
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 54 (1999)

Artikel: Faire Entscheidungen

Autor: Behrends, Erhard

DOI: https://doi.org/10.5169/seals-4702

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-4702
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


© Birkhäuser Verlag, Basel, 1999
Elem. Math. 54 (1999) 107 - 117

0013-6018/99/030107-n $1.50+0.20/0 I Elemente der Mathematik

Faire Entscheidungen

Ehrhard Behrends

Ehrhard Behrends ist 1946 geboren. Seit 1973 ist er Professor an der Freien Universität

Berlin. Sein Hauptarbeitsgebiet ist die Funktionalanalysis, er hat aber auch schon
über Topologie, Ergodentheorie und Wahrscheinlichkeitsrechnung gearbeitet. Unter
seinen Publikationen finden sich vier Bücher. Seine Interessen ausserhalb der Mathematik

liegen im Bereich der Musik. Freizeit und Beruf berühren sich manchmal; so

organisierte er am Internationalen Mathematiker-Kongress in Berlin Veranstaltungen

zum Thema "Mathematik und Musik".

1 Einleitung
Mal angenommen, zwei Freunde sind völlig unentschlossen, was sie mit dem Abend

anfangen sollen: Konzert oder Theater? Eine Münze zu werfen scheidet aus, denn sie

wollen selbst aktiv an der Entscheidung mitwirken, und beide sollen gleichberechtigt
beteiligt sein. Sie haben die folgende Idee: Auf Kommando heben beide jeweils eine

Hand, wobei "zufällig" null, eins, fünf Finger ausgestreckt werden (der Einfachheit
halber wird der Daumen zum Finger erklärt). Es soll dann die Summe gebildet werden;
ist sie gerade, geht es ins Konzert, andernfalls ist Theater angesagt.

Erfüllt das Verfahren die Erwartungen? Mathematisch übersetzt ist das doch die Frage,
ob X + Y mod 2 gleichverteilt ist, wenn X, Y unabhängige, in {0,..., 5} gleichverteilte
Zufallsvariable sind. (Für den Augenblick wollen wir annehmen, daß diese Umschreibung
gerechtfertigt ist, wir kommen in Kapitel 4 darauf zurück.)

Die Antwort ist leicht gegeben, man muß nur alle Möglichkeiten, 0 bis 5 Finger zu
heben, systematisch zusammenstellen, allen die gleiche Wahrscheinlichkeit (also 1/36)

Jeder G\ mnasiasl und jede G> mnasiaslin weiss. da::.::, die Summe .S der Augcn/ahlcn
zweier Würfel nicht glcichvcrlcill ist. Etwas weiter führen Fragen wie die folgenden:
Ist S modulo 2 glciclnerteilt? Für welche m ist S modulo m glciclnerteilt? Was

ist die Situation für die Summe 5 der Augcn/ahlcn von n Würfeln, n > 2? Jeder

Fall von Glcicln erteilung liefert ein faires Enlschcidungs\ erfahren unter « Personen

bei //; Möglichkeiten: Jede der n Personen würfelt, der Entscheid ist gegeben durch
S modulo m. - Ehrhard Behrends diskutiert in seinem Beilrag die mathematischen

Grundlagen von solchen und ähnlichen Entscheidungsverfahren und zeigt Beziehungen
auf zur harmonischen Analysis und damit zur Darslellungslheorie der Gruppen und zur
Founeianalvsis usi
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zuordnen und dann sortieren, welche zu einer geraden bzw. ungeraden Summe führen.
Da es jeweils 18 Möglichkeiten gibt, sind beide Wahrscheinlichkeiten gleich 0.5, die
Freunde können also mit dem Verfahren zufrieden sein.

Bei einer anderen Gelegenheit wollen sich die beiden auf ähnliche Weise fair zwischen

Kino, Musical und Popkonzert entscheiden, und das klappt genauso, wenn man nun
modulo 3 rechnet. Weitere Verallgemeinerungen bieten sich an, wir formulieren gleich
diejenige Fragestellung, von der wir hier ausgehen werden. Gegeben seien natürliche
Zahlen k,n und a sowie Wahrscheinlichkeitsmaße P1;...,Pfc auf {0,... ,n - 1}. Wir
stellen uns die P\,... als Verteilungen unabhängiger Zufallsvariablen Xi,... vor, d. h.

P(XK v) PK({j/}), und dann fragen wir nach der Verteilung von (Xi + • • • +
Xjt) modfl, also nach den Zahlen Q({a}) := P((X\ + ¦ ¦ ¦ + Xjt) mod a a) für
a 0,... ,a—l. In der einleitend gegebenen Interpretation heißt das: k Freunde wollen
eine faire Entscheidung zwischen a Möglichkeiten treffen, und sie machen das so, daß

sich der K-te Teilnehmer gemäß PK für eine Zahl zwischen 0 und n — l entscheidet, dann
werden diese k Zahlen addiert und modulo a ausgewertet.

