
gt-T+1 - l,kT" := gt-r+iK-i für t 2,...,t. Dann ist (kuk2) (kt',kt") oder

(k\, k2) {ki', kt), je nachdem, ob t gerade oder ungerade ist.
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Das ist also die Lösung, die wir für Problem 1 anbieten können: Genau dann kann man
einen fairen (k0 + Inseitigen Würfel durch die Summe eines (k\ + Inseitigen und eines

(k2 + Inseitigen Würfels simulieren, wenn k\, k2 wie vorstehend beschrieben aus einer

multiplikativen Darstellung von k0 + 1 entstehen.

4 Problem 2: Fälschen mit dem Ziel, die Summe

fairer Würfel zu simulieren
Wir fixieren n,m,k mit n + m 2k und kümmern uns um die Existenz nichtnegativer
aub;, so daß A{x)B{x) (1 + axx + ¦ ¦ ¦ + On^x"-1)^ + bxx + ¦ ¦ ¦+ bm-1xm-1)
(1 + xH \-xk~1)2; den trivialen Fall n m=k1al b] \ wollen wir dabei nicht
berücksichtigen. Beispiele für solche Situatiuonen liefert Kapitel 3 : Ist l+x+- ¦ -+xk~l
Ao(x)Bo(x) mit nichttrivialen Ao(x),Bo(x), so ist (A0(x))2, (ßo(x))2 eine zulässige Wahl

fürA(x),B(x) in der hier vorliegenden Situation. Die Identität (l + x)(l+x2) l+x +
x2 + x3 etwa ergibt eine Möglichkeit, die Summe von zwei fairen vierseitigen Würfel
als Summe gefälschter Würfel (mit drei bzw. fünf Flächen) zu simulieren. So werden
sicher nicht alle A(x), B(x) entstehen (insbesondere keine Beispiele im Fall n m), und

deswegen muß das Problem noch etwas näher analysiert werden, um zu einer allgemeinen
Beweisstrategie zu kommen.

Dazu erinnern wir uns daran, daß die Nullstellen von A (x) und B (x) k -te Einheitswurzeln
sind und daß mit jedem auch Nullstelle sein muß. Schreibt man also 1+x+• • •+xk 1

als Produkt (1 -r?iX + x2)(l -ry2x + x2) • • • (1 -ry;X + x2)(l +x) (der letzte Faktor tritt
nur dann auf, wenn k gerade ist), so werden A(x) und B(x) ebenfalls aus derartigen
Faktoren zusammengesetzt sein, und insgesamt - für A(x) und B(x) zusammen - muß

jedes der Polynome 1 - rj\ x + x2,1 - rj2x + x2,..., 1 - rjix + x2 (und evtl. 1 + x) genau
zweimal aufgetreten sein.

Unser Problem lautet also wie folgt: Sei k G N und (j '¦= exp(27rj/k) für j 1,..., k -
1. Wir setzen rjj := (} + ^ und / := k/2 - 1 bzw. l := (k - l)/2 für gerades bzw.

ungerades k. Ist dann die Folge 1 - ryiX + x2,1 - ryiX + x2,..., 1 - ry/X + x2,1 - ry/X + x2

(die für gerades k noch um 1 + x, 1 + x fortzusetzen ist) so disjunkt in zwei Teile zu
zerlegen, daß beim Ausmultiplizieren Polynome (n - l)-ten und (m - l)-ten Grades

mit nichtnegativen Koeffizienten entstehen?

Wie man zeigen kann, daß das für "kleine" n,m,k nur auf die triviale Weise geht,
wird später im Beweis von Theorem 4.2 erläutert werden. Ansonsten sind Beispiele für
nichttriviale Zerlegungen leicht durch Ausprobieren zu finden, etwa im Fall k 6,n
8,m 4: l+2x + - • - + 2x9 + x10 (1+2x + 3x2 + 3x3 + 3x4 + 3x5 + 2x6 + x7)(1+x3)

1 + x2 + x3 + x4 + x5 + x7) 1 + 2x+2x2 + x3 Verzichtet man auf die Bedingung n m,
so scheint es für jedes k zahlreiche A(x),B(x) zu geben; das legen jedenfalls die mit
Computerhilfe gefundenen Ergebnisse nahe, Beweise gibt es dazu vorläufig nicht. Die
Suche wird dabei durch folgende Beobachtung etwas eingeschränkt: Ist k ungerade, so

sind nur quadratische Faktoren zu berücksichtigen, d. h. auch n und m müssen ungerade
sein; und ist k gerade, so müssen A(x),B(x) beide den Faktor 1 + x enthalten, denn
andernfalls könnten keine Polynome ungeraden Grades entstehen.

