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Faire Entscheidungen

Ehrhard Behrends

Ehrhard Behrends ist 1946 geboren. Seit 1973 ist er Professor an der Freien Univer-
sitat Berlin. Sein Hauptarbeitsgebiet ist die Funktionalanalysis, er hat aber auch schon
iiber Topologie, Ergodentheorie und Wahrscheinlichkeitsrechnung gearbeitet. Unter
seinen Publikationen finden sich vier Biicher. Seine Interessen ausserhalb der Mathe-
matik liegen im Bereich der Musik. Freizeit und Beruf berithren sich manchmal; so
organisierte er am Internationalen Mathematiker-Kongress in Berlin Veranstaltungen
zum Thema “Mathematik und Musik”.

1 Einleitung

Mal angenommen, zwei Freunde sind vollig unentschlossen, was sie mit dem Abend
anfangen sollen: Konzert oder Theater? Eine Miinze zu werfen scheidet aus, denn sie
wollen selbst aktiv an der Entscheidung mitwirken, und beide sollen gleichberechtigt
beteiligt sein. Sie haben die folgende Idee: Auf Kommando heben beide jeweils eine
Hand, wobei “zufillig” null, eins, . .., fiinf Finger ausgestreckt werden (der Einfachheit
halber wird der Daumen zum Finger erklart). Es soll dann die Summe gebildet werden;
ist sie gerade, geht es ins Konzert, andernfalls ist Theater angesagt.

Erfiillt das Verfahren die Erwartungen? Mathematisch iibersetzt ist das doch die Frage,
ob X + Y mod 2 gleichverteilt ist, wenn X, Y unabhingige, in {0, ..., 5} gleichverteilte
Zufallsvariable sind. (Fiir den Augenblick wollen wir annehmen, daf diese Umschreibung
gerechtfertigt ist, wir kommen in Kapitel 4 darauf zuriick.)

Die Antwort ist leicht gegeben, man mufl nur alle Moglichkeiten, 0 bis 5 Finger zu
heben, systematisch zusammenstellen, allen die gleiche Wahrscheinlichkeit (also 1/36)
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zuordnen und dann sortieren, welche zu einer geraden bzw. ungeraden Summe fiihren.
Da es jeweils 18 Mdglichkeiten gibt, sind beide Wahrscheinlichkeiten gleich 0.5, die
Freunde kénnen also mit dem Verfahren zufrieden sein.

Bei einer anderen Gelegenheit wollen sich die beiden auf dhnliche Weise fair zwischen
Kino, Musical und Popkonzert entscheiden, und das klappt genauso, wenn man nun
modulo 3 rechnet. Weitere Verallgemeinerungen bieten sich an, wir formulieren gleich
diejenige Fragestellung, von der wir hier ausgehen werden. Gegeben seien natiirliche
Zahlen k,n und a sowic Wahrscheinlichkeitsmabe P, ..., Py auf {0,...,n — 1}. Wir
stellen uns die P, ... als Verteilungen unabhingiger Zufallsvariablen X, ... vor, d. h.
P(X, = v) = Py({v}), und dann fragen wir nach der Verteilung von (X; + --- +
X)) mod a, also nach den Zahlen Q({a}) = P((X; + -+ + X)) moda = «) fiir
a=0,...,a— 1. In der cinleitend gegebenen Interpretation heibt das: k Freunde wollen
eine faire Entscheidung zwischen a Moglichkeiten treffen, und siec machen das so, dah
sich der x-te Teilnehmer gemiB P, fiir eine Zahl zwischen 0 und 7 — 1 entscheidet, dann
werden diese k Zahlen addiert und modulo a ausgewertet.

Es gibt in diesem Zusammenhang einige Fragen, die wir nachstehend behandeln wol-
len (die Ubersetzungen in Probleme zur Freunde-treffen-Entscheidungen-Situation sind
naheliegend).

Problem 1: Angenommen, alle P, sind die Gleichverteilung auf {0,...,n — 1}. Fir
welche k,a ist dann Q die Gleichverteilung auf {0,...,a — 1}?

