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Powers and Polynomials in Zj,

Lorenz Halbeisen, Norbert Hungerbiihler, Hans Lauchli

Dedicated to the memory of Prof. Hans Lauchli

Lorenz Halbeisen, geboren 1964 in Laufen, studierte in Basel und Ziirich und pro-
movierte an der ETH-Ziirich. Nach Forschungsaufenthalten in Caen (Normandie)
und Barcelona (Katalonien) ist er gegenwartig als Research Fellow in Berkeley
(Kalifornien) titig.

Norbert Hungerbiihler wurde 1964 geboren. Er studierte an der ETH Ziirich, wo er
1994 seine Dissertation bei Michael Struwe abschloss. Anschliessend war er an der
Universitat Freiburg im Breisgau, an der University of Minnesota in Minneapolis
und an der ETH in Zirich titig. Seit Herbst 1998 arbeitet er am Max-Planck-Institut
fur Mathematik in Leipzig.

Hans Lauchli studierte an der ETH in Ziirich und promovierte 1961 bei Ernst Specker
mit einer Arbeit iber das Auswahlaxiom. Nach Aufenthalten an der University of
California in Berkeley und an der University of Arizona in Tucson wurde er 1966
Professor an der ETH. Seine Interessen galten der ganzen Mathematik, am liebsten
aber forschte er im Bereich der Logik, der Mengenlehre und der Kombinatorik. Nach
langerer schwerer Krankheit verstarb er, erst 64jahrig, im Sommer 1997.
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1 Introduction and Notations

In this article we consider powers and polynomials in the ring Z,,, where m € N is
arbitrary, and ask for “reduction formulas”. For example, for addition, multiplication
and exponentiation, we have the following well known reduction formulas:

a+ b = mod(a,m) + mod(b,m) modm )]
a-b = mod(a,m) - mod(b, m) modm @)
a’ = mod(a,m)" modm 3)

It is much more difficult to find reduction formulas which allow to reduce the exponent.
Of course in general the formula

ab = umod(b,m

) modm (4)
is false. In the second section we will investigate for which numbers 7 such a reduction
formula holds.

In the third and the two following sections we will consider generalizations of Fermat’s
little theorem and Euler’s Theorem which allow to replace (in Z,,) certain powers 4’ by
a polynomial f(a) of degree deg(f) which is strictly less than b. Such formulas can be
useful for various reasons: From an algorithmic point of view, it is cheaper to compute
the polynomial f(a) modulo 7 than the full power 2’ modulo 7. On the other hand one
may wish for algebraic reasons to replace an arbitrary polynomial g(a) by a polynomial
of fixed (lower) degree (depending only on 7 but not on g) which is, as a function in
Zy, identical to g (see Section 6).

In the last section, we address the question of the minimal degree e(m) such that every
polynomial in Z,, can be written as a polynomial of degree g < e(im). We give a complete
answer to this question by determining minimal (normed) null-polynomials modulo 1.

Throughout this paper, we use the customary shorthand notation a | b for a,b € Z with
b e Z. We write

a=bmodm

for numbers a,b € Z, m € N, if m | a — b, and we adopt the notation (a,b) for the
greatest common divisor of @ and b. Furthermore we denote by mod(a,m) the uniquely
determined number v € {0,1,...,m — 1} such that a = km + r for some k € Z, and
Mod(a,m) denotes the number » € {1,...,m} such that a = km + r for some k € Z.

We had been working on the present article for about two years, when the mournful
message of Hans Lauchli’s death reached us. At that time, only the first part (Section
2), which comprises a theorem resulting from joint work of Hans Lauchli and Ernst
Specker on exponential rings, and the second part (Sections 3—5) had been finished. The
third part about minimal polynomials was not yet completed, and we would like to thank
Prof. Emst Specker for inspiring and helpful discussions and for valuable suggestions
concerning that last section.
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2 Special values of m

In this section we investigate for which values of m the reduction formula (4) holds.
The answer is contained in the following theorem.

Theorem 1 Let G :={1,2,6,42,1806}, then the following statements are equivalent:
(a meG.
(b) For all integers a,b one has

ab = gMdem) mod 1.

(c) For all integers a one has

m+1

a =amodm.

Remark: The equivalence of (b) and (c) is obvious: (c) follows from (b) by choosing
b = m + 1. The opposite implication follows from (2) by an easy induction argument.
However, notice that in (b) we cannot replace “Mod” by “mod” in the exponent. To
make this point more precise we state without proof:

Theorem 2 Let m € G, then one has a™ = 1 modm (and hence (b) holds with Mod
replaced by mod) if and only if no prime factor of mod(a,m) belongs to the set G +1 =
{2,3,7,43,1807}.

The proof of the equivalence of (a) and (c) relies on an induction principle, which we
prove after the following lemma.

Lemma 1 Let Ey := 2 and E,n = q+ E1E;---E, for a fixed, odd q > 0. If
A :=Ey---Ex such that E; is prime for i < k and x | A, then x +q € {E1, ... ,Ex1}
or x + ¢’ is not prime for an s with 1 <s < k.

Proof. If x = A, then x4 q = E; and we are done. If x # A, then let [ be the smallest
number such that E; {x. If [ = 1, then x + ¢' is even, therefore x +q = 2 € {E;}
or x + ¢ is not prime. Hence, the claim is proved for I = 1 and only the case [ > 1
remains to be checked: Since E;, ..., E; are prime, we have E; --- E;_; | x. Notice that
Ey---E;-1 = —gmodE; (for [ > 1) and that E; = gmodE; for j > [ (by definition).
Therefore we conclude x = —¢° mod E;, where s is smaller than the number of prime
factors of x, hence s < k. Therefore E; | x + 4° and the proof is finished. O

We will use the special case g = 1 in the proof of the following

Theorem 3 (Induction Principle) Let H C N be a set of natural numbers with the
Jfollowing properties:
(i 1€H,
(ii) if h € H and h+ 1 is prime, it follows that h(h+ 1) € H,
(i) if p* |x forp > 1, then x ¢ H,
(iv) if h = Apa € H, p prime, such that all divisors of a are greater than p, then
p—1]A
Then H = G.
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Proof. By (i) and (ii), G C H. For the opposite inclusion we claim that 2 < 1 € H

implies # = E; - E; with [ < 4: In fact, by (iii), we know that 7 = p1p, - - - p, with

p1 < p2 < ... < p, being prime numbers. Now we use (iv) with A = 1, p = p; and
a= %- Because p1 —1 | 1 (by (iv)), we have p; = 2 = E;. Now, by induction, we assume

that p; = E; for all j < k < I. Applying (iv) again, this time with A = E, E; - - E,

P =pry1 anda = Aip, we have pyyy — 1 | A. Thus, by Lemma 1. px 1, € {E1,...,Ex1}

and since px41 > p; for j < k, we conclude py 1 = Ex 1. O

Proof of Theorem 1: Now, we use the induction principle to prove Theorem 1. We have

to check properties (i)—(iv) for the set L of numbers /# which satisfy (c):

() is trivial.

(i) follows easily from Fermat’s little theorem (see Section 3).

(iii) Let & = py - -pn € L, px prime. By (c), we know that p"*! = p; mod /. Thus,
I | pr(pf — 1) and hence we have pj, = lmod . For i # k it follows that
ph = 1 modp; and therefore p; # py.

(iv) By (c) we have for i = Apa € L that ¢"*! = cmod /i for all ¢ . Thus / | ¢(c" — 1)
and

" = (¢**) = 1 modp. (5)

Now, let ¢ be such that (c,p) = 1, then (by Fermat’s little theorem)
(AP~ = L modp. (6)

Combination of (5) and (6) yields ¢** = 1 modp. Since p is prime and (c,p) = 1,
it follows that p — 1 | Aa and by definition of @ we get p — 1 | A, which completes
the proof of Theorem 1. O

3 A generalization of Fermat’s little theorem

Let us start with a definition. Let p1, . . ., px be distinct prime numbers and 11 = p{' - - - pi¥
with £; € N be the factorization of a number 1 € N. Then we define the function ¢y,
for integer numbers 7 by

(pm(n) —n" —Zi’l”ﬂi + an —iind (_l)knﬁ
7

i1<iz

Here, the subset j = {ji,...,ji} of {1,..., k} serves as a multi-index with length |j| =i
and with p; := pj, ---pj,. It is convenient to extend the definition of ¢, by ¢1(n) = n.

Theorem 4 The function p,,(1n) has the property
em(n) = 0modm (7)

Jor all numbers n € N.
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Remarks:

(1) If n is a prime number, then (7) follows from Gauss’ observation that the number
of irreducible polynomials of degree m over Z, is given by ¢, (n)/m (see [2]).
Later Serret [8], Lucas [6] and Pellet [7] stated without proof that (7) holds true
for arbitrary integer n. Later on, several proofs have been given for (7): S. Kantor
presented in [3] and [4] geometric proofs and Weyr [9] used an involved inductive
method.

(ii) Theorem 4 allows now to determine mod(n™,m) by replacing the full power n™
by a polynomial in n of degree strictly less than 72, which at least partially answers
the question posed in the introduction.

Here, we show that (7) follows easily from a combinatorial fact. To demonstrate the
idea we consider the case of a prime number m = p. Consider the set {(n1,...,7,) :
n; € {1,...,n}} of points in the discrete p-dimensional cube Q = {1,...,n}”. Con-
sider the cyclic group C, whose action on a point (11,...,n,) is generated by o =
op: (M, ..., 1) = (N2,13,...,1p,11). According to Burnside’s Lemma the total num-
ber of orbits in Q generated by C, is given by

. 1
number of orbits = — Z Xg (8)
Gyl
8€G
where x, is the number of fix-points of Q under ¢ € C,. Since x,» = n for i =

l,...,p—1and xor = xia = 1" (and of course |C,| = p) it follows from (8) that
1’ + (p — I)in = Omodp and hence

nP —n = 0modp,

which is Fermat’s little theorem.

For general m we proceed similarly, but instead of using Burnside’s Lemma we count
directly the orbits of given length.

Proof of Theorem 4. Let Q and C,, be as above but now with general m = p{' - - - pi¥.
We claim that there exist %gom(n) orbits of length 1 and hence the theorem follows. To
prove this claim we proceed by induction on #1:

I* step: p1(n) = n, hence the assertion is true for m = 1.

20d step: “m’ = P1--Pk—1 — M =p;---pr’: Notice, that the number of orbits gener-
ated by Cy, in {1,...,n}"™ of length ;% equals the number of orbits generated by C,,
in {1,...,n}"™™ of length 2. So, by induction we have that

number of orbits of length m = —

number of orbits of length ®
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Hence,
number of orbits of length m =

—ng(”) = e (m) =~ ei(m)

iy

ST DD SRR 7

I B TS (I AN 6

i not empty

= l ‘Pm(n)~

cr—1

3step: “m’ = pit - pj

—p=pre
4 A generalisation of Euler’s Theorem

One disadvantage of (7) is that it reduces in Z,, only the power m. Here, we present
a formula which reduces yet another power and which is slightly stronger than Euler’s
Theorem. Let us recall the definition of Euler’s ¢ function: For any integer #, ¢(n)
denotes the number of integers k € {1,...,n — 1} which are relatively prime to #, i.e.

en)=ke{l,....n—1} : (n,k)=1}|.

Furthermore, let ¢¥(n) denote the highest power contained in #, i.e.

analogous to the second step. (Il

d(n) = max{k : m* |[n,meN, m>1}.

Theorem 5 There holds
@@ n’@(@eD — 1) = 0modq for all integers n.
®) 9(q) + p(g) < q for all g, with equality if and only if q is prime.

Proof. (a) Let g = q;' - - - g3+ be the prime factorization of g. If (n,q;) = 1

from Euler’s Theorem (Wthh asserts that 7¥9 = 1modg provided (n,q)

g | n°%") — 1. Hence, since ¢ is multiplicative, i.c. ¢(ab) = ¢ (a)p(b) for (a,b) =
0 1 (g =1 <10)

Furthermore we have 47" | g and hence g7 ' | § — ¢(g) > 0. On the other hand, it is
clear that (n,q;) > 1 implies g; | n. Hence we have

g |’ () > 1. (11)
Now, combining the two cases (10) and (11) the assertion follows.

it follows
=1 that

(b) I** step: If q is prime then obviously ¥(q) +¢(q) =14+ (g —1) =4.

2 step: We have to show that 9(q) + (g) < g if g is not prime. If g = p" for a prime
number p and 1 > 2, the assertion is equivalent to 7 + (p — 1)" < p", which is easily
established by induction on n > 2. If g = p"q’ with p prime, ¢/ > 1 and n = ¥(q) > 1,
then

)+ elg) =n+(p - 1)"e(q)
<nt(p-1"¢ -1

and hence the assertion follows from the fact n+ (p — 1)"*(¢' — 1) < p"q’ which is easily
proved by induction on 7. O
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Remarks:
(i) Of course, Euler’s Theorem follows from Theorem 5(a).

(i) It is clear from the proof, that the exponent ©¥(g) in (a) is optimal, i.c. it cannot be
replaced by a smaller integer.

(iii) Theorem 5 allows to replace n%@+#(@ in Z, by a polynomial in  of degree strictly
less than ¥(q) + ().

5 Another application of Burnside’s Lemma

In this section, we consider a variant of the arguments of Section 3. There, we considered
the cyclic group C,,, i.e. the group with one generating element of order 1. Notice that
the set of points of the cube Q = {1,...,n}" (on which C,, acts) may as well be
considered as the set of colorings with n colors of the Cayley graph of C,, generated
by the generating element. (The Cayley graph G[A] of a group G generated by a subset
A ={a1,...,ar} C G has the elements {gi,...,g} of G as its vertex set and edges
between g and g; iff there exists 4, € A with g oa, = g;.) By applying Burnside’s
Lemma to this situation, we obtained (7).

A natural variant of this idea would be to look at the group G = Cp, X --- X Cp,
of k generating elements ai,...,a; of orders p1,...,px, acting on the Cayley graph
Glay, .. .,ax] over the generating elements and colored with n colors. In fact, if the
p; are chosen to be prime (but not necessarily different), we recover (7) by applying
Burnside’s Lemma. But we do in fact obtain a new congruence if we look at a “reduced
Cayley graph” instead. More precisely we consider the graph Cp, [p1] x - x Gy [pk]
colored with 7 colors, and g}' - -- g;* € G acting on it by application of g on C,,[pi].
Counting orbits in a similar way as in Section 3 we find

Theorem 6 Ifm = p; ---px (pi prime, but not necessarily distinct), then there holds
Jfor all integers n

Z (=)l =s1) = 0 mod m

where we used the multi-index notation of Section 3 and s(m) = p, + - - - + px denotes
the sum of the primes in m (with multiplicity).

Remarks:
(i) Theorem 6 now allows to reduce 7" by a polynomial of lower degree in Z,y.

(ii) If one does not insist on p; being prime, one ends up with a polynomial of degree
p1+ -+ px > s(m) which vanishes in Z,.

6 Minimal null-polynomials

6.1 Normed null-polynomials. Usually one defines two polynomials f and g to be
congruent modulo 1, written f = gmodm, if corresponding coefficients are congruent
integers modulo . This equivalence relation provides a nice structure in particular if m is
chosen to be prime. On the other hand we will say that two polynomials (or, more general,
two functions) f and g are graph-congruent modulo m, written f = ¢ graphmod m, if
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they have the same graph as functions from Z,, to Zy,, i.c. if f(n) = g(n) modm for all
integers n. Of course, two congruent polynomials are graph-congruent, but the converse
implication does not hold in general, e.g. x> = x graphmod2, but x> and x are not
congruent modulo 2. We say f is a normed null-polynomial modulo m, if f is graph-
congruent to the polynomial 0 and if f is normed (i.c. the leading coefficient equals
1). Of course, for all m there exist normed null-polynomials, e.g. f(x) = (x — 1)(x —
2)---(x —m), and hence it makes sense to look for minimal normed null-polynomials
modulo 7, i.e. normed null-polynomials of minimal degree e(im). It is easy to see, that
if m = p is prime, the polynomial

¥¥—x=(x-1)---(x —p)modp

is (up to congruence) the unique minimal normed null-polynomial, and hence e(p) = p
for p prime. Minimal normed null-polynomials are useful since they allow to replace
arbitrary polynomials by graph-congruent polynomials of degree less than or equal to
e(m) — 1 modulo . To find a minimal normed null-polynomial on a computer by just
checking polynomial after polynomial, would be extremely time consuming. On the other
hand from Theorem 5 and 6 we infer, that

e(q) < min{g,s(9),9(q) + ¢(9)}-

Example: Letm =35 and f(n) = Efio n'. Find a polynomial ¢ of lower degree which
is as a function in Z,, identical to f.

Theorem 4 provides a normed null-polynomial of degree 35, which would allow to find
a polynomial ¢ of degree 34. Theorem 5 gives a normed null-polynomial of degree
¥(m) + ¢(m) = 25 which is better, but Theorem 6 gives a polynomial of even lower
degree, namely s(m) = 12, in fact
n'> =n(n’ +n’ —n) graphmod35.

Replacing in f successively all powers #n'% by n(n° + n’ — n) one finds

35 ]

an =1+n—15n*+n*) - 13(n* +n°)+

=0

+ 58 +n")+21(n* +n°) +19(n'° +n'") graphmod 35.

We include the following list, which decides for which m Theorem 5 or Theorem 6
yields a normed null-polynomial of lower degree:

(1) 9(q) + ¢(g) = s(q) if and only if g is prime or g € {4, 18}

) Hq) +»(q) <s(q) if g = 2p. p prime, or 4 € {12,30}

(3) for all other g there holds ¥(gq) + ¢(q) > s(g)
Since for m = 18 both theorems give a polynomial of degree 8, we can look at the
difference which is the (normed) null-polynomial n” + 2n® — 2n° — n* + n® — n®. But
still, it is not minimal. In fact n°+n* —2n? is a minimal normed null-polynomial modulo
18, i.e. (18) = 6. The following theorem gives the general answer to the problem:
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Theorem 7 The polynomial g(x) = Hi"f)(x +1) is a minimal normed null-polynomial

in Ly and hence e(m) = 3(m). Here, 3(m) denotes the Smarandache function 3(m) :=
min{k e N : m| k!}.

The function §(m) is named after the Romanian Mathematician Florentin Smarandache,
but it has been introduced already in 1918 by Kempner in [5]. It has many interest-
ing properties and applications in number theory (see e.g. the Smarandache Function
Journal).

Proof: I* step: g(x) is a normed null-polynomial in Z,,: This follows immediately from

the fact that for all x € Z o Sl
X m
80 = (S st

Now, the first factor is an integer, and 3(m)! = O modm.
24 step: e(m) > $(m): Let us consider the normed polynomial f(x) := ax + ax> +
oot X+ X" witha; € Z and ¥ > 1. We define

1 1 .. 1
2 22 . 2r71
M — 3 32 v 31
r—1 (r-=17% . (-1
and the vectors
m f(1) 1
a f2) 2r
a = i y h — B 4 p = :
a1 flr—1) (r—1y
In this notation, we have
Ma="h-p.

Now, suppose that
f(x)=0modm forall x =1,2,...,r — 1,

ie. 1 = mgq for some q € Z''. Notice that M is a Vandermonde matrix and that in
particular det(M) # 0. Hence, the equation Ma = mg — p determines for any given
right hand side a unique solution 4. From Lemma 2 below we infer

fry=r +§airf v +r§_f<—1>i+’ () —maa = i(—l)i*f (1) moam.

Lemma 3 below now gives that f(1) = r! = 0 mod m implies r > 3(m). This completes
the proof. O
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Lemma 2 Let M be the Vandermonde matrix (ij)i,jzlwr,] as above. Then, fora € R™™!
and b = Ma there holds

:Zl:airi — —i(—l)i“ (:)b (12)

i=1

Proof. By linearity, it suffices to show (12) fora; = ¢6;;, j = 1,2,...,¥ — 1. That is, we
have to show that for 1 < j <r—1

ro— _ri(_mi“(:)iﬁ

i=1
This follows also from Lemma 3. O

Lemma 3 [Forr € Ny and j € Ny, there holds

S () =nsiin,

i=0
where S, is the Stirling number of the second kind.

Proof. A proof of this well-known lemma can be found e.g. in [1]. But for the sake of
completeness, we like to give a proof by combinatorial arguments which are similar to
those in the proof of Burnside’s Lemma. Moreover, we shall give a special proof for the
case j = r and will consider the general case afterwards in a slightly different way.

First notice, that from the binomial expansion of (1 + x)" with x = —1, we get
! (r
S- () = (@)
i=0 .

which is (for » > 0) obviously equivalent to

S (r . i) = (-1 (+)

i=0

Let A .= {ao,...,a,—1} be an alphabet of v > 0 symbols and let w,(k) denote the
set of words of length 7, such that every word in w,(k) consists of exactly k different
letters. Further, let W, (k) denote the cardinality of w, (k). Obviously we have W,(0) =
W, (r+1i) =0 (fori > 1) and W,(r) = r!. And in general we have

W, (k) = (I:)kf— <r_k“>w,(k—1)— (r_I;jLz)Wr(k—z)—m

1
- (1:: 11> W, (1) — <£) W, (0).

()
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To see this, remember that with k different letters we can form k" words for length r,
but of course, not all of them contain k different letters. So, to compute W,(k), we have
to exclude the words which contain less than k different letters.

Combining (x) and (xx) we get

W, (r) = @r - (ri 1)(r— 1) + <rz2>(r_2)r _...(_1)f<g>of —1l.

Because S»(n,n) = 1 (for all n € Ny), this proves the Lemma for ¥ = j even in the case
when r = j = 0 (because Wo(0) = (J)0! = 0.

Now we consider the general case. Again, w;(k) denotes the set of all words of length
J. such that every word in w; (k) consists of exactly k different letters. For an arbitrary
word u (of length §) let u be the set of all letters occurring in # and |u] be its cardinality.
So, if u € w;(k), then |u] = k. For a set of letters I C A let v;(I) be the set of all indexed
I-words u; of length j, such that u; C I. To each indexed word 1 there corresponds in
a natural way the (non-indexed) word u. For two different I and I’ such that |I| = |I'|
we call two indexed I-words u; and u;, equivalent (17 ~ uy/) if the (non-indexed) words
are equal. Let [u]; .= {vr : vy ~ up A |I| = |I'| = i}. Finally let

Vi) = 3 o0
iz

Evidentially we have V;(i) = (7)i/. For an arbitrary word u of length j with#t C 1 C A

where |I| =i we get
_(r—ul
= (7).

For a word u with u# < », we have by (o) that

T

S (1] 0.

i=[]

Therefore, 31—, (—1)"*(])i’ = 0 = r1S,(j, 7). Now, with the alphabet A we can form
! S5(j,r) words u of length j, such that # = A, which completes the proof. O

Remark: As a corollary of the previous lemma, we obtain Wilson’s Theorem: (p—1)! =
—1modp if and only if p is prime. To see this, notice first that if p = ab, with a,b both
bigger than 1 and (a,b) = 1, thena | (p—1)!and b | (p—1)!, therefore (p—1)! = 0 modp.
For p prime, set r = j = p — 1 and use Fermat’s little theorem in the Lemma 3 (for the
only even prime number p = 2, notice that —1 = 1 mod?2).

6.2 General null-polynomials. Except in the case when m is prime, the minimal normed
null-polynomials are far from unique. For example, given a normed null-polynomial, one
can add a general (not normed) null-polynomial of lower degree. So, let us look now for
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non-trivial minimal null-polynomials (which need not be normed). Let (1) denote the
degree of a general non-trivial minimal null-polynomial modulo . Then there holds:

Theorem 8 &(m) equals the smallest prime factor in m.

Proof. Let m = pi' - - - pi* with p; prime and p; <p; forall j > 1.
I* step: If p; > 2, then the polynomial

p-1
2

m 2 2
f(x):P_lxi:l(x — 1)

is a null-polynomial. For p; = 2 the polynomial f(x) = %x(1+ x) is a null-polynomial.
Thus we have é(m) < p;.

22 step: Let f(x) be a non-trivial null-polynomial in Z,,. Without loss of generality, we
may assume that the coefficients of f/ do not contain a common divisor pf" with &; > &;
(otherwise, one can divide f by p;" “ which would still be a non-trivial null-polynomial
in Z,,, but with the desired property). Let Hf;l p?* be the largest common divisor (of
this form) of the coefficients of f. In particular, we have that 0 < ; < &; for all i.
Thus, we have f(x) = Hf’{:l p/'g(x) for a polynomial g(x) with integer coefficients and
for all x € Z there exists an integer /i, such that f(x) = mh,. Hence, we conclude
for g(x) that g(x) = J1, [T, p* . This means that g is a null-polynomial in Z,, with
m = Hle pi " > 1. Furthermore, ¢ is non-trivial in Z,, since the greatest common
divisor of the coefficients of ¢ does not contain a factor p;. Now, let j denote the smallest
index with the property that £; — ~y; > 0. Then, g is a non-trivial null-polynomial in the
field Z,,. Since a non-trivial polynomial has in a field at most as many zeros as the
degree indicates, we conclude deg(f) = deg(g) > p; > p1. O
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