Es gibt in diesem Zusammenhang einige Fragen, die wir nachstehend behandeln wollen

(die Übersetzungen in Probleme zur Freunde-treffen-Entscheidungen-Situation sind

naheliegend).

Problem 1: Angenommen, alle PK sind die Gleichverteilung auf {0,... ,n — 1}. Für
welche k,a ist dann Q die Gleichverteilung auf {0,...,« — 1}?

Problem 2: Kann Q auch dann die Gleichverteilung sein, wenn die PK nicht gleichverteilt
sind? Wie sieht das insbesondere im Fall P\ ¦ ¦ ¦ Pt aus?

Problem 3: Es sei k 2, und P\ sei vorgegeben. Ist es dann möglich, ein P2 so zu
finden, daß Q die Gleichverteilung ist? Sind auch mehrere Lösungen denkbar?

Problem 1 kann übrigens - wie im oben besprochenen Spezialfall n 6, k a 2-in
ein kombinatorisches Problem umformuliert werden. Allerdings sehen die dann
entstehenden Ausdrücke nur für kleine k, a halbwegs übersichtlich aus, allgemeine Aussagen
scheinen so nicht zu gewinnen zu sein. Deswegen werden die Probleme hier ganz anders

behandelt, es soll nämlich die Gelegenheit genutzt werden, anhand dieser elementaren

Fragestellung einige Ideen der harmonischen Analysis kennenzulernen und anzuwenden.

Das wird in Kapitel 2 ausgeführt. Dort wird gleich eine etwas allgemeinere Situation
diskutiert, nämlich das Problem der Auswahl im Fall endlicher kommutativer Gruppen
(bisher war nur von der Z„ die Rede). Mit Hilfe der Fouriertransformation können alle

aufgeworfenen Probleme vollständig gelöst werden. In Kapitel 3 dann geht es um
beliebige endliche Gruppen, dabei werden Darstellungen und deren Fouriertransformation
wichtig. Da wir die Theorie nicht voll entwickeln können, beweisen wir die Ergebnisse
unter der - im Einzelfall oft leicht nachprüfbaren Voraussetzung - daß es "genügend
viele" Darstellungen gibt. So zeigt sich, daß die unterschiedlichen Phänomene in den
Fällen kommutativer bzw. nicht-kommutativer Gruppen durch das unterschiedliche
Verhalten von komplexen Zahlen bzw. komplexen Matrizen verursacht werden. Die Arbeit
schließt in Kapitel 5 mit einigen Ergänzungen.

Die zum Verständnis benötigte Mathematik ist elementar, außer grundlegenden Kenntnissen

über komplexe Zahlen und Matrizen wird nichts vom Leser erwartet.
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2 Der Fall endlicher kommutativer Gruppen
Zunächst geben wir eine natürliche Verallgemeinerung der vorstehenden Überlegungen

an: Sei G eine endliche, additiv geschriebene abelsche Gruppe. Wir stellen uns das

folgende Problem: Von k "Mitspielern" soll ein Element g aus G so ausgewählt werden,

daß alle g die gleiche Wahrscheinlichkeit haben. Das soll so geschehen, daß k

Wahrscheinlichkeitsmaße P\,..., Pk auf G bestimmt werden, und dann werden k
Elemente gi,..., gk unabhängig so gefunden, daß jeweils gK wie PK verteilt ist; anschließend

wird g g\ + ¦ ¦ ¦ + gk betrachtet. Bezeichne mit Q wieder die zugehörige Summen-

Wahrscheinlichkeit, also Q({g}) ^"Wahrscheinlichkeit, daß bei diesem Verfahren g
ausgewählt wird" (eine Formel für Q folgt gleich). Wir wollen dann wissen, unter
welchen Bedingungen an die PK man zu Q U Gleichverteilung) kommt.

Dazu rechnen wir zunächst Q aus. Wir beschränken uns auf den Fall von zwei
Wahrscheinlichkeitsmaßen P,P, eine Formel für k Maße folgt daraus durch Iteration.

Die Wahrscheinlichkeit, daß ein go speziell als g + g entsteht, ist - Unabhängigkeit der
Auswahl vorausgesetzt - P({g})P({g})¦ Nun sind noch die Wahrscheinlichkeiten aller
dieser Darstellungsmöglichkeiten zu addieren. Jedes g kann auftreten, und g ist dann

gleich go - g; insgesamt erhalten wir so Q({go}) T,gp({g})P({go - &})• Statt Q

werden wir P * P schreiben und von der Faltung der Wahrscheinlichkeitsmaße P, P

sprechen.