Problem 2: Kann Q auch dann die Gleichverteilung sein, wenn die P, nicht gleichverteilt
sind? Wie sieht das insbesondere im Fall P, = - -- = Py aus?

Problem 3: Es sei k = 2, und P; sei vorgegeben. Ist es dann moglich, ein P, so zu
finden, daB Q die Gleichverteilung ist? Sind auch mehrere Losungen denkbar?

Problem 1 kann iibrigens — wie im oben besprochenen Spezialfalln = 6, k =a =2 —in
ein kombinatorisches Problem umformuliert werden. Allerdings sehen die dann entste-
henden Ausdriicke nur fiir kleine k,a halbwegs iibersichtlich aus, allgemeine Aussagen
scheinen so nicht zu gewinnen zu sein. Deswegen werden die Probleme hier ganz anders
behandelt, es soll namlich die Gelegenheit genutzt werden, anhand dieser elementaren
Fragestellung einige /deen der harmonischen Analysis kennenzulernen und anzuwenden.
Das wird in Kapitel 2 ausgefithrt. Dort wird gleich eine etwas allgemeinere Situation
diskutiert, nimlich das Problem der Auswahl im Fall endlicher kommutativer Gruppen
(bisher war nur von der Z, die Rede). Mit Hilfe der Fouriertransformation kdénnen alle
aufgeworfenen Probleme vollstindig gelost werden. In Kapite/ 3 dann geht es um be-
liebige endliche Gruppen, dabei werden Darstellungen und deren Fouriertransformation
wichtig. Da wir die Theorie nicht voll entwickeln kénnen, beweisen wir die Ergebnisse
unter der — im Einzelfall oft leicht nachpriifbaren Voraussetzung — da es “geniigend
viele” Darstellungen gibt. So zeigt sich, daB die unterschiedlichen Phdnomene in den
Féllen kommutativer bzw. nicht-kommutativer Gruppen durch das unterschiedliche Ver-
halten von komplexen Zahlen bzw. komplexen Matrizen verursacht werden. Die Arbeit
schlieft in Kapitel 5 mit einigen Erginzungen.

Die zum Verstindnis bendtigte Mathematik ist elementar, aufier grundlegenden Kennt-
nissen iiber komplexe Zahlen und Matrizen wird nichts vom Leser erwartet.
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2 Der Fall endlicher kommutativer Gruppen

Zunichst geben wir eine natiirliche Verallgemeinerung der vorstehenden Uberlegungen
an: Sei G eine endliche, additiv geschriebene abelsche Gruppe. Wir stellen uns das
folgende Problem: Von k “Mitspielern” soll ein Element ¢ aus G so ausgewéhlt wer-
den, daB alle g die gleiche Wahrscheinlichkeit haben. Das soll so geschehen, dab k
Wahrscheinlichkeitsmafe Py, ..., Px auf G bestimmt werden, und dann werden k Ele-
mente &1, . . . , gk unabhéingig so gefunden, dab jeweils g, wie Py verteilt ist; anschliefend
wird ¢ = g1 + - - + g betrachtet. Bezeichne mit Q) wieder die zugehdrige Summen-
Wahrscheinlichkeit, also Q({g}) :="“Wahrscheinlichkeit, daf bei diesem Verfahren g
ausgewahlt wird” (eine Formel fiir Q folgt gleich). Wir wollen dann wissen, unter wel-
chen Bedingungen an die P, man zu Q = U (= Gleichverteilung) kommt.

Dazu rechnen wir zunichst Q aus. Wir beschrianken uns auf den Fall von zwei Wahr-

scheinlichkeitsmaben P, P, eine Formel fiir k MaBe folgt daraus durch Iteration.