Wir betrachten nun nur noch den Fall n m k. (,(' seien zwei benachbarte, nichtreelle

fc-te Einheitswurzeln, und r\ := Ç + rj' := (' + C7 Dann ist 1 + x H h xk~l
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1 -r/x+x2) 1 -r/'x+x2 )C0 (x) für ein geeignetes Polynom Co (x). Wir werden versuchen,

A(x) und B(x) als (1 - t/x + X2)(l - r]'x + x2)C0(x) und (1 - t?x + X2)(l - t?x +
x2)C0(x) zu definieren. Dann ist klar, daß beide Polynome Grad k - 1 haben und daß

A{x)B{x) auf nicht-triviale Weise (1 + x H h x^1)2 darstellt. Warum aber sollten
die Koeffizienten nicht-negativ sein. Betrachten wir etwa A(x). Es ist doch, wenn wir
C(x) := (1 - ri'x + x2)C0(x), e := t/ - t? setzen, A(x) (1 - (77 + e)x + x2)C(x), und
(1 - 77X + x2)C(x) 1 + x + • • • + xk~l hat nichtnegative Koeffizienten. Für "kleines"
e, d. h. "großes" k, sollten dann aus Stetigkeitsgründen auch in A(x) keine negativen
Koeffizienten vorkommen.

Dieses Störungsargument wollen wir etwas präzisieren. Dazu fixieren wir das bisherige
C, setzen wie bisher 77 := Ç + Ç und schreiben das dann auftretende C(x) als 1 + C\X +

\-ck-4xk~4 + xk-3.

Im Polynom (1 - 77X + x2)C(x) sind alle Koeffizienten 1 und wir möchten, daß sie

in (1 - (77 + e)x + x2)C(x) nichtnegativ sind. Das läuft auf ec; < 1 hinaus, und damit
ist zu hoffen, daß wir eine Abschätzung für die \c;\ finden können, die es uns gestattet,
K77 - r]')Cj\ < 1 zu beweisen.

Zunächst ist nicht klar, waraum das gehen sollte: Für große k kann zwar 77-77' als beliebig
klein angenommen werden, doch könnten die Cj gleichzeitig zu groß werden. Daß die

Idee aber dennoch zu verwirklichen ist, wird durch das folgenden Lemma vorbereitet:

Lemma 4.1

(1) Es gllt c> (wfcyCi + (^fo)?i + (wfo)& i °' • • -

(ii) Die C; liegen im Intervall M 2

,—, ^—I 2 ,—1. Insbesondere sind

—I 2die \cj\ durch <p{rj) := jz—I
2 beschränkt.

Beweis: (i) Durch Koeffizientenvergleich folgt rekursiv: c0 \,C\ 1 + 77,c2 1 +
77C1, c3 1 + 77C2 - C\,..., Cj 1 + 77C;_i - Cj-2, wobei wir den letzten Ausdruck nach
der Festsetzung c_i c_2 0 für alle j verwenden dürfen.

Die behauptete Gleichung ist nun leicht zu erledigen: Man definiere dj als den rechts
stehenden Ausdruck und rechne direkt nach, daß d-\ d-2 O,dj l + r/dj-\ -dj-2;
klar daß dann dj c} für alle j gelten muß.

Interessanter als der vorstehende Beweis ist der Weg, wie die Formel gefunden wurde. Hier eine

Skizze: Ich habe für jedes j den Vektor Wj := (c'c+1) betrachtet und dann Wj+\ MiVj + (J)

als Rekursionsformel erhalten, wobei M die Matrix _^j 0 bezeichnet. Alles läuft dann auf die

Bestimmung von (E + M + M2 + • • • + MÎ ')(0) hinaus, und dafür wurde die Formel für die

geometrische Reihe angewandt: (E — M')(E — M) '(0). Dabei darf E — M wirklich invertiert
werden, denn die Determinante ist 2 — r) > 0. Nun sind die Eigenwerte von M gerade die Zahlen

£, Ç. Also kann M auf Hauptachsen transformiert werden, und die Einträge der Mi kann man leicht

durch ÇÎ, Ç' ausdrücken.