Es geht also um Faltungsgleichungen, insbesondere um die Bestimmung von P\,..., Pk

mit P\ * ¦ ¦ ¦ * Pk U. Und das wollen wir mit Methoden der harmonischen Analysis
behandeln, durch die - im hier betrachteten kommutativen Fall - alles in Fragen über

komplexe Zahlen transformiert wird.

Zunächst eine Definition: Eine Abbildung \ '¦ G —> T := {z | z G C, \z\ 1} heißt
ein Charakter, wenn stets x(g + S?) x(g)x(ß?) gut- Wir benötigen die folgenden
Eigenschaften von Charakteren:

Lemma 2.1

(i) x se' e'n Charakter, x se' nicht die Konstante 1. Dann ist ^2„x(g) 0-

(ii) Sind x\iXi verschiedene Charaktere, so ist ^2„Xi(g)/X2(g) 0.

(iii) Xi i • • • i X! seien paarweise verschiedene Charaktere. Dann sind sie linear unab¬

hängig im C-Vektorraum der Abbildungen von G nach C Insbesondere kann es

höchstens card(G) verschiedene Charaktere geben.

Beweis.

(i) Wähle go mit x(go) ^ 1. Da {g + go \ g & G} mit G übereinstimmt, ist J2gx(g)
Egx(g + go) x(go) Egx(g), also J2gx(g) 0.

(ii) Beachte, daß xi Ixi Charakter ist. Wende dann (i) an.

(iii) öi,... ,ö; G C seien gegeben, so daß 5Za=i ia^X\{g) 0 für alle g. Wir teilen
die Gleichung durch xa0 ig) und summieren über g. Mit (ii) folgt
0 J2xaxiJ2gXxig)/xXoig)) =aXocardiG). D

Es gibt also stets höchsten cardiG) Charaktere. Man kann zeigen, daß diese Zahl immer
erreicht wird (für dieses und andere Ergebnisse der harmonischen Analysis vgl. [1], [4],
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[5]). Der Beweis würde hier zu weit führen, daher werden wir diese Tatsache immer als

(eigentlich überflüssige) Extra-Voraussetzung aufnehmen. Bei konkret gegebenem G ist
sie in der Regel leicht nachprüfbar. Für die Gruppe Z„ := Z/nZ, die zur Motivation aus

Kapitel 1 gehört, sind offensichtlich Xj '¦ ^« —>¦ I\x;(Z) := exp(2njl/n)(j 0,... ,n—\)
paarweise verschiedene Charaktere.

Mit Charakteren können Faltungsgleichungen in Skalargleichungen umgeformt werden.
Sei dazu P ein Wahrscheinlichkeitsmaß auf G. Wir definieren - für Charaktere x - die

komplexe Zahl P(x) als J2gPiig})xig) (Achtung: in manchen Büchern wird hier xig)
statt xig) eingesetzt).

P ist eine auf der Menge G der Charaktere definierte komplexwertige Abbildung, die

die Fourier transformation von P genannt wird.

Lemma 2.2 Wir setzen voraus, daß es card(G) paarweise verschiedene Charaktere auf
G gibt.

(i) Sind P\, P2 Wahrscheinlichkeitsmaße auf G mit P\ P^, so gilt P\ P^-

(ii) Für Wahrscheinlichkeitsmaße P\,Pi ist P\ * P2 P\p2-

(iii) Für die Gleichverteilung U gilt U S, wobei S durch S(x) '¦= 1 bzw. := 0 für
X 1 bzw. x^l erklärt ist.

Beweis.

(i) Die lineare Hülle der x ist nach Voraussetzung und Lemma 2.1 (iii) n-dimensional
und enthält folglich alle Funktionen von G nach C Wähle bei vorgegebenem

go eine Linearkombination der Charaktere so, daß die Indikatorfunktion von {go}
entsteht; es soll also J2;aiXjig) 1 bzw. 0 sein, wenn g go bzw. g ^
go ist. Multipliziert man dann die nach Voraussetzung bestehenden Gleichungen

E,P\ iig})Xj ig) T,gp2i{g})x, ig) mit a, und summiert auf, so folgt Pi ({#>})
EgPii{g})iE}ajXjig)) EgP2i{g})iE}ajXjig)) Piiigo})-

(ii) Sei x ein beliebiger Charakter.

go g

fe -g})xig)xig0 -

EP2(fe° -g})xig0
go

go

(iii) Das folgt sofort aus Lemma 2.1 (i). D

Nach diesen Vorbereitungen sind alle Fragen leicht zu beantworten:
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Satz 2.3 P und P\,... Pt seien Wahrscheinlichkeitsmaße auf einer endlichen kommu-
tativen Gruppe G, für die wir die Existenz von n := card(G) verschiedenen Charakteren
voraussetzen.