Die Wahrscheinlichkeit, dab ein g, speziell als ¢+ & entsteht, ist — Unabhéngigkeit der
Auswahl vorausgesetzt — P({g})P({%}). Nun sind noch die Wahrscheinlichkeiten aller
dieser Darstellungsmoglichkeiten zu addieren. Jedes ¢ kann auftreten, und 3 ist dann
gleich g — g insgesamt erhalten wir so Q({%}) = ZgP({g})P({go — g}). Statt Q
werden wir P « P schreiben und von der Faltung der Wahrscheinlichkeitsmabe P, P

sprechen.

Es geht also um Faltungsgleichungen, insbesondere um die Bestimmung von P, . . ., Py
mit P, * --- x Py = U. Und das wollen wir mit Methoden der harmonischen Analysis
behandeln, durch die — im hier betrachteten kommutativen Fall — alles in Fragen iiber
komplexe Zahlen transformiert wird.

Zunichst eine Definition: Eine Abbildung x : G — T := {z | z € C, |z| = 1} heibt
ein Charakter, wenn stets x(g+ &) = x(8)x(g’) gilt. Wir bendtigen die folgenden
Eigenschaften von Charakteren:

Lemma 2.1
(1) x sei ein Charakter, x sei nicht die Konstante 1. Dann ist Zg x(g) =0.
(ii) Sind x1, x> verschiedene Charaktere, so ist Zg x1(8)/x2(g) = 0.

@iii) x1,...,x1 Seien paarweise verschiedene Charaktere. Dann sind sie linear unab-
hangig im C-Vektorraum der Abbildungen von G nach C. Insbesondere kann es
hochstens card(G) verschiedene Charaktere geben.

Beweis.
(i) Wahle g mit x(g) # 1. Da {g+ | ¢ € G} mit G tbereinstimmt, ist ng(g) =
S X8+ ) = x(80) Ty x(8)- also Y, x(g) = 0.
(ii) Beachte, daB x; /x> Charakter ist. Wende dann (i) an.

(iii) a1,...,m € C seien gegeben, so dab >3\, ;axa(g) = O fiir alle g&. Wir teilen
die Gleichung durch x,(g) und summieren iiber g. Mit (ii) folgt

0=20m(x0(8)/x0(8)) = a, card(G). O

Es gibt also stets hochsten card(G) Charaktere. Man kann zeigen, dah diese Zahl immer
erreicht wird (fiir dieses und andere Ergebnisse der harmonischen Analysis vgl. [1], [4],
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[5]). Der Beweis wiirde hier zu weit fithren, daher werden wir diese Tatsache immer als
(cigentlich tberfliissige) Extra-Voraussetzung aufnehmen. Bei konkret gegebenem G ist
sie in der Regel leicht nachpriifbar. Fiir die Gruppe Z,, := Z/nZ, die zur Motivation aus
Kapitel 1 gehért, sind offensichtlich x; : Z, — T', x;j(I) := exp(27jl/n)(j =0,... ,n—1)
paarweise verschiedene Charaktere.

Mit Charakteren koénnen Faltungsgleichungen in Skalargleichungen umgeformt werden.
Sei dazu P ein Wahrscheinlichkeitsmaf auf G. Wir definieren — fiir Charaktere x — die
komplexe Zahl P(x) als 2o P({g})x(g) (Achtung: in manchen Biichern wird hier x(g)
statt x(g) eingesetzt).

D ist eine auf der Menge G der Charaktere definierte komplexwertige Abbildung, die
die Fouriertransformation von P genannt wird.

Lemma 2.2 Wir setzen voraus, daf3 es card(G) paarweise verschiedene Charaktere auf
G gibt.
(i) Sind Py, P, Wahrscheinlichkeitsmafie auf G mit 131 = 132, so gilt Py = P,.
(1) Fiir Wahrscheinlichkeitsmafse Py, P ist Pl/*\ b, = 131 132.
(iil) Fir die Gleichverteilung U gilt I = &, wobei 6 durch 6(x) =1 bzw. :== 0 fiir
x = 1 bzw. x #£ 1 erklirt ist.
Beweis.
(i) Die lineare Hiille der x ist nach Voraussetzung und Lemma 2.1 (iii) n-dimensional
und enthilt folglich alle Funktionen von G nach C. Wéihle bei vorgegebenem
Qo eine Linearkombination der Charaktere so, dah die Indikatorfunktion von {go}
entsteht; es soll also 37 a;x;(g) = 1 bzw. = 0 sein, wenn g = g bzw. g #
Qo ist. Multipliziert man dann die nach Voraussetzung bestehenden Gleichungen
> P8 (8) = 0, P2({g))x; (8) mit ; und summiert auf, so folgt P; ({g}) =
Z P({gh) (32 aixi Q) = 2, P({ghH (32, 4ix;(8)) = P({%}).

(i) Sei x ein belicbiger Charakter.
(P P2)(x) = D _(Pr * Py)({g0})x(80)

—EIZR ({81)P2({g0 — &1)x(0)

fZZPI {8P2({80 — 8HX(®)x (% — )
ZR {gh)x ZPz {30 — 8Hx(% —8))
ZI% ({8 sz ({8}

=P (X)Pz(x)~
(iii) Das folgt sofort aus Lemma 2.1 (i). (I

Nach diesen Vorbereitungen sind alle Fragen leicht zu beantworten:
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Satz 2.3 P und P, ..., Py seien Wahrscheinlichkeitsmafle auf einer endlichen kommu-
tativen Gruppe G, fiir die wir die Fxistenz von n .= card(G) verschiedenen Charakteren
voraussetzen.

(1) Ist das k-fache Faltungsprodukt von P mit sich gleich der Gleichverteilung U, so
ist notwendig P = U.

@) Py*---xPy = U gilt genau dann, wenn es fiir jeden von 1 verschiedenen Charakter

x ein k mit Pi(x) = 0 gibt. Das ist insbesondere dann erfiillt, wenn irgendein P,
gleich U ist.

(iii) Zu P, gibt es ein von U verschiedenes P, mit P, x P, = U genau dann, wenn fiir
ein geeignetes x # 1 die Fouriertransformation Py (x) verschwindet.

Beweis.

(1) Das folgt unter Verwendung von Lemma 2.2 aus der Tatsache, daB sich fiir kom-
plexe Zahlen z aus zF = 0 stets z = 0 schlicBen Iift.

(i) Wieder wird die Aussage auf einfache Eigenschaften von Zahlen zuriickgefiihrt,
auch diesmal ist nur wichtig, dab C nullteilerfrei ist.

(iii) Eine Richtung ist klar: Sind alle P ( x).# 0, so gilt nur fiir P, = U, daB Py «P, = U.
Sei nun xo # 1 ein Charakter mit P; (o) = 0. P; verschwindet dann auch auf
(xo0)~! = X0, da die P, ({g}) reell sind.

Ein Mah P soll durch P, ({g}) := 1/n+e€(x0+xo0)(g) erklart werden, dabei wihlen
wir € > 0 so, daB diese Zahlen nichtnegativ sind.

Wegen Lemma 2.1(1) ist P, wirklichA ein WahrscheinlichkeitsmabB, und der zweite
Teil dieses Lemmas garantiert, daf Py(x) = 0 fiir x # xo0,Xo, 1. Andererseits gilt
Py(x0) #0, also ist P, #£ U, P, P, = 6, und so ein P, sollte konstruiert werden. [

Fiir das Ausgangsproblem, zundchst im Fall n = a formuliert, heift das:

e Soll ecine faire Entscheidung zwischen n Moglichkeiten von k Personen dadurch
herbeigefiihrt werden, daf alle gemil einer festen Verteilung P ein Element in
{0, ...,n—1} wihlen und dann die Summe modulo # bilden, so fithrt dieses Verfahren
zur Gleichverteilung auf {0,...,n — 1} genau dann, wenn P selbst die Gleichvertei-
lung war.

¢ Sind unterschiedliche Verteilungen P, . . ., Px zugelassen, so wird das Verfahren alle
n Alternativen mit gleicher Wahrscheinlichkeit genau dann liefern, wenn es zu jeder
von 1 verschiedenen 7-ten Einheitswurzel &; = exp(2nij/n),j = 1,...,n — 1, ein
. l .
pmit 3o oy P({I1})(§) = 0 gibt.
¢ Sind zwei Personen beteiligt und entscheidet sich die erste fiir P;, so kann die zweite
durch die Wahl P, = U immer erreichen, dah das Verfahren insgesamt fair wird.
Andqre Wahlen fiir P, sind genau dann mdglich, wenn },_, | P 1) =0
firein j € {1,...,n—1}.
[Ein Beispiel fiir n = 6: Ordnet P; den Zahlen 0, ..., 5 die Wahrscheinlichkeiten 0,0.2,0.3,0,0.2,0.3
zu, so verschwindet die Fouriertransformation fiir j = 1,3, 5, und folglich existieren von U verschiedene
Py mit P; « P, = U (z. B. das Py, das 0,...,5 auf 1/3,0,1/3,0,1/3,0 abbildet, es entspricht der
Konstruktion aus dem Beweis mit € = 1/12, x = “der zu j = 3 gehdrige Charakter”). Ist dagegen P
z. B. die Punktmasse auf 0, so gibt es auer P, = U keinen Kandidaten.]
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Es fehlt noch eine FErgdnzung fiir den Fall a # n. Beachtet man, dab (X; + --- +
Xi)moda = ((X; moda)+ -+ (Xx moda)) mod a, so hat man nur die vorstechenden
Uberlegungen auf die X, mod a anzuwenden. Offensichtlich ist auch, daB fiir ein auf
{0,...,n — 1} gleichverteiltes X die Variable X mod a auf {0,...,a — 1} genau dann
gleichverteilt ist, wenn a die Zahl # teilt. Sind also alle P, die Gleichverteilung, so ist
a|n notwendig und hinreichend dafiir, da alle Alternativen bei der Auswahl die gleichen
Chancen haben. (Deswegen klappte es mit 4 = 2 und 2 = 3 am Anfang, da war ndmlich
n==a6.)

Hier haben wir uns um die elementar zugénglichen Aspekte im Zusammenhang mit der Gleich-

verteilung und Faltungen gekiimmert. Es sollte jedoch erwihnt werden, da man eine naheliegende

Verallgemeinerung fiir beliebige kompakte kommutative Gruppen G betrachten kann. Der Kandidat

fiir die Gleichverteilung ist da das Haarsche Maf} U, das eindeutig bestimmte Wahrscheinlichkeitsmaly

mit U(A) = U(A + x) (alle x € G,A C G Borelmenge). Auch hier 1a6t sich eine Faltung P; * P,

von WahrscheinlichkeitsmaBien P;, P, definieren, und P; * P, entspricht wieder der Verteilung von

g1 + &, wenn g1, & gemaB Py bzw. P, ausgewihlt wurden.

Fragen des Typs “P; = P, = U?” kénnen wieder mit Hilfe von Charakteren x behandelt werden,
das sind stetige Abbildungen von G nach I' mit x(g; + &) = x(£1)x(%). Die Ergebnisse sind fast
wortlich so wie im hier besprochenen endlichen Fall, insbesondere liefert P % - -- % P nur dann U,
wenn P selbst schon U war. Die Beweise verlangen auch keine neuen Ideen; der technische Aufwand
ist allerdings erheblich hdher, da Integrale statt Summen zu betrachten sind und die auftretenden
Funktionenrdume unendlich-dimensional werden.

Als Beispiel fiir eine Interpretation unter dem Aspekt “Entscheidungen” stelle man sich k Personen vor,
die sich mit Hilfe eines fairen Zufallsverfahrens auf eine Zeigerstellung (etwa eine Himmelsrichtung)
einigen wollen. Jeder sucht sich eine aus, und am Ende wird die Hintereinanderausfiihrung betrachtet.
Das fuihrt auf G = T, und U ist hier das normalisierte Borel-Lebesgue-MaB. Fur diese Gruppe sind
die Charaktere wieder leicht zu berechnen — es sind genau die Abbildungen z +— 2™ mit m € 7 —,
und folglich kann man Probleme im Zusammenhang mit Entscheidungen genauso explizit 1osen wie
eben im Fall der Z;,.

3 Der Fall beliebiger endlicher Gruppen

ErwartungsgeméiB wird alles schwieriger, wenn wir nun auch nichtkommutative endliche
Gruppen zulassen. Es soll herausgearbeitet werden, dab fiir die hier interessierenden
Aspekte die neu auftretenden Probleme durch das unterschiedliche Verhalten von Zahlen
und Matrizen verursacht werden.

Ab hier sei (G, o) eine beliebige endliche Gruppe. Wieder konnen wir versuchen, gleich-
verteilt in G dadurch etwas auszusuchen, daB ¢i,...,gx geméb P, ..., P; gewéhlt wer-
den und dann g; o - - - o g betrachtet wird.

Konkretes Beispiel: Eine “zufillige” Sitzordnung beim Skat soll durch zwei Spielleiter festgelegt

werden, die sich nach persénlichen Zufallsmechanismen fur jeweils eine Permutation von 1,2,3
entscheiden; dann wird die Hintereinanderausfithrung dieser Permutationen gebildet.

Klar, daB die oben gestellten Fragen hier genauso sinnvoll aufgeworfen werden kénnen,
wie sicht es aber mit den Antworten aus?

Wieder sei U die Gleichverteilung auf G, wieder ist leicht zu berechnen, wie fiir Wahr-
scheinlichkeitsmaBe Py, P, die Verteilung der Summe aussicht, wenn wir wie iiblich
Unabhéngigkeit der Auswahl voraussetzen. Das zugehorige MaB wird auch hier mit
P1 « P, bezeichnet, und man bestimmt seine Werte durch die Formel P, « P>({g}) =

Pgog=s LIS NP2({82}) = 32, Pr({80 087 H)Pa({8}).



Elem. Math. 54 (1999) 113

Leider kann man nun nicht Faltungsgleichungen unter Verwendung von Charakteren in
Skalargleichungen iiberfithren, denn man kann nicht garanticren, dah es auf G “genii-
gend viele” Charaktere gibt. (Das ist auch nicht zu erwarten, denn ein Charakter kann
nicht zwischen den — méglicherweise verschiedenen — Elementen ¢ o & und ¢ o &1
unterscheiden.) Es hilft aber eine neue Idee weiter:

Eine d-dimensionale Darstellung M von G ist eine Abbildung, dic jedem g € G eine
unitire d x d-Matrix M, zuordnet, so dab stets M, oo, = M, M,, gilt (Matrizenprodukt).
Schreibt man M, = (f5+(8))st=1,....4, s0 heiben die f;; : G — C die Koeffizientenfink-
tionen zu M.

Wieder wird es wichtig sein, daf “geniigend viele” Darstellungen existieren. Das ist
immer erfiillt (vgl. die angegebene Literatur zur harmonischen Analysis), wir wollen es
aber als Extra-Voraussetzung formulieren und im konkreten Einzelfall nachpriifen, um
den Lesern einen langen technischen Exkurs zu ersparen. Wir werden voraussetzen, dah
es Darstellungen M!, ..., M™ mit den folgenden Eigenschaften gibt!):
e Mit d,=“die Dimension von M*” gilt d2 + - - - + d2, = n = card(G).
e M! ist die triviale Darstellung (d, = 1, f11(g) = 1 fiir alle g).
e Bezeichnet ( ﬂft)si:l,,,,’d# die Koordinatenfunktionen von M, so sollen diese # Funk-
tionen paarweise orthogonal im folgenden Sinn sein: 1/n37 f} £4.(g) st immer
Null, aufer im Fall s = s’ ¢ = ', p = 1/; dann soll die Summe 1/d,, sein.

Wir definieren auch hier eine Fouriertransformation fir Wahrscheinlichkeitsmabe P: Das
ist diejenige Abbildung, die einer Darstellung M die Matrix P(M) = ZXP({g})Mg
zuordnet.

Lemma 3.1 Fiir Wahrscheinlichkeitsmafle Py, P, gilt:
(i) Aus Py (M*) = Py(M*) fir p=1,...,m folgt P = P,
(ii) Fir alle Darstellungen M ist P+ P, (M) = P, (M)Dy,(M).
(i) U(M") = 1, alle anderen U(MH) verschwinden.
Beweis. Das geht genauso wie in Kapitel 2. Es ist nur wichtig, dab — als Folgerung aus

den Orthogonalititsrelationen — jede komplexwertige Funktion auf G Linearkombination
der f1 ist. O

Fiir die hier interessierenden Faltungsgleichungen ergibt sich sofort:

Satz 3.2 Genau dann ist Py % - - - x Py die Gleichverteilung, wenn alle Matrizenprodukte
[Py (M#)] - - - [Pr(M#)] fiir p=2,...,m die Nullmatrix sind.

1) Das ist die angemessene Verallgemeinerung der Reichhaltigkeitsforderung im kommutativen Fall; dort
hatten wir “viele” Charaktere, d. h. eindimensionale Darstellungen postuliert.
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Anders als fiir Zahlen kann man aber fiir Matrizen A, B aus AB = 0 nicht schlieBen,
dab A = 0 oder B = 0, und deswegen ist nicht klar, ob wir dhnliche Folgerungen
ziehen kdnnen wie im kommutativen Fall, ob es also zum Beispiel ein Analogon zu Satz
2.3(i) gibt. Positive Ergebnisse kann man erzwingen, indem man durch Forderungen an
P garantiert, daB [P(M)]* = 0 nur fiir P(M) = 0 gilt.

Das ist zum Beispiel dann der Fall, wenn P symmetrisch ist, d. h. wenn P({g}) =
P({g~'}) fiir alle g ist. Denn da alle M, unitir sind, ist M1 = (M;)* (= die zu My
adjungierte Matrix). Im Falle symmetrischer P ist dann (P(M))* = > P({g})My =
ZgP({g})M@fl) = ZgP({gfl})M(gﬂ) — P(M), d. h. die hier interessierenden P (M*)
sind selbstadjungiert, und fiir derartige Matrizen A darf man wirklich aus A* = 0 auf
A = 0 schlieBen. Das zeigt:

Korollar 3.3 Die iiblichen Voraussetzungen seien erfiillt, zusdtzlich sei P ein symme-
trisches Wahrscheinlichkeitsmaf3 auf G. Ist dann P x - - - x P (k-faches Faltungsprodukt)
gleich U, so folgt P = U.

Damit ist der allgemeine Fall noch nicht entschieden. Die folgenden Beispicle zeigen
aber, daB fiir nichtkommutative G alles Mogliche passieren kann.

Satz 3.4 Es gibt nichtkommutative Gruppen G, Gy mit geniigend vielen Darstellungen
im oben prazisierten Sinn, so daf

(1) Auf G, gibt es ein Wahrscheinlichkeitsmaf3 P # U mit P« P = U.
(ii) In G, folgt aus P+ P = U stets P = U.

Beweis. (i) Sei G, := S;, die Gruppe der Permutationen von drei Elementen. Die sechs
Elemente von G, kiirzen wir wie folgt ab:

123 123 123
0”’(123)7 1ﬁ’(312>7 25’(231)’

123 123 123
3”(132)’ 4"(321)7 5"(213)‘

Wir geben explizit die geforderten Darstellungen an: Die ersten beiden sind eindimen-
sional, die dritte ist zweidimensional. Hier die Werte der Funktionen f; (dabei steht w

fiir /3/4):
g p
fi
fi
fi
fir
fa
f2

—_ O O = = = O
|
<
V]
|
<
W
|
—
e
W
<
W
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Wir definieