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Die diskreten Gruppen euklidischer
Bewegungen in der Ebene

Walter Wolking

Walter Wolking, geboren 1941, studierte Mathematik und Physik an der Universität
Münster. Er promovierte 1978 an der Ruhruniversität in Bochum, versah anschlies-
send während mehrerer Jahre Lehraufträge an der Universität in Osnabrück und ist
heute als Gymnasiallehrer tätig. Sein Hauptinteresse gehört den Kleinschen Gruppen,
insbesondere dem Hausdorff-Mass und der Hausdorff-Dimension ihrer Grenzpunktmenge.

Entspannung von der mathematischen Arbeit sucht er am liebsten in der
freien Natur.

1 Einleitung
Die Drehungen und Parallelverschiebungen (Translationen) in der Ebene sind genau
die Transformationen, die man durch zwei aufeinander folgende Geradenspiegelungen
erhält. Schaltet man zwei derartige Transformationen hintereinander, so ist das Ergebnis

wiederum eine Drehung oder Translation. Die geraden Mehrfachspiegelungen bilden
demnach die Gruppe M aller Drehungen und Translationen in der Gruppe M aller
Mehrfachspiegelungen (euklidische Bewegungen).

M ist wiederum eine Untergruppe der Gruppe Ml aller geraden Mehrfachspiegelungen
an Geraden und Kreisen (Gruppe der gebrochen linearen Transformationen z —s- ffîpj).
Die 'Kleinschen Gruppen' aus Ml sind durch die im folgenden erläuterte Eigenschaft
(*) charakterisiert. Sie spielen eine große Rolle bei der Untersuchung und Beschreibung
Riemannscher Flächen (Flächen mit einer komplexen Struktur). Jede derartige Fläche
erhält man aus einem im weiteren näher beschriebenen Fundamentalgebiet dadurch, daß

Es ist eine Mannigfaltigkeit und in derselben eine Transformationsgruppe gegeben;

man solle die der Mannigfaltigkeit angehangen Gebilde hinsichtlich solcher
Eigenschaften untersuchen, die durch die Transformationen der Gruppe nicht geändert werden,

deniiiss dem Ff langer Programm von Felix Klein (1872). aus dem dieses Zilal
stammt, gehört die Gruppe der euklidischen Bewegungen der Ebene zur ebenen Kon-

gnicnzgcoinclric. Algebraische Aussagen über diese Gruppe entsprechen kongruenz-
geometrischen Aussagen in der Ebene. Im vorliegenden Beitrag stellt sich Walter Wolking

die Aufgabe, alle diskreten Untergruppen zu beschreiben: diese entsprechen Par-

kellierunuen der Ebene durch kongruente Bereiche ii\i
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man äquivalente Punkte des Randes identifiziert. Kennt man die Untergruppen aus Mi
mit der Eigenschaft (*), so hat man einen Überblick über alle Riemannschen Flächen.

Im folgenden werden u.a. diejenigen diskreten (Kleinschen) Gruppen G bestimmt, bei
denen sich die Bilder eines Fundamentalgebietes genau in einem Punkt (hier Grenzpunkt
oo) häufen. Die Anzahl der Grenzpunkte einer Kleinschen Gruppe ist 0 oder 1 oder 2

oder unendlich. Ist U einfach periodisch, so entspricht im Falle G U der zugehörigen

Riemannschen Fläche topologisch eine Sphäre, der zwei Punkte entnommen sind

(zweifach punktierte Sphäre), im Falle G ^ U eine einfach punktierte Sphäre mit zwei
Verzweigungspunkten (entsprechen den Drehzentren). Ist G doppelt periodisch, so ist die
Riemannsche Fläche ein Torus, in den übrigen Fällen eine Sphäre mit maximal vier
Verzweigungspunkten. Unendlich viele Exemplare eines Fundamentalgebietes überdecken
die gesamte Ebene. Es werden hier also u.a. mit elementaren geometrischen Voraussetzungen,

ohne Zuhilfenahme der komplexen Analysis, sämtliche Riemannschen Flächen

bestimmt, die durch die komplexe Ebene (i.a. verzweigt) regulär überlagert werden.

Benutzt man zusätzlich die Spiegelungen an Kreisen, so kann man unter einfachen

Voraussetzungen auch die diskreten Gruppen ohne Grenzpunkt bzw. mit genau zwei
Grenzpunkten bestimmen. Zudem läßt sich mit Hilfe der vorliegenden Untersuchungen ein
Überblick über die entsprechenden diskreten Gruppen im Raum K3 und damit über die

zugehörigen dreidimensionalen Mannigfaltigkeiten gewinnen; die Verhältnisse sind dort
jedoch i.a. komplizierter und schwieriger darzustellen.

Jede Transformation aus M läßt sich durch maximal drei Geradenspiegelungen
darstellen. Jede Dreifachspiegelung kann durch eine einfache Spiegelung mit eventueller
anschließender Translation parallel zur Spiegelachse beschrieben werden.

Eine Spiegelung mit anschließender Translation parallel zur Spiegelachse
bezeichnet man als Gleitspiegelung.

Zwei verschiedene Punkte der Ebene sind äquivalent unter M, d.h. es gibt eine
Transformation aus M, die einen der Punkte auf den anderen abbildet. Insbesondere enthält

jede noch so kleine Kreisumgebung eines beliebigen Punktes äquivalente Punkte unter
M. Die im letzten Satz gekennzeichnete Eigenschaft trifft auf zahlreiche Untergruppen
von M zu. So ist jede Drehung j mit dem Drehwinkel air, a irrational, wegen na ^ k für
beliebige k,n e Z, von unendlicher Ordnung (ord(j) oo), d.h. die von j erzeugte
Untergruppe enthält unendlich viele Elemente und damit Drehungen mit beliebig kleinem
Drehwinkel.

Untergruppen mit der obigen Eigenschaft sind i.a. wenig interessant. In dieser Arbeit
sollen diejenigen Untergruppen W aus M bestimmt werden, auf die die obige Eigenschaft

nicht zutrifft. Gesucht sind also sämtliche Untergruppen W C M mit folgender
Eigenschaft:

(*) Es gibt mindestens einen Punkt Zq der Ebene und dazu eine offene Kreisumgebung
UZo; UZo {z\ \z — Zo| < 1"}; in der keine äquivalenten Punkte unter W liegen.

Die Kreisscheiben S(14J mit S G W überschneiden sich also nicht.

Die Eigenschaft (*) charakterisiert die diskreten Untergruppen. Die Bezeichnung läßt
sich für Untergruppen aus M wie folgt motivieren:
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Jede Drehung kann man durch eine Drehung um den Nullpunkt (mit gleichem
Drehwinkel) und anschließende Translation darstellen - zum Beweise wähle man die
Verbindungsgerade vom Nullpunkt zum Drehzentrum als eine Spiegelachse. Jedes Element aus

M ist somit durch ein Tripel (x\ |x2|x3), also einen Punkt aus K3, gekennzeichnet, wobei
X\ den Drehwinkel und (x2|x3) den Translationsvektor angibt; für reine Translationen
ist X\ 0 + m2tt. x2,x3 sind eindeutig, X\ dagegen nur bis auf ganzzahlige Vierfache

von 2tt bestimmt, d.h. zwei Punkte aus K3 bestimmen genau dann dasselbe Element
aus M, wenn sie in der 2. und 3. Koordinate übereinstimmen und die Differenz der 1.

Koordinaten ein ganzzahliges Vielfaches von 2tt ist. Die zu M gehörende Punktmenge

Mp ist der gesamte Raum K3. Hat dagegen G c M die Eigenschaft (*), so gibt es in G

keine Transformationen, die der identischen Abbildung beliebig nahekommen, d.h., es

gibt eine Umgebung des Nullpunktes in K3, in der kein Punkt der Menge Gp liegt.
Aufgrund des Gruppencharakters von G liegen die Punkte von Gp isoliert in K3 ; es handelt
sich um eine diskrete Punktmenge. Nach diesen Vorüberlegungen lassen sich folgende
Äquivalenzen leicht beweisen:

G C M hat die Eigenschaft (*) <^> Es gibt eine Umgebung des Nullpunktes in K3, in
der kein Punkt aus Gp liegt. <^> Es gibt keine Folge Sn(Sn ^ id) von Transformationen

aus G mit S„(z) —> z für alle Punkte z der Ebene.

Zum Nachweis der Eigenschaft (*) bestimmen wir im folgenden Fundamentalgebiete
(Fundamentaldreiecke, Fundamentalrauten).

Ein Fundamentalgebiet F einer Gruppe W C M ist die abgeschlossene Punktmenge

einer Fläche, die von Geraden oder Halbgeraden oder Strecken berandet
wird (einschließlich der Randpunkte), mit folgender Eigenschaft:

Die Bildflächen S(F) überdecken die ganze Ebene, überlappen sich jedoch nicht.
Zwei verschiedene Bildflächen haben somit höchstens gemeinsame Randpunkte.

Um alle diskreten Gruppen G C M zu erfassen, bestimmen wir zunächst sämtliche
diskreten Gruppen G C M und untersuchen unmittelbar im Anschluß daran alle Möglichkeiten

der Erweiterung von G zu einer diskreten Gruppe G derart, daß die Untergruppe
der geraden Mehrfachspiegelungen aus G genau G ist. G ist im allgemeinen durch G

nicht eindeutig bestimmt. Da die geraden Mehrfachspiegelungen einer diskreten Gruppe
G C M eine diskrete Gruppe G c M bilden, haben wir damit einen vollständigen
Überblick über alle diskreten Gruppen euklidischer Bewegungen.

Zur Bestimmung sämtlicher diskreten Gruppen G C M machen wir eine grobe
Fallunterscheidung über die Untergruppen U(U C G) aller Translationen.

Die Untergruppe U heißt einfach periodisch genau dann, wenn sie von genau
einem Element erzeugt wird.

Ist dies nicht der Fall, so gibt es zwei Translationen aus U, deren Translationsvektoren
linear unabhängig sind. U wird dann von genau zwei Elementen erzeugt; wir nennen U
in diesem Fall doppelt periodisch.

Da eine Hintereinanderschaltung zweier ungerader Mehrfachspiegelungen (Gleitspiegelungen)

aus G ein Element aus G ist, erzeugt jede Gleitspiegelung aus G zusammen mit
Erzeugenden der Gruppe G die ganze Gruppe G. Diese zusätzliche Erzeugende wollen
wir im folgenden grundsätzlich mit e, die zugehörige Spiegelachse mit a bezeichnen.
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Besteht G nur aus der identischen Abbildung id und ist e sp o t t o sp in G, so gilt
e2 t osp osp ot t2 G G. Es muß dann t id sein; e ist eine einfache Spiegelung.
Die Gruppen G mit G {id} werden durch einfache Spiegelungen erzeugt.

In den folgenden Büchern findet der Leser weitere Informationen über dieses Thema [1],
[2], [3], [4].

2 Die diskreten Gruppen von Drehungen
Wir beweisen zunächst:

1 Enthält G ausschließlich Drehungen, so ist G zyklisch mit endlich vielen Elementen.

Dazu zeigen wir:

(2) Enthält G zwei Drehungen j\, j2 mit verschiedenen Fixpunkten, so gibt es in G
eine Translation.

(sp(u) - Spiegelung an der Achse u)

Abb. 1

Die Beweisschritte zu (2) lassen sich anhand der Abb. 1 anschaulich interpretieren. Wir
können annehmen, daß die Drehwinkel a, ß von j\, j2 (mit den Fixpunkten Pi, P2) positiv
sind.

Dann gilt
;'i sp(m) osp(m\),

J2= sp(m2)osp(m),

J2°ji sp(m2) osp(m) osp(m) osp(nii) sp(m2) o

(Drehung um Q mit dem Drehwinkel -27)
;\

1

sp{m)osp{m[),
j2l sp(m2) osp(m),

j2l oj-1 sp(m'2) o sp{m[)
(Drehung um Q2 mit dem Drehwinkel 27)
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Die Abbildung t\ =/2'o jl l o j2 o j1 bildet Q auf Qi und (;2 o j1
1

(Q2) Q' auf
Q2ab.

Aufgrund der Symmetrie sind die Strecken QQi und Q'Q2 gleichlang. Wegen t\ (Q)
Qi,fi(Q') Q2 und fi(oo) oo ist t\ eine Translation. Die obigen Überlegungen

gehen von der Voraussetzung aus, daß m\ und m2 sich schneiden. Verlaufen m\, m2

parallel, so ist j2 o j\ sp(m2) osp(m\) eine Translation.

Damit ist (2) bewiesen.

Anhand der Symmetrie der Abbildung 1 sieht man weiterhin, daß t2 ji ° ]\ ° ]2l ° /['
eine Translation mit t2(Q2) Q3 ist. Ist 7 ^ 90°, so sind die Vektoren QQ\ und Q2Q3

linear unabhängig; die von j\, j2 erzeugte Gruppe enthält dann eine doppelt periodische
Untergruppe.

Aus (2) folgt, daß die Elemente der in (1) vorausgesetzten Gruppe G einen gemeinsamen
endlichen Fixpunkt haben. Da G diskret sein soll, können die Drehwinkel der Elemente
nicht beliebig klein werden, d.h. es gibt eine Drehung j0 in G mit minimalem (positivem)
Drehwinkel. Jede andere Drehung in G muß dann eine mehrfache Hintereinanderschaltung

von j0 sein, da andernfalls j0 nicht minimal ist. Aus dem gleichen Grund muß ein
Vielfaches des Drehwinkels von j0 gleich 2tt sein.

Somit ist (1) vollständig bewiesen.

Die endlichen zyklischen Gruppen von Drehungen sind genau die diskreten Gruppen
euklidischer Bewegungen, die ausschließlich aus Drehungen bestehen.

Jede Gleitspiegelung e G G bildet den endlichen Fixpunkt P von G wieder auf einen

Fixpunkt einer Transformation aus G ab. Also kann e nur eine Spiegelung sein, deren
Achse a durch P verläuft.

Sind a, m beliebige Achsen durch P mit j0 sp(a) o sp(m), so erzeugen die Spiegelungen

sp(a),sp(m) eine Gruppe G. Ein von a, m gebildeter Sektor ist dann Fundamentalgebiet

von G.

3 Die diskreten Gruppen von Translationen
Wir setzen nun voraus, daß G ausschließlich Translationen enthält. Unter den zugehörigen

Perioden zt muß es dann eine Periode zto mit minimalem Betrag geben, da andernfalls
eine Folge tn e G existiert, die gegen die identische Abbildung strebt. t0 erzeugt eine
einfach periodische Untergruppe Uto (zyklisch vom Rang 1) von G. Ist Uto ^ G, so gibt
es eine Translation t\ in G - Uto, deren Vektor ztl von allen Translationsvektoren der zu
G - Ut0 gehörenden Elemente minimalen Betrag hat.

ztl, Zt0 sind nicht kollinear. Sie bestimmen eine doppelt periodische Untergruppe Utütl Ç
G, die aus allen Translationen tm,n mit fmj„(z) z + mzto + nztl besteht. zto,ztl sind
nicht eindeutig. Sie können wegen \ztl - zto \ > \ztl \ > \zto \ so gewählt werden, daß

60° < <(zto,ztl) oder <(ztl,zto) < 90° gilt.
Sämtliche zu den Elementen aus Utütl gehörenden Perioden bestimmen in der Gauß-
schen Zahlenebene E ein Gitter Gi, dessen Punkte Bildpunkte der Eckpunkte des von
zto,ztl aufgespannten abgeschlossenen Parallelogramms P unter Utotl sind. Man erkennt
unschwer, daß in P aufgrund der Wahl von to,t\ keine weiteren Perioden liegen können
und somit Utotl G gilt. Damit folgt:
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(3) Die diskreten Gruppen von Translationen sind die einfach periodischen (zyklisch
vom Rang 1) und die doppelt periodischen Gruppen (vom Rang 2).

Zur Bestimmung der Gruppen G untersuchen wir im weiteren die Möglichkeiten für die

zusätzlichen Erzeugenden e und deren zugehörige Spiegelachsen a. Dazu beweisen wir
zunächst einige Aussagen:

(4) Ist e G G,e sp(a) o t eine Gleitspiegelung mit t ^ id, so gibt es eine Translation
t' G G mit 9 R'

Der Beweis folgt unmittelbar aus e2 t2 t' G G.

(5) Ist e G G,e sp{a) o t eine Gleitspiegelung und t' eine Translation aus G, so

ist die Spiegelung von
aus G.

an a wiederum der Translationsvektor einer Translation

Zum Beweise beachten wir, daß e^1 ot' oe sp(a)ot~l ot' otosp(a) sp(a)ot'' osp(a)
eine Translation ist, deren Translationsvektor man durch Spiegelung von zt> an a erhält.

(6) Sindei sp{a.\)ot\ unde2 sp(a2)ot2 zwei Gleitspiegelungen mit nicht parallelen
Achsen a\, a2, so ist e2 o e\ eine Drehung.

Es gilt: e2oe\ sp(a2) o t2 osp(a\) ot\ sp(a2) osp(a\) o t' o t\ j' ot j.
(7) Ist jede Transformation der von e (Gleitspiegelung) und G erzeugten Gruppe G' in

der Form goe1 mit g e G, i e {0,1}, darstellbar, so gilt G' G.

Jede gerade Mehrfachspiegelung aus G' hat die Darstellung g o e° (e° id), ist also ein
Element aus G. Die obige Darstellung ist eindeutig.

(8) Es seien t,t' Erzeugende einer doppelt periodischen Gruppe G von Translationen
mit den Translationsvektoren zt bzw. zt>. Wir können (eventuell durch Nachschaltung

von tm mit geeignetem m e Z und durch Übergang von t zu f^1) davon

ausgehen, daß die Komponente p' von zt> parallel zu zt in Richtung von zt zeigt
und vom Betrage her kleiner oder gleich \ \zt \ ist. Parallel zu zt verlaufende Geraden

treten nur dann als Spiegelachsen a von zusätzlichen Erzeugenden e G G auf, wenn
p' 0 oder p' \zi gilt. Im Falle p' 0 sind die Gruppen G durch e sp(a) o t
mit zt~ k\zt, k G {0,1}, im Falle p' \zt durch e sp{a) bestimmt.

Abb. 2
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Nach (5) muß die Spiegelung zt> von zt> an a wiederum ein Translationsvektor einer
Translation aus G sein. Dann gilt Zt> + Zt> =0 oder Zy + Zt> zt. Hieraus folgen
die notwendigen Bedingungen p' 0 bzw. p' \zt. Ist p' 0, so ist das von Zt,Zf
aufgespannte Fundamentalparallelogramm ein Rechteck. Wegen e o tl sp{a) o t o tl

f o sp(ß) o t t; o e, e o t'; t'-1 o e, e2 tk; i 1, -1; k e {0,1} folgt aus (7) und

(4) die Behauptung, denn jede Gruppe G mit einer Gleitspiegelung sp{a) o t* enthält
nach (4) eine der oben angegebenen Erzeugenden. Jede der durch a bestimmten Hälften
des Fundamentalrechtecks ist ein Fundamentalgebiet für G.

Vertauscht man die Rollen von t, t', so erhält man die Möglichkeiten mit der Spiegelachse
a' (s. Abb. 2).

Abb. 3

Ist p' \zt, so kann e sp(a) o t mit z~t \zt durch e o t'^1 sp(a) o t 0 t'^1

sp(a) o t" sp(a') ersetzt werden, mit zt» _L a; a'\\a.

Wegen sp(a') o tl tl osp(a');sp_(a') otn t! ot'-; osp(a'),i 1,-1 (s. Abb. 3), sind
nach (7) alle Möglichkeiten für G unter diesen Voraussetzungen (Spiegelachse a parallel
zu zt) durch e sp(a) bestimmt.

Die Translationsvektoren zt>, Zv spannen eine Raute auf; die zugehörigen Translationen
sind Erzeugende von G. Ersetzt man t durch die Translation mit dem Vektor zt> - zt>, so

erkennt man, daß durch e sp{a) alle Möglichkeiten mit a _L zt für G erfaßt sind. Die
Einfachspiegelungen an Geraden parallel zu den Diagonalen der Raute bestimmen unter
den obigen Voraussetzungen (fl||zt, a _L zt sämtliche Möglichkeiten für G. Die durch
die Diagonalen bestimmten Dreiecke der Raute sind dann jeweils Fundamentalgebiete
von G.

Es sei nun G(=U) einfach periodisch mit der Erzeugenden to.

Nach (5) können als Spiegelachsen a nur senkrecht und parallel zu zto verlaufende
Geraden auftreten. Im ersten Fall kommt nach (4) nur e sp{a') in Frage (s. Abb. 4). Es

gilt sp(ß') o t'o t^' o sp(a'),i 1,-1; also ist nach (7) e sp(a') eine zusätzliche

Erzeugende. Der von a',b berandete Streifen ist ein Fundamentalgebiet für G. Wegen
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sp(a')ot0 sp(b) wirdG \onsp(a'),sp(b) erzeugt. Im zweiten Fall bestimmen e sp(a)
und e sp(a) o t mit zt \zto die Möglichkeiten für G.

Es gilt: e otl0 tl0oe, i= 1,-1; sp{a)2 id, (sp(a) o t)2 t0.

Ein von a, b, c berandeter Halbstreifen ist dann ein Fundamentalgebiet für G (s. Abb. 4).

Abb. 4

Ist G doppelt periodisch, so wählen wir zunächst wie im Beweis zu (3) minimale Erzeugende

to,t\ (\zto\ < \ztl\). Wir können ztl so wählen, daß die Parallelkomponente zu zto

in Richtung von zto zeigt und dem Bettage nach kleiner oder gleich \ |zto | ist. Es sei A die

Anzahl der Perioden mit minimalem Bettag. Die drei folgenden Fallunterscheidungen
umfassen sämtliche Möglichkeiten.

a) A 2

Dann haben nur die Perioden zto, -zto minimalen Bettag, also \ztl | > |zto

Nach (5) muß die Menge der minimalen Perioden durch Spiegelung an einer
möglichen Spiegelachse a auf sich abgebildet werden. Für a kommen damit nur die
senkrecht und parallel zu zto verlaufenden Geraden in Frage. Die Möglichkeiten
für G sind dann in (8) vollständig bestimmt. G ^ G gilt dann, wenn zto, ztl ein
Rechteck aufspannen oder ztl, zto —ztl eine Raute. Zwei Gleitspiegelungen mit nicht
parallelen Spiegelachsen können nach (6) in G nicht auftreten.

b) A 4

ztl ist in diesem Fall eine minimale Periode; \ztl | |zto |. Verläuft ztl nicht senkrecht

zu Zt0, so gibt es wiederum nur zwei mögliche Richtungen für die Spiegelachse a.

Sie verlaufen parallel zu den Diagonalen der von zto, ztl aufgespannten Raute (s.

Bemerkung unter a)). Wählt man in (8) t t\ oto,t' t\ bzw. t t\ o t^1, t'
to\ so erhält man sämtliche Möglichkeiten für G. G wird dann durch to, t\,sp(a)
erzeugt, wobei a eine beliebige Gerade parallel zu einer Diagonalen ist. Verläuft ztl
senkrecht zu zto, so gibt es neben den Richtungen der Diagonalen noch zwei weitere

mögliche Richtungen für a, nämlich parallel zu zto bzw. ztl. Die zusätzlichen, G
bestimmenden Erzeugenden e erhält man dann nach (8).

c) A 6

In diesem speziellen Fall sind die Endpunkte der vom Nullpunkt aus abgetragenen
minimalen Perioden die Eckpunkte eines regelmäßigen Sechsecks; zto, ztl, zto - ztl



Elem. Math. 54 (1999) 145

bilden die Seiten eines gleichseitigen Dreiecks A (s. Abb. 5). Es gibt damit sechs

mögliche Richtungen für a, die durch die Symmetrieachsen des Sechsecks oder
durch die Seiten und Seitenhalbierenden von A bestimmt sind. Zu jeder dieser

Richtungen gibt es Erzeugende von G mit den in (8) angegebenen Voraussetzungen
(Komponente von zt> in Richtung zt ist \zt). Damit bestimmen die Spiegelungen
an Achsen, die parallel zu den oben angegebenen sechs Richtungen verlaufen,
sämtliche Möglichkeiten für G.

Abb. 5

Im Fall A > 6 gibt es zwei minimale Perioden 2to,2t1; |zto| ztl\ mit ztl - zto\ < ztc

im Widerspruch zur Wahl von zto ; G ist dann nicht diskret. Dieser Fall kann also nicht
eintreten.

Zusammenfassend gilt:

Die doppelt periodische Gruppe G(= U) kann genau dann durch eine zusätzliche
Erzeugende e zu einer Gruppe G erweitert werden, wenn es Erzeugende t, t' von G gibt,
deren Translationsvektoren zt, zt> zueinander senkrecht verlaufen oder vom gleichen
Betrag sind.

Im ersten Fall sind die Möglichkeiten durch e sp(a); a parallel zu einer der
Symmetrieachsen des durch zt,zt' bestimmten Rechtecks P bzw. durch die Gleitspiegelungen
e sp(a) o t; a parallel zu einer der Seiten von P, \zt\ halbe Länge einer Seite von P;
gegeben.

Verlaufen im zweiten Fall zt, zt> nicht senkrecht zueinander, so kann man die
Erzeugenden t,t' so wählen, daß das von Zt,Zt> bestimmte Dreieck A spitzwinklig ist. Die
Möglichkeiten sind dann durch e sp(a); a parallel oder senkrecht zu einer der
Symmetrieachsen von A; bestimmt.

4 Die diskreten Gruppen mit Translationen und Drehungen

Wir setzen nun im folgenden voraus, daß G sowohl Drehungen als auch Translationen
enthält. Die Untergruppe U C G der Translationen ist diskret, nach (3) also einfach oder

doppelt periodisch.

Wir untersuchen zunächst den Fall, daß U einfach periodisch ist.
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Ist t ein erzeugendes Element von U, so muß jede Drehung j0 G U die Richtung von t
auf eine parallele Richtung abbilden, also gilt ord j0 2. Alle Drehungen in G haben
demnach einen Drehwinkel von 180°.

Schaltet man zwei derartige Drehungen hintereinander, so erhält man eine Translation
in Richtung der Verbindungslinie der beiden Fixpunkte. Da U einfach periodisch ist,
müssen die Fixpunkte (Drehpunkte) aller Drehungen auf einer Geraden parallel zum
Translationsvektor zt liegen.

a

m1

k
Po

a'

if

m'

h

Pi

zt

a"

if

m2

t(po) p2

Abb. 6

Ist Po Fixpunkt der Drehung j0, so ist der Mittelpunkt P\ der Strecke Pot (Po) Fixpunkt
der Drehung jx t o j0.

Zwischen Po,P\ und P\,t(Po) Pi können keine weiteren Fixpunkte von Drehungen
aus G liegen, denn anderenfalls ist nach Obigem die Translation t nicht minimal.

Es sei G' die von ;0,/i erzeugte Untergruppe von G.

Aus ;'i oy0 t folgt, daß t, j\ G' erzeugen. Da jede Drehung aus G die Form t" o ;, o t ",
n G Z, i g {0,1} hat, gilt G' G. Jedes Element hat dann wegen )\ id; t~l ojl jl of
eine eindeutige Darstellung tm o j\ mit i e {0,1}, meZ.
Ein Fundamentalgebiet F ist dann ein von mi,m2,m berandeter Halbstreifen (s. Abb.

6). Anhand der obigen Darstellung erkennt man sofort, daß die Bilder g(F),g G G die

ganze Ebene lückenlos überdecken und sich nicht überlappen.

(9) Die diskreten Gruppen G euklidischer Bewegungen mit einfach periodischen Un¬

tergruppen U sind also die zyklischen Gruppen von Translationen und die oben
beschriebenen unendlichen Dihedralgruppen.

Zur Bestimmung der Gruppen G kommen, da G eine einfach periodische Untergruppe
enthält, nur die im vorhergehenden Kapitel angegebenen Möglichkeiten in Frage. Die
zusätzliche Erzeugende e muß die Menge der Fixpunkte von Drehungen wieder auf sich
abbilden. Dadurch ist die Wahl der Spiegelachsen a eingeschränkt. Grundsätzlich sind
damit a m,a m',a a' (s. Abb. 6) möglich.
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Wegen
;'i o sp{m!) sp{m) o sp(m') o sp{m!) sp(m)

und

;'i o sp(ß') sjc(m) o sp(m') o sp(a') sp(m) o -t
sind durch e sp(a') und e sp(m') alle Möglichkeiten für G ausgeschöpft.

Es gilt: sp(ß') oy'j f^1 oy'j osp(a!);sp(m!) o jx jx osp{m'). Jedes Element von G ist
damit eindeutig darstellbar durch tnoj\ oek mit n e Z,i,k e {0,1}. Fundamentalgebiete
sind die durch a', a",m bzw. m.\, m', m berandeten Halbstreifen (s. Abb. 6).

Wir behandeln nun den Fall, daß U doppelt periodisch ist.

Wie im Beweis zu (3) wählen wir zunächst minimale Translationen to,t\ mit den Perioden

Zt0, ztl ; \zt01 < \ztl |. Ist nun Pi Fixpunkt einer Drehung aus G, so ist to (P\ Pi ebenfalls

Fixpunkt einer Drehung gleicher Ordnung n, die nach Voraussetzung (G diskret) endlich
sein muß.

Das in Abbildung 1 dargestellte Dreieck P1P2Q ist dann gleichschenklig, der Betrag des

Translationsvektors QQ\ ist nach Konstruktion höchstens doppelt so groß wie der Betrag

von

Fürn>7gilt: a< f ; |QQÎ| <2- |QQ^| < 2 • 2 • tana • \\P^P2\

2-tana- |ÄK| < 2 0,49- |ÄK| < |ÄK| |zto|

Das widerspricht der Voraussetzung über zto. Es folgt also:

(10) Ist U c G doppelt periodisch, so haben die Drehungen aus G eine Ordnung, die
höchstens gleich 6 ist.

In der nachfolgenden Tabelle sind anhand der Abbildung 1 sämtliche Möglichkeiten
dargestellt. Die Ordnungen der Drehungen j\, j2, y'3 mit den Fixpunkten P\ bzw. P2 bzw.

Q P3 seien ri\ bzw. n2 bzw. n3. n3 berechnet sich aus n32-f k360 <^> «37
0;n3, k eN;n3,k minimal.

roi «roi roi möglich (m) bzw.
m n2 a[°] ß[°] 7[°] n3 mchtmöglich(nm)

6

6

6

6

6

5

5

5

5

4

4

4

j
j

6

5

4

j
2

5

4

3

2

4

3

2

j
2

30

30

30

30

30

36

36

36

36

45

45

45

60
60

30

36

45

60
90

36

45

60
90

45

60
90

60
90

120

114

105

90

60
108

99

84

54

90

75
45
60
30

j
30
12

2

j
5

20
15

10

2

12

4

j
6

m
um
um
m
m
m
nm
nm
nm
m
nm
m
m
m
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Nach der obigen Tabelle kommen wegen (10) damit nur fünf Möglichkeiten für G in
Frage. Die Ordnungen der Drehungen von G (prd(j)) können sein 1.) sämtlich 2, 2.)
sämtlich 3, 3.) 4 oder 2, 4.) 6 oder 3 oder 2, 5.) sämtlich 5.

Der 5. Fall ist leicht auszuschließen. In diesem Fall ist (trotz gleicher Ordnung) das

Basisdreieck P1QP2 nicht gleichseitig. Es kann demnach entgegen der Voraussetzung
über G keinen positiven minimalen Abstand zweier Fixpunkte (Drehpunkte) geben; G

ist unter diesen Voraussetzungen nicht diskret.

Die verbleibenden Fälle 1. bis 4. werden nun im einzelnen näher untersucht. Die
Drehungen werden weiterhin grundsätzlich mit j, Translationen mit t bezeichnet; /'; ist die

Drehung mit minimalem positivem Drehwinkel um den Punkt Pf. Die hergeleiteten
notwendigen Eigenschaften für G und G sind auch hinreichend, was aus der Untersuchung
unmittelbar ersichtlich ist. Wir werden darauf nicht in jedem Fall wieder hinweisen.

1. ord(j) 2 für alle ; G G

Wir können nach eventueller Konjugation davon ausgehen, daß Po 0 Fixpunkt einer

Drehung ist. Dann sind auch die weiteren Eckpunkte P2, P4, Pß des von den Vektoren zto

und ztl aufgespannten abgeschlossenen Parallelogramms P Fixpunkte von Drehungen.
Der Beweis zu (9) (s. Abb. 6) zeigt, daß die in der Abb. 7 eingetragenen Punkte Pui
1,..., 8, sämtlich Fixpunkte von Drehungen sind.

Man erkennt leicht, daß in P keine weiteren Fixpunkte liegen. Die Bilder t(P),t G U
überdecken lückenlos ganz E. Die Fixpunkte von Drehungen aus G sind demnach Bilder
der in P liegenden Fixpunkte unter U; sämtliche Drehungen aus G somit konjugiert unter
U zu den Drehungen mit Fixpunkten in P.

P0 0 P11 7

Abb. 7

Wegen jl ;8 o 11; ;0 /i ° fo;/V ja ° fo erzeugen j%,to,h ganz G.

Mit;, jr\i 1,... ,8 gilt ;8 o ff t~m o js; js o Ç t~m o js,m -1,1.
Damit läßt sich jede Transformation aus G in der Form t o j£ ,k G {0,1} mit t e U
eindeutig darstellen. Hieraus wiederum erkennt man, daß das Parallelogramm mit den

Eckpunkten P0,P2,P3,Pi ein Fundamentalgebiet F von G ist. Die Bilder g{F),g G G,
sind dann Translationen von F k 0) oder Translationen von ;8 (F (Parallelogramm
P7P3P4P5; fc 1), überdecken somit die Ebene E lückenlos.
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Bei der Bestimmung der Gruppen G kommen nur die im vorhergehenden Kapitel
angegebenen Erzeugenden e für den doppelt periodischen Fall in Frage. Die zugehörigen
Spiegelachsen a sind hier durch die Lage der Fixpunkte festgelegt. Jede Erzeugende e

muß die Menge der Fixpunkte wieder auf sich abbilden.

Wie dort unterscheiden wir drei Fälle.

(a) A 2

Spannen zto, ztl ein Rechteck auf, so können mögliche Spiegelachsen a nur in Richtung

der Seiten dieses Rechtecks verlaufen. Da zudem die Erzeugende e die

Fixpunktmenge auf sich abbildet, kann grundsätzlich a nur so verlaufen wie eine der
in der Abbildung 8 angegebenen Achsen a\, a2, a3, a4. Wegen js osp(a\ sp(a4) o

±t0; js osp{ai) o ±ti sp{a3) o \t0; j$osp(a2) sp(a4);;8 osp(a3) sp{a2)o\tx
sind alle Möglichkeiten durch a a;,i l,2,3;e sp{al) und e sp{a\) o ^t\
erfaßt.

p6

A

Pi

1

[

0
0

fl2

I - -

P P

fl4

13 Zto >2

Abb.

Schaltet man von diesen Erzeugenden zwei verschiedene hintereinander, so

erhält man eine Translation oder eine Drehung, die nicht in G liegt. Jede Gruppe
G enthält demnach nur eine derartige zusätzliche Erzeugende. Aus sp(a\) o;8
j7 osp{ax); sp(a2) o ;8 ;8 osp(a2); sp(a3) o ;8 ;'i osp(a3); sp{ax)o\txo ;8

;6 osp(ßi) o ifj und der Tatsache, daß j$,to,t\ Erzeugende von G sind, folgt die

eindeutige Darstellung einer Transformation aus G in der Form t o j\ o ek mit
t€U,i,k<= {0,1}.
Ist das von zto, ztl aufgespannte Parallelogramm kein Rechteck, so gibt es nur
zusätzliche Erzeugende e, wenn \ztl - zto\ \ztl\ gilt. Mögliche Spiegelachsen a

müssen parallel oder senkrecht zu zto verlaufen. Hier jedoch trifft jede mögliche
Spiegelachse einen Fixpunkt (a ax, a2 verlaufen durch Fixpunkte). Die Spiegelungen

an Geraden a, die senkrecht oder parallel zu zto verlaufen und zudem einen

Fixpunkt treffen, ergeben sämtliche Möglichkeiten für e. Sind a,a!;a _L a!; zwei
derartige Achsen, die sich in einem gemeinsamen Fixpunkt der Drehung j e G

treffen, so gilt sp{a!) o j sp{a). Die Spiegelungen an Geraden parallel oder senkrecht

zu Zt0, die durch einen Fixpunkt verlaufen und sich paarweise nicht in einem

Fixpunkt einer Drehung aus G schneiden, umfassen dann sämtliche Möglichkeiten
füre.
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(b) A 4

Ist die von zto, ztl aufgespannte Raute ein Quadrat, so sind die unter (a) im
Zusammenhang mit dem Rechteck bestimmten Erzeugenden e auch hier zusätzliche

Erzeugende. Hinzu kommen noch die Spiegelungen an Achsen, die parallel zu
einer der Diagonalen des Quadrats durch einen Fixpunkt verlaufen. Treffen sich zwei
dieser Achsen senkrecht in einem Fixpunkt der Drehung j e G, so ist mit der

Spiegelung an einer der Achsen auch die Spiegelung an der anderen Achse in G

enthalten (s.o. sp(a') o j sp(a)).

Ist die von zto, ztl aufgespannte Raute kein Quadrat, so bestimmen die Spiegelungen
an Achsen parallel zu einer der Diagonalen durch einen Fixpunkt schon sämtliche

Möglichkeiten für e.

(c) A 6

Hier verlaufen die möglichen Achsen durch einen Fixpunkt einer Drehung j e
G parallel zu einer der sechs möglichen Richtungen. Treffen sich zwei derartige
Achsen senkrecht in einem Fixpunkt, so ist mit der Spiegelung an einer der Achsen
auch die Spiegelung an der anderen Achse in G enthalten.

2. ord(j) 3 für alle Drehungen j e G

Da G diskret ist, können die endlichen Fixpunkte der Drehungen sich in keinem Punkt
häufen. Es gibt somit zwei Drehungen j\, j2, deren Fixpunkte P\, P2 minimalen Abstand
haben.

Die Konstruktion nach Abbildung 1 liefert ein gleichseitiges Dreieck A P^JM^
Q), in dessem Innern sowie auf dem Rande keine weiteren Fixpunkte von Elementen aus
G liegen können, da sonst der Abstand von P\ zu P2 nicht minimal ist. Das gleiche gilt
für das Dreieck A' P\P2Pj (s. Abb. 9). Zudem erkennt man anhand der Konstruktion,
daß G eine doppelt periodische Untergruppe U enthält. Es sei G' C G die von juj2
erzeugte Untergruppe; G' =< j\,j2 >. Dann gilt (s. Abb. 9):

Abb. 9
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R h
' sp(m) osp(m\);

j2 sp(m2) o sp(m);

)i o ;\
1

sp{m2) osp{m[) h;

j2l o j1 sp(m'2) osp(m) osp(m) osp(m\) sp{m'2) osp(m\) t2.

t\,t2 sind Translationen aus G'.

Ihre Vektoren ztl, ztl haben einen Bettag, der doppelt so groß wie der Bettag der Höhe im
Dreieck P\Pj,P2 ist. G' wird also von t2,j2 erzeugt. Aus den obigen Gleichungen folgt
direkt: j2 o t2 j\ t^1 o j2; j2 o t2l j2 o jxl o j2 t\ o j2; j2 ot\ t2 o t^1 o j2;
j2 o fj"1 t\ o t2l o j2. Hieraus wiederum folgt, daß jede Transformation aus G' sich
in der Form t o y| mit k e {0,1,2}, t G U (U- von t\, t2 erzeugte Untergruppe von
G'), darstellen läßt. Gehen wir vom Parallelogramm F mit den Eckpunkten PUP3,P2, Pj
der Abbildung 9 aus, so bilden )2(F) F,j2(F),ß(F) zusammen ein regelmäßiges
Sechseck. Die Translationen t G G' bilden dieses Sechseck wieder auf Sechsecke ab,

die insgesamt E lückenlos überdecken. Jeweils zwei dieser Bilder haben höchstens
gemeinsame Randpunkte. Die Fixpunkte sämtlicher Drehungen aus G sind demnach die

Bildpunkte von P\,P2,P3,P7 unter G'. Jedes Element g aus G bildet das Dreieck A
auf ein kongruentes Dreieck ab, dessen Eckpunkte wiederum Fixpunkte von Drehungen
sind. Es gibt also eing1 e G' vaitg1 og(A) A oder g1 og(A) A.
Da G' sämtliche Drehungen aus G enthält und keine dieser Drehungen A auf sich
oder auf A' abbildet - es gibt zudem keine Translation, die A in A' überführt -, folgt
g1 og id, g G G', also G' G. Die Struktur von G ist somit vollständig überschaubar.

Es sei nun e eine ungerade Mehrfachspiegelung, also eine Gleitspiegelung. Da mit P auch

e(P) Fixpunkt einer Drehung aus G ist, bildet e das Dreieck A auf ein dazu kongruentes
Dreieck ab, das zugleich das Bild von A oder von A' unter G ist. Es gibt also ein g g G

mitgoe(A) A odergoe(A) A'.

Wir untersuchen zunächst den Fall g o e(A) A.

Wegen g o e t o sp sp o t; (g o ef t o sp o sp o t t2 und (g o e)2(A) A,
verschwindet der Translationsanteil der Gleitspiegelung g o e, also ist g o e eine einfache

Spiegelung s, die A auf sich abbildet. Die Spiegelachse von s kann damit nur eine
Seitenhalbierende von A sein. Wir nehmen an, es sei die Seitenhalbierende durch P3 (s.

Abb. 9).

Wegen

so jl j2l os (beide Transformationen bilden P\ auf P2

und P3 auf P7 ab);

so;2 ;f1os (P2 —> PüP7—> P3);

)i=h\ 1 1,2,

läßt sich jede Transformation aus G in der Form g o s1 mit g G G, i G {0,1} und
damit durch t o ]\ o s!; t G LZ, k G {0,1,2}, i g {0,1} eindeutig darstellen. Aus dieser

Darstellung erkennen wir, daß Dreieck P7P3P2 ein Fundamentaldreieck von G ist.
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Istgoe(A) A' und m die Gerade P\P2, so gilt sp(m) ogoe(A) A. sp(m) ogoe j
ist dann entweder eine Drehung der Ordnung 3 um den Schwerpunkt von A oder die
Identität.