(ii) Mit £ := -—2^- besagt (i), daß Cj der um -—-^—=- 1/(2 - 77) verschobene

Realteil von S,Ç> ist. (Das läßt übrigens eine interessante Interpretation zu: Die c; sind
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die Realteile von gewissen oder allen Punkten eines regulären fc-Ecks, das 1/(2 — 97)

als Mittelpunkt und 2|£| als Durchmesser hat; wieviele Ecken dabei wirklich auftreten,
hängt davon ab, wieviele verschiedene (] vorkommen.)

Folglich liegt q im Intervall [1/(2 — 77) — |£|, 1/(2 — 77) + |£|], und die Behauptung folgt
aus |£| 1^=. D

Als Folgerung aus dem Lemma und den vorstehenden Überlegungen erhalten wir so Teil
(i) des folgenden Theorems, durch das Problem 2 im Fall n m vollständig gelöst wird;

Theorem 4.2

(i) Es gebe zwei nichtreelle k-te Einheitswurzeln (,(' so> daß die Zahlen 77 := +
(,r]' := (' + C' verschieden sind und \(p{rj)\, \<p{r)')\ < I/I77 — 77'| gilt. Dann ist
Problem 2 nichttrivial lösbar.

(ii) Diese Bedingung ist für alle k > 12 erfüllt.

(iii) Auch für k 10 läßt sich das Problem aufdie angegebene Weise lösen, auch wenn
die Abschätzung in (i) für keine Wahl von (' gilt.

(iv) Für die noch verbleibenden k gibt es keine nichttrivialen Lösungen.

Zusammen: Man kann die Summe zweier Gleichverteilungen auf {0,..., k — 1}
nichttrivial als Summe von Verteilungen auf {0,..., k — 1} genau dann erzeugen, wenn k

nicht zur Menge {1,...,9,11} gehört.

Beweis: Für den Nachweis von (ii) bemerken wir zunächst, daß <p auf [—1,2[ monoton

steigt, da die Ableitung dort positiv ist. Insbesondere gilt für -1 < 77 < 0 die

Abschätzung 93(77) < 92(0) (1 + v/2)/2.

Wir wollen nun eine untere Schranke für die k suchen, so daß folgende Konstruktion

möglich ist: Man findet zwei benachbarte k-te Eineitswurzeln C,C so daß für die

zugehörigen 77,77' sowohl 77,77' G [-1,0] als auch |t? - 77'! < 2/(1 + \fl) gilt.

Sind C und die /-te und die (/ + l)-te k-te Einheitswurzel, so ist

I77-7/I =2|cos(27rZ/Â:)-cos(27r(Z + l)/Â:| < An/k,

wobei wir für die Abschätzung den Mittelwertsatz verwendet haben. So erhalten wir die

Bedingung k > 2tt(1 + v^) « 15.17, und folglich ist (i) für alle k > 16 erfüllt.

Die verbleibenden Fälle werden durch konkrete Rechnung erledigt: Für k 12, 13,

14, 15 ist die Bedingung (i) erfüllt, wenn wir sie jeweils auf die 4-te und 5-te k-te
Einheitswurzel anwenden. Für k 10 ist (i) nicht erfüllbar. Trotzdem kann man auch

hier durch die gleiche Idee eine nichttriviale Darstellung von (1 + x + ¦ ¦ ¦ + x9)2 als

Produkt zweier Polynome 5-ten Grades gefunden werden: Man muß nur als 3-te
und 4-te 10-te Einheitswurzeln wählen (explizit ist das in [10] ausgerechnet).