(i) Ist das k-fache Faltungsprodukt von P mit sich gleich der Gleichverteilung U, so

ist notwendig P U.

(ii) Pi *• • -*Pjt U gilt genau dann, wenn es für jeden von 1 verschiedenen Charakter

X ein k mit PK{x) 0 gibt. Das ist insbesondere dann erfüllt, wenn irgendein PK

gleich U ist.

(iii) Zu P\ gibt es ein von U verschiedenes P2 mit P\ * P2 U genau dann, wenn für
ein geeignetes x^l die Fouriertransformation A (x) verschwindet.

Beweis.

(i) Das folgt unter Verwendung von Lemma 2.2 aus der Tatsache, daß sich für
komplexe Zahlen z aus zk 0 stets z 0 schließen läßt.

(ii) Wieder wird die Aussage auf einfache Eigenschaften von Zahlen zurückgeführt,
auch diesmal ist nur wichtig, daß C nullteilerfrei ist.

(iii) Eine Richtung ist klar: Sind alle A (x) ± 0, so gilt nur für P2 U, daß Px *P2 U.
Sei nun xo ^ 1 ein Charakter mit A(xo) 0- A verschwindet dann auch auf
(Xu)"1 Xo, da die P1 ({#}) reell sind.

Ein Maß P2 soll durch P2({^}) := l/w + e(xo + Xo)(g) erklärt werden, dabei wählen
wir e > 0 so, daß diese Zahlen nichtnegativ sind.

Wegen Lemma 2.1(i) ist P2 wirklich ein Wahrscheinlichkeitsmaß, und der zweite
Teil dieses Lemmas garantiert, daß A(x) 0 für X 7^ Xo,Xo, 1- Andererseits gilt
A(xo) y^ 0, also ist P2 y^ U,P\P2 6, und so ein P2 sollte konstruiert werden. D

Für das Ausgangsproblem, zunächst im Fall n a formuliert, heißt das:

• Soll eine faire Entscheidung zwischen n Möglichkeiten von k Personen dadurch

herbeigeführt werden, daß alle gemäß einer festen Verteilung P ein Element in

{0,..., n -1} wählen und dann die Summe modulo n bilden, so führt dieses Verfahren

zur Gleichverteilung auf {0,..., n - 1} genau dann, wenn P selbst die Gleichverteilung

war.

• Sind unterschiedliche Verteilungen Pu..., Pt zugelassen, so wird das Verfahren alle

n Alternativen mit gleicher Wahrscheinlichkeit genau dann liefern, wenn es zu jeder
von 1 verschiedenen n-ten Einheitswurzel £;- := exp(2irij/n),i 1,... ,n - 1, ein
« mit £/=o,_,„-i^(«)(£/)'=O gibt.

• Sind zwei Personen beteiligt und entscheidet sich die erste für Pi, so kann die zweite
durch die Wahl P2 U immer erreichen, daß das Verfahren insgesamt fair wird.
Andere Wahlen für P2 sind genau dann möglich, wenn Xj=o n-i ^1 ({'})(£/)' 0

für ein j e {1,... ,n - 1}.

[Ein Beispiel für n 6: Ordnet Pt den Zahlen 0,..., 5 die Wahrscheinlichkeiten 0,0.2,0.3, 0,0.2,0.3
zu, so verschwindet die Fouriertransformation für j 1,3,5, und folglich existieren von U verschiedene
P2 mit Pi *P2 U (z. B. das P2, das 0,...,5 auf 1/3,0,1/3,0,1/3,0 abbildet, es entspricht der
Konstruktion aus dem Beweis mit e 1/12, % "der zu j 3 gehörige Charakter"). Ist dagegen P\

z. B. die Punktmasse auf 0, so gibt es außer P2 U keinen Kandidaten.]
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Es fehlt noch eine Ergänzung fiir den Fall a ^ n. Beachtet man, daß (Xi + • • • +
Xjt) mod « ((Xi mod «) + ••• + (Xjt mod a)) mod a, so hat man nur die vorstehenden
Überlegungen auf die XK mod a anzuwenden. Offensichtlich ist auch, daß für ein auf

{0,..., n - 1} gleichverteiltes X die Variable X mod a auf {0,..., a - 1} genau dann

gleichverteilt ist, wenn a die Zahl n teilt. Sind also alle PK die Gleichverteilung, so ist
a\n notwendig und hinreichend dafür, daß alle Alternativen bei der Auswahl die gleichen
Chancen haben. {Deswegen klappte es mit fl 2 und a 3 am Anfang, da war nämlich
n 6.)

Hier haben wir uns um die elementar zugänglichen Aspekte im Zusammenhang mit der
Gleichverteilung und Faltungen gekümmert. Es sollte jedoch erwähnt werden, daß man eine naheliegende

Verallgemeinerung für beliebige kompakte kommutative Gruppen G betrachten kann. Der Kandidat
für die Gleichverteilung ist da das Haarsehe Maß U, das eindeutig bestimmte Wahrscheinlichkeitsmaß
mit U(A) U(A + x) (alle x e G,A <Z G Borelmenge). Auch hier läßt sich eine Faltung Pi * P2

von Wahrscheinlichkeitsmaßen Pj, P2 definieren, und Pj * P2 entspricht wieder der Verteilung von

gl +&2> wenngi,g2 gemäß Pj bzw. P2 ausgewählt wurden.

Fragen des Typs "Pj * P2 U?" können wieder mit Hilfe von Charakteren \ behandelt werden,
das sind stetige Abbildungen von G nach F mit x(gl + gl) x(gl)xfe)- Die Ergebnisse sind fast
wörtlich so wie im hier besprochenen endlichen Fall, insbesondere liefert P * • • • * P nur dann U,

wenn P selbst schon U war. Die Beweise verlangen auch keine neuen Ideen; der technische Aufwand
ist allerdings erheblich höher, da Integrale statt Summen zu betrachten sind und die auftretenden
Funktionenräume unendlich-dimensional werden.

Als Beispiel für eine Interpretation unter dem Aspekt "Entscheidungen" stelle man sich k Personen vor,
die sich mit Hilfe eines fairen Zufallsverfahrens auf eine Zeigerstellung (etwa eine Himmelsrichtung)
einigen wollen. Jeder sucht sich eine aus, und am Ende wird die Hintereinanderausführung betrachtet.
Das führt auf G F, und U ist hier das normalisierte Borel-Lebesgue-Maß. Für diese Gruppe sind
die Charaktere wieder leicht zu berechnen - es sind genau die Abbildungen zhz™ mit m G Z -,
und folglich kann man Probleme im Zusammenhang mit Entscheidungen genauso explizit lösen wie
eben im Fall der Z„.

3 Der Fall beliebiger endlicher Gruppen
Erwartungsgemäß wird alles schwieriger, wenn wir nun auch nichtkommutative endliche

Gruppen zulassen. Es soll herausgearbeitet werden, daß für die hier interessierenden

Aspekte die neu auftretenden Probleme durch das unterschiedliche Verhalten von Zahlen
und Matrizen verursacht werden.

Ab hier sei (G, o) eine beliebige endliche Gruppe. Wieder können wir versuchen,
gleichverteilt in G dadurch etwas auszusuchen, daß g\, ¦ ¦ ¦ ,gk gemäß P\,...,Pt gewählt werden

und danng\ o ¦ ¦ ¦ ogk betrachtet wird.

Konkretes Beispiel: Eine "zufällige" Sitzordnung beim Skat soll durch zwei Spielleiter festgelegt
werden, die sich nach persönlichen Zufallsmechanismen für jeweils eine Permutation von 1,2,3
entscheiden; dann wird die Hintereinanderausführung dieser Permutationen gebildet.

Klar, daß die oben gestellten Fragen hier genauso sinnvoll aufgeworfen werden können,
wie sieht es aber mit den Antworten aus?

Wieder sei U die Gleichverteilung auf G, wieder ist leicht zu berechnen, wie für
Wahrscheinlichkeitsmaße P\,P2 die Verteilung der Summe aussieht, wenn wir wie üblich
Unabhängigkeit der Auswahl voraussetzen. Das zugehörige Maß wird auch hier mit
P\ * P2 bezeichnet, und man bestimmt seine Werte durch die Formel P\ * P2({go})
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Leider kann man nun nicht Faltungsgleichungen unter Verwendung von Charakteren in
Skalargleichungen überführen, denn man kann nicht garantieren, daß es auf G "genügend

viele" Charaktere gibt. (Das ist auch nicht zu erwarten, denn ein Charakter kann
nicht zwischen den - möglicherweise verschiedenen - Elementen g\ o g2 und g2 o gi
unterscheiden.) Es hilft aber eine neue Idee weiter:

Eine d-dimensionale Darstellung M von G ist eine Abbildung, die jedem g e G eine
unitäre d x d-Matrix Mg zuordnet, so daß stets MglOg2 MglMg2 gilt (Matrizenprodukt).
Schreibt man Mg (fs,t(g))s,t=\,...,d, so heißen die /Sjt : G —> C die Koeffizientenfunktionen

zu M.

Wieder wird es wichtig sein, daß "genügend viele" Darstellungen existieren. Das ist
immer erfüllt (vgl. die angegebene Literatur zur harmonischen Analysis), wir wollen es

aber als Extra-Voraussetzung formulieren und im konkreten Einzelfall nachprüfen, um
den Lesern einen langen technischen Exkurs zu ersparen. Wir werden voraussetzen, daß

es Darstellungen M1,... ,Mm mit den folgenden Eigenschaften gibt1':

• Mit dM="die Dimension von A/P" gilt d\ + ¦ ¦ ¦ + d2m n := card(G).

• M1 ist die triviale Darstellung (d\ l,/i,i ig) 1 für alle g).

• Bezeichnet (_^t)s,t=i,„,d die Koordinatenfunktionen von MM, so sollen diese n

Funktionen paarweise orthogonal im folgenden Sinn sein: i/nJ2gfstfs't'(S) ist immer
Null, außer im Fall s s', t t', /x /x'; dann soll die Summe l/dß sein.

Wir definieren auch hier eine Fouriertransformation für Wahrscheinlichkeitsmaße P: Das
ist diejenige Abbildung, die einer Darstellung M die Matrix P(M) := J2gP({g})Mg
zuordnet.

Lemma 3.1 Für Wahrscheinlichkeitsmaße P\, P2 gilt:

(i) Aus A (A/P) P2(A/P) für fj, 1,..., m folgt P1 P2.

(ii) Für alle Darstellungen M ist P{~*P2(M) Pi(M)P2(M).

(iii) U(Ml) 1, alle anderen U(M^) verschwinden.

Beweis. Das geht genauso wie in Kapitel 2. Es ist nur wichtig, daß - als Folgerung aus

den Orthogonalitätsrelationen - jede komplexwertige Funktion auf G Linearkombination

der/^ ist. D

Für die hier interessierenden Faltungsgleichungen ergibt sich sofort:

Satz 3.2 Genau dann ist P\ * • • • * P^ die Gleichverteilung, wenn alle Matrizenprodukte
[A (M'1)] • • • [Pk (A/P)] für fj, 2,..., m die Nullmatrix sind.

1) Das ist die angemessene Verallgemeinerung der Reichhaltigkeitsforderung im kommutativen Fall; dort
hatten wir "viele" Charaktere, d. h. eindimensionale Darstellungen postuliert.
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Anders als für Zahlen kann man aber für Matrizen A, B aus AB 0 nicht schließen,
daß A 0 oder B 0, und deswegen ist nicht klar, ob wir ähnliche Folgerungen
ziehen können wie im kommutativen Fall, ob es also zum Beispiel ein Analogon zu Satz

2.3(i) gibt. Positive Ergebnisse kann man erzwingen, indem man durch Forderungen an
P garantiert, daß [P(M)]k 0 nur für P(M) 0 gilt.

Das ist zum Beispiel dann der Fall, wenn P symmetrisch ist, d. h. wenn P({g})
P({g 1}) für alle g ist. Denn da alle Mg unitär sind, ist M^-i) (Mg)* die zu Mg

adjungierte Matrix). Im Falle symmetrischer P ist dann (P(M))* J2gP({g})Mg

T,gP({g})M{g-1) T,gP({g~i})M{g-1) P(M)> d h- die hier interessierenden ^(M'1)
sind selbstadjungiert, und für derartige Matrizen A darf man wirklich aus Ak 0 auf
A 0 schließen. Das zeigt:

Korollar 3.3 Die üblichen Voraussetzungen seien erfüllt, zusätzlich sei P ein
symmetrisches Wahrscheinlichkeitsmaß aufG. Ist dann P * ¦ ¦ ¦ *P (k-faches Faltungsprodukt)
gleich U, so folgt P U.

Damit ist der allgemeine Fall noch nicht entschieden. Die folgenden Beispiele zeigen
aber, daß für nichtkommutative G alles Mögliche passieren kann.

Satz 3.4 Es gibt nichtkommutative Gruppen G\, G2 mit genügend vielen Darstellungen
im oben präzisierten Sinn, so daß

(i) AufG\ gibt es ein Wahrscheinlichkeitsmaß P ^ U mit P * P U.

(ii) In G2 folgt ausP *P U stets P U.

Beweis, (i) Sei G\ := S3, die Gruppe der Permutationen von drei Elementen. Die sechs

Elemente von G\ kürzen wir wie folgt ab:

3:=(.132J 4(J 5U
Wir geben explizit die geforderten Darstellungen an: Die ersten beiden sind eindimensional,

die dritte ist zweidimensional. Hier die Werte der Funktionen fft (dabei steht w
für ^ßjly.

g-
A
Pu

fn
fn
&

0

1

1

1

0

0

1

1

1

1

-0.5

-w
w

-0.5

2

1

1

-0.5
w

-w
-0.5

3

1

-1
-1
0

0

1

4

1

-1
0.5

-w
-w
-0.5

5

1

-1
0.5

w

w

-0.5
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Wir definieren noch P durch 2P({0}) 2P({4}) P({2}) P({5}) 1/3.
Eine kanonische Rechnung zeigt, daß die f£ zu Darstellungen gehören, daß die Or-
thogonalitätsrelationen erfüllt sind und daß P * P LZ. (Zur Kontrolle berechnen wir

P(M3) (1/12) (32w ^ V und das ist wirklich eine nilpotente nichttriviale Matrix.)

(ii) G2 sei die Quaternionengruppe. Die besteht aus den acht Elementen ±1, ±i, ±j,±k,
für die die Gruppenstruktur durch i2 j2 k2 —l,ij k,jk i, ki j,ji
-k, kj —i,ik —j erklärt ist (die Rechenregeln für ±1 und ± sollen so sein, wie
man es von komplexen Zahlen gewohnt ist; z. B. ist k(—i) -ki -;').
Auf G2 gibt es neben dem trivialen Charakter xi noch drei weitere Charaktere, die hier
mit Xi, Xj, Xk bezeichnet werden. Sie sind durch

definiert. Und dann gibt es noch eine zweidimensionale Darstellung M. Die ist durch

±1 h^ ±E,±i ^ ±Z,±; h^ ±},±k ^ ±K

erklärt, wobei E,I,J,K die folgenden Matrizen bezeichnen:

io\ I=V2(ii\ J=(0l\ K ^l(-if
(Das "j" in diesen Matrizen ist die übliche imaginäre Einheit, die auf den ersten Blick mit dem i G G2 nichts

zu tun hat. Es besteht aber ein Zusammenhang: Die Quaternionengruppe erzeugt die Quaternionen, die C
umfassen.)

Damit ist, auch wenn wir die elementaren Rechnungen hier nicht ausführen werden, die
Existenz genügend vieler Darstellungen nachgewiesen.

Sei nun P ein Wahrscheinlichkeitsmaß auf G2 mit P * P LZ; es ist P U zu zeigen.
Dazu setzen wir ra := P({a}) +P({—a}) für a \,i,j, k. Da P ein Wahrscheinlichkeitsmaß

ist und da nach Satz 3.2 die {P{xa))2 und folglich die P{xa) für a i,j, k

verschwinden, folgt

T\ + T, + Tj + Tk 1, T\ + T, - Tj - Tk 0,

T\ ~ T, + Tj - Tk 0, T\ - T, - Tj + Tk 0,

und dieses Gleichungssystem hat als eindeutig bestimmte Lösung t\ t, t; rk
1/4. Wir schreiben daher -mit geeigneten SuS;,Sj,Sk -P({a}) l/8+^Q,P({-a})
1/8 - 6a.

Werte nun die Identität P * P LZ bei 1 aus:

1/8 (1/8 + *!)2 + (1/8 - «!)2 + 2 J2 (l/8 + «a)(-l/8-«a),
a=i,j,k
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also 0 (<*>i)2 - (6l)2 - (6j)2 - (Sk)2. Analog ergibt die Auswertung bei i,j, k die

weiteren Gleichungen 0 <*>i <*>,- S\Sj 8\8k. Diese Beziehungen implizieren S\

Sr S] Sk 0, und das war zu zeigen. D

Die genaue Antwort auf die Frage, ob sich eine Gruppe wie in (i) oder wie in (ii)
des vorigen Satzes verhält, wurde in [2] gegeben (s. a. [6]): Für ein nichtkommutatives
kompaktes G kann man genau dann stets von P *P U auf P U schließen, wenn G

ein Produkt aus der Quaternionengruppe und einer Gruppe des Typs {0, l}7, (7 irgendeine
Menge) ist. Die hier bereitgestellten elementaren Methoden reichen aber bei weitem nicht
aus, um diesen Charakterisierungssatz zu beweisen.

4 Ergänzungen
Die vorstehenden Kapitel haben uns von einem konkreten Entscheidungsfindungs-Pro-
blem bis in die harmonische Analysis nichtkommutativer Gruppen geführt. Die am
Anfang aufgeworfenen Fragen konnten vollständig geklärt werden, sogar dann, wenn man
die zur Motivation gehörige Gruppe Z„ durch ein beliebiges kommutatives endliches

(oder sogar kompaktes) G ersetzt. Im nichtkommutativen Fall liegen nach der
allgemeinen Charakterisierung aus [2] sofort einige Fragen nahe, z. B.: Wann impliziert
U P * ¦ ¦ ¦ *P (k-fâches Faltungsprodukt), daß P W Welche Zusatzeigenschaften
an P garantieren, daß P U aus P *P U folgt?

Auch im kommutativen Fall, selbst für die Z„, ergeben sich durch Variation der

Ausgangssituation schnell noch offene Probleme. Wir denken wieder an die Freunde vom
Anfang, die gemeinsam dadurch eine Entscheidung zwischen n Alternativen treffen wollen,
daß jeder etwas aus {0,..., n - 1} auswählt und dann die Summe modulo n als gemeinsame

Entscheidung akzeptiert wird. Diesmal wird aber gewünscht, daß die Ergebnisse
entsprechend einem vorher vereinbarten Wahrscheinlichkeitsmaß Po gefunden werden.

In unserer Terminologie heißt das: Diskutiere P\ *P2 Po bei vorgelegtem Po. Findet
man z. B. zu jedem Po ein P mit P *P =P0 (das entspricht dem Fall, daß beide Freunde
das gleiche Entscheidungsverfahren verwenden)? Für kleine n kann man das noch leicht
diskutieren. Sei etwa n 2. Po sei gegeben, und wir fragen nach Zahlen p, q > 0 (unseren

Kandidaten für P({O}),P({1})) mit p + q \,p2 + q2 P0({0}),2pq PO({1}).
Die ersten beiden Bedingungen implizieren die dritte (denn Po ist ein Wahrscheinlichkeitsmaß),

und die Lösung kann geometrisch leicht gefunden werden: Es geht um die

Schnittpunkte der Geraden p + q 1 mit dem Kreis p2 + q2 P0({0}). Es zeigt sich

etwa, daß es Lösungen genau dann gibt, wenn Po({O}) > 1/2 ist.

Für beliebige n scheint keine einfache Charakterisierung der Po, zu denen es P mit
P*P Po gibt, möglich zu sein. Nur soviel läßt sich sagen: P*P Po gilt genau dann,

wenn (P(x;)2 Po(Xj) für 1,..., n - 1. Das macht klar, daß das Problem mit den

Wurzeln der Po (\j zusammenhängt, und man sieht auch, warum der oben diskutierte
Fall Po U zu einem einfach zu behandelnden Problem führt (da sind nämlich alle
diese Zahlen Null).

Noch verwickelter ist in diesem Zusammenhang die folgende Fragestellung, die im Fall
Po U in Kapitel 2 vollständig diskutiert wurde: Gibt es zu Pi, Po ein P2 mit Pi * P2

Po? Eine Umformulierung mit Hilfe von Charakteren führt auf Pi(x)-P2(x) ^o(x)>
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und das impliziert die notwendige Bedingung |Pi(x)| < |Po(x)l für alle x (da |P(x)| <
1). Daher werden die Zahlen cx] := Po(x/)/Pi(x/) eme Rolle spielen (wir wollen der

Einfachheit halber annehmen, daß alle P\ (xj ¥" 0 sind), und dann steht man vor dem

Problem zu entscheiden, ob die a} als P(x;) für ein geeignetes Wahrscheinlichkeitsmaß
P realisiert werden können. Das ist der schwierige Teil, nur für kleine n bieten sich

Charakterisierungen an.

Sei z.B.n 3. Für welche a\, 0,2 gibt es po, Pl, fl > 0 (die Kandidaten für die Wahrscheinlichkeiten

von 0, l,2)mitpo+Pl+P2 l>Po+Pl£+P2£ «l,Po+PlÇ + Pz^ «2 (mit £ := exp(27ri/3))? Es

muß «i O2 sein, und «i muß in der konvexen Hülle C von 1, £, £ liegen. Für das Ausgangsproblem
heißt das: Genau dann ist Pj * P2 Po für ein geeignetes P2, wenn Po(xi)/Pl(xi) m C liegt.

Wir kommen noch einmal auf den Beginn der Arbeit zurück: Faire Entscheidungen durch
Fingerheben2). Nachträglich wird klar, warum der Daumen als Finger wichtig war. Läßt
man ihn nämlich weg, so geht man von n 6 zu n 5 über, und dann sind die Summen
modulo 2 nicht mehr gleichverteilt. Es sind noch zwei weitere Punkte zu besprechen.
Zum einen ist es nicht so, daß man 0 oder 1,..., 5 Finger (der Daumen zählt wieder
mit) gleichverteilt hebt, wenn man sich einbildet, das zu tun. Ungerade Zahlen haben

eine höhere Wahrscheinlichkeit als gerade, wohl deswegen, weil 1,3,5 Finger leichter
zu strecken sind als 2 oder 4. Damit taucht "Summe gerade" öfter auf als "Summe

ungerade", auch wenn beide Teilnehmer um eine gleichverteilte Entscheidung bemüht
sind.

Und ganz schwierig wird es, wenn man dieser Frage unabhängig von der Physiologie der

Finger auf den Grund gehen möchte: Kann ein Mensch überhaupt zufällig reagieren, kann
er etwa ohne Hilfsmittel eine faire Münze simulieren? Mir sind nur ziemlich gekünstelte
Lösungen eingefallen, jeder ist herzlich eingeladen, sich eigene Verfahren auszudenken.
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2) Das ist übrigens, glaubt man [3], Seite 69, ein gängiges Entscheidungsverfahren unter Kindern.
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