Im 1. Fall ist g o e sp(m) o j eine Gleitspiegelung mit nicht verschwindendem
Translationsanteil und damit (g o ef (sp(m) o j)2 eine Translation, die entweder P2auf
P7 oder P2 auf P6 abbildet. In beiden Fällen überlappen sich die Bilder des Sechsecks

Se(PiP3P4P5P6P7) mit dem Sechseck selbst. Da jede Translation aus G Se auf ein
Sechseck abbildet, das keine gemeinsamen inneren Punkte mit Se hat (s. Darstellung der
Elemente aus G), kann dann entgegen der Annahme (goe)2 nicht in G enthalten sein; j
ist also keine Drehung. Damit folgt sp(m) ogoe id;goe sp(m). Wegen sp(m) o jx

sp(wii) jll osp(m); sp{m) o j2 sp{m2) j2l osp(m); j2 j~\i 1,2, läßt
sich jedes Element aus G in der Form t o ]\ o sp(m)\ t e U, k £ {0,1,2}, i e {0,1}
eindeutig darstellen. Wir erkennen aus der obigen Darstellung, daß A in diesem Fall
ein Fundamentaldreieck ist. Die Bilder g( A mit g G G parkettieren die Ebene E. Aus
den obigen Gleichungen folgt zudem, daß sp(m),sp(m\),sp(m2) ganz G erzeugen. Alle
Dreiecke der Parkettierung erhält man durch fortgesetzte Spiegelung an den Dreieckseiten

m,ni\,m2. Damit sind alle Möglichkeiten der Erweiterung von G zu G erschöpft.
Die zusätzlichen Erzeugenden sind grundsätzlich die Spiegelungen an den Diagonalen
einer Fundamentalraute (etwa P1P3P2P7) von G. Die Diagonalen zerlegen eine derartige
Raute jeweils in Dreiecke (P\P2P3 bzw. P3P2Pj), die Fundamentalgebiete von G sind.

3. ord(j) 4 oder ord(j) 2 für j e G. Wir folgen dem im vorhergehenden Fall
gekennzeichneten Lösungsweg zur Bestimmung von G,G. Die Drehungen juj2 mit
minimalem Abstand der Fixpunkte haben nach Abbildung 1 verschiedene Ordnungen.
Es gilt (s. Abb. 10): j2 o jx sp{m') o sp{m) o sp{m) o sp{ni\ sp{m') o sp{ni\ t\

j2 ° ]\ ° j2 hl ° j2 sp{m") o sp{m2) o sp{m2) o sp{m) sp{m") o sp{m) t2

\ m
m\ y/m1

1/
p

3

ffl,

\

/P7

Abb. 10
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Wie im vorhergehenden Fall schließt man, daß sich jedes Element aus G' =< j\,j2 >
eindeutig durch t o f2, t e U, i G {0,1,2,3} darstellen läßt.

Hieraus erkennt man, daß das Dreieck P3P2P9 ein Fundamentalgebiet F ist und die

Bilder g(F) mit g G G' die Ebene E parkettieren. Da es keine Drehung in G gibt, die

A(PiP3P2) auf sich oder auf A'(PiP2P9) abbildet, schließt man wie im vorhergehenden
Fall G' G.

Nur die Spiegelung s an der Seitenhalbierenden von A durch Pi bildet A auf sich ab.

Ähnlich wie im vorhergehenden Fall schließt man, daß G entweder durch s,j\, j2
(Fundamentalgebiet P1P3P4) oder durch sp(m),j\,j2 (Fundamentalgebiet A) erzeugt wird.
Im zweiten Fall gilt sp(m),sp(m\), sp(m2) G G; jede Transformation erhält man durch
mehrfache Spiegelung an den Seiten des Fundamentaldreiecks A.

4. ord(j) 6 oder ord(j) 3 oder ord(j) 2 für j e G

Abb. 11

Hier haben die Fixpunkte P\,P3 minimalen Abstand. Es gilt (s. Abb. 11):

(P3 -> P6);

h oho j-1 ]\ o jx o j-1 t2 (P3 -^ P7;P4 -^ P6);

Wiederum erhält man eine Darstellung t o f2,i g {0,l,2,3,4,5},f G U, für alle
Elemente g G G' =< ]2,t\ >¦ Wie in den vorhergehenden Fällen folgt G' G mit dem

Fundamentalgebiet P2P%P3, es gibt keine Drehung in G, die A(PiP3P2) auf sich oder

A'(PiP2P8) abbildet. Die Gruppe G mit dem Fundamentalgebiet A ist hier eindeutig,
da A keine Symmetrieachse hat. Sie wird von den Spiegelungen sp(m),sp(m\),sp(m2)
erzeugt.
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Übersicht

(si,..., s„) - die von den Elementen S\,... ,sn erzeugte Gruppe;

f(n) ' i(n) ~ Drehungen der Ordnung n;

to,t\ - minimale Erzeugende der doppelt periodischen Untergruppe U mit

kl<kl<|zt| für alle teU; 60° < <(zto,ztl) oder <(ztl,zto) <90°;

sp(a) of- Gleitspiegelung an der Achse a mit zt \zto oder zt \ztl ;

A, P - ein durch zto, ztl bestimmtes Dreieck bzw. aufgespanntes Parallelogramm;

G - wird von G und e erzeugt.

G

{id}
(;'(„)) endlich
zyklisch

(to) (=U) unendlich
zyklisch (einfach
periodisch)

(*o,*i> (=U) doppelt
periodisch

«) zh -L zto

/3) ztl nicht senkrecht

zu Zt0 und A
gleichschenklig

7) ztl nicht senkrecht

zu Zt0 und A
nicht gleichschenk-
Hg

(;'(2),fo) U ist
einfach periodisch

{j(2),to,h) Uist
doppelt periodisch

Op).;'«)

e

sp(ß); fl - beliebige Gerade

sp(fl); fl - beliebige Gerade durch das Drehzentrum von

sp(ß); fl_Lzto; odera||zto
sp(ß) 01;

sp(ß); fl - parallel zu einer der Symmetrieachsen von P;
oder

sp(ß) of; a - parallel zu einer Seite von P

sp(ß); fl - parallel oder senkrecht zu einer Symmetrieachse

von A

es gibt keine Möglichkeit für e

sp(fl); fl _L zto; a verläuft durch den Fixpunkt einer Dre¬

hung aus G oder durch den Mittelpunkt einer Strek-

ke mit der Länge \ \zto \, deren Endpunkte benachbarte

Fixpunkte aus G sind.

s. Fälle a),/3),7) mit der Einschränkung, daß durch
die Spiegelung an a die Fixpunktmenge auf sich

abgebildet wird.

sp(ß); a - Seitenhalbierende oder Seite eines gleichseiti¬

gen Basisdreiecks, dessen Seitenlänge gleich dem
minimalen Abstand zweier Fixpunkte ist.
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G

sp(fl); fl - Symmetrieachse oder Seite eines gleichschenk¬
ligen, rechtwinkligen Basisdreiecks, dessen

Kathetenlänge gleich dem minimalen Abstand zweier
Fixpunkte ist.

sp(fl); a - Seite eines rechtwinkligen Basisdreiecks, bei
dem eine Kathetenlänge gleich dem minimalen
Abstand zweier Fixpunkte ist. G ist eindeutig.
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