Der Nachweis von (iv) könnte ebenfalls einem Computer anvertraut werden (und das ist
sicherheitshalber auch wirklich geschehen), läßt sich mit etwas Geduld aber auch ohne
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Rechnerhilfe führen. Als Beispiel betrachten wir k 8: Lassen sich 1 — Vïx + x2,1 —

Vïx + x1,1 + x2,1 + x2,1 + V2x + x2,1 + Vïx + x2,1 + x, 1 + x zu zwei Polynomen
A(x), B (x) 7-ten Grades mit nichtnegativen Koeffizienten zusammenfassen, so daß beide

von 1 +x + • • • + x7 verschieden sind? Angenommen, so eine Zerlegung würde existieren.
Da der Grad jeweils 7 ist, muß 1 + x Faktor von A{x) und B(x) sein, andererseits muß
mindestens einer der irreduziblen Faktoren in A{x) oder B(x) quadratisch vorkommen,
denn sonst würde der triviale Fall vorliegen. Die Möglichkeit, daß (1 - Vïx + x2)2

als Faktor vorkommt, scheidet aus, denn sowohl in (1 - Vïx + x2)2(l + x2)(l + x)
als auch in (1 - Vïx + x2)2(l + Vïx + x2)(l + x) gibt es negative Koeffizienten.
Würde schließlich (1 + Vïx + x2)2 in (zum Beispiel) A(x) vorkommen, so wäre B(x)
(1-V/2x + x2)2(1 + x2)(1 + x) oder (l-v/2x + x2)(l + x2)2(l + x), und in beiden
Fällen treten negative Koeffizienten auf. D

5 Einige Ergänzungen und Probleme

Die hier behandelten Probleme kamen in der Verkleidung der gefälschten Würfel daher.

Wie schon erwähnt, ist das ein Spezialfall der allgemeineren Fragestellung, ob und wie
man vorgelegte Zufallsvariable als Summen unabhängiger Zufallsvariablen schreiben
kann. Das ist fundamental wichtig, wenn man Grenzwertsätze der Wahrscheinlichkeitsrechnung

systematisch studieren möchte.

Manipulierte Würfel trifft man aber auch noch an anderen Stellen in der Literatur. Man
kann etwa die hier betrachteten Probleme variieren, indem man andere Beschriftungen
der Würfel zuläßt ([5], Problem IV. 1). Interessant ist in diesem Zusammenhang auch
das folgende Paradoxon. Dazu betrachten wir faire Würfel W, W (jede Seite soll also

mit gleicher Wahrscheinlichkeit gewürfelt werden), auf deren Seiten Zahlen stehen. Wir
nennen W günstiger als W (Schreibweise: W y W), wenn die Wahrscheinlichkeit,
daß W ein größeres Ergebnis als W anzeigt, größer als 0.5 ist. Paradox ist nun, daß

"günstiger" nicht transitiv ist. Zum Beispiel : Man kann die Zahlen von 1 bis 18 so auf den
Flächen dreier gewöhnlicher Würfel W, W, W" verteilen, daß W y W y W" y W.
Weitere Informationen dazu findet man in [11].

Schließlich soll noch auf [2] hingewiesen werden, wo in verschiedenen Artikeln zum
Thema "Zufall" auch mehrfach vom gefälschten Würfel die Rede ist.

Es folgen nun einige Ergänzungen zu den Problemen dieser Arbeit. Zunächst zu Problem
1. Da kann man sich etwa fragen, wie es mit der Eindeutigkeit der Fälschungsmöglichkeiten

aussieht. In Abhängigkeit von den zahlentheoretischen Eigenschaften von ko,k\,k2
kann das sehr unterschiedlich sein. So liefert etwa eine systematische Rechnung für
k0 11, daß es verschiedene (3,8)-Familien, aber nur eine (5,6)-Familie gibt. Man
kann die Rekursionsformel aus Korollar 3.4 heranziehen um einzusehen, daß für alle k0,

für die 12 Teiler von k0 + 1 ist, k\, k2 mit k\ + k2 k0 so existieren, daß es zwei
verschiedene (k\, ^-Familien gibt. (Beweisidee: Aus der Rekursionsformel folgt, daß

eine Darstellung von k0 +1 als 2 • 2 • 3 • • • zu k2, k \ führt, wenn die Darstellung 4 • 3 • • •

das Ergebnis (k\, k2) geliefert hat. Für 36|(fco +1) gilt sogar: 9-4 ••• führt zum gleichen
Ergebnis wie 3 -2-2-3 • • -, und gilt 15O|(fco + 1), so erzeugen 5-5-6 ••• und 10-3 -5 •••
das gleiche (k\, k2)-Paar.) So gibt es eine Reihe von - mit Computerhilfe - leicht zu
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entdeckenden Phänomenen, die mit Teilbarkeitseigenschaften zusammenhängen, für die

ich aber keine allgemeine Lösung anzubieten habe.

Man kann sich auch fragen, ob Fälschen "oft" möglich ist: Für wieviele k\,k2 mit
k\ + k2 k0 < k' gibt es (k\, k2)-Familien? Ich konnte zeigen, daß der Anteil für
k' gegen Unendlich gegen Null geht. (Der Beweis ist etwas technisch, deswegen soll er
hier nicht ausgeführt werden.)

Nun zu Problem 2. Da wäre interessant zu wissen, wie man bei gegebenen k,m,n mit
m+ 11 2k leicht entscheiden kann, ob das Problem für diese Konstellation lösbar ist
oder nicht. In Kapitel 4 habe ich schon einige Beobachtungen zusammengestellt, eine

systematische Untersuchung steht aber noch aus.

Mit den hier entwickelten Methoden kann auch - wenigstens im Prinzip - ein allgemeineres

Problem behandelt werden: Die Summe von r Würfeln mit jeweils k Seiten soll
die Summe aus r fairen Würfeln simulieren (Beschriftung auf allen Würfeln von 0 bis
k - 1). Geht das nur auf die triviale Weise? Die zu erwartende Übersetzung ist natürlich
die Frage, ob man anders als auf triviale Weise (l + x + --- + xfcl)rals Produkt von
Polynomen (k — l)-ten Grades mit nichtnegativen Koeffizienten schreiben kann. (Man
könnte auch - in leichter Verschärfung - verlangen, daß keines der Polynome gleich
1 + x + ¦ ¦ ¦ + xk^1 ist.) Für "kleine" k zeigen Überlegungen in Analogie zum Beweis

von Theorem 4.2(iv), daß das nicht gehen kann. Und für "große" k kann wieder die
Technik aus Kapitel 4 verwendet werden.

Im Fall r 3 etwa muß man jetzt von drei benachbarten fc-ten Einheitswurzeln
(,('', C" ausgehen und mit den zugehörigen ry-Werten das Polynom 1 + x + ¦ ¦ ¦ +
xk~l als (l-r]X+x2)(l-r]!x+x2)(l-r]!!x+x2)D(x) schreiben. Für die Polynome

X2)2(l - r)"x + x2)D(x) kann man dann durch das gleiche Störungsargument wie
vorher nachweisen, daß für genügend großes k nichtnegative Koeffizienten zu
erwarten sind.

Etwas präziser ausgedrückt heißt das: Zu jedem r gibt es ein Kr, so daß sich für jedes k >
Kr Summen von r echt gefälschten Würfeln wie Summen fairer Würfel verhalten können.
Der Beweis liefert noch, daß Kr als (r - 1)16 gewählt werden kann. Die verbleibenden
k in {1,..., Kr - 1} müssen mit Computerhilfe jeweils gesondert untersucht werden.

Abschließend soll darauf hingewiesen werden, daß man beide Probleme im Prinzip auch

für andere Verteilungen als die Gleichverteilung untersuchen kann. Die Verallgemeinerung

von Problem 2 lautet so: P(x) =p0 +p\X + ¦ ¦ ¦ + pt-\Xk^1 sei ein Polynom mit
nichtnegativen Koeffizienten. Kann man (P(x))2 in nichtrivialer Weise als A(x)B(x)
durch zwei Polynome (k — l)-ten Grades mit ebenfalls nichtnegativen Koeffizienten
darstellen? Das hängt in naheliegender Weise von der Nullstellenverteilung von P(x)
ab. Haben zum Beispiel alle Nullstellen nichtpositiven Realteil, so gibt es eine Fülle von
Möglichkeiten für die Wahl von A{x) und ß(x). Andererseits kann es etwa bei beliebig
großem k keine nichttrivialen Zerlegungen für (l + x^1)2 geben. Es wäre interessant zu
wissen, welche Eigenschaften der Nullstellen verantwortlich sind. Dabei wird es sich im
allgemeinen nicht nur um Einheitswurzeln handeln, und deswegen stehen die in dieser

Arbeit verwendeten Techniken nicht zur Verfügung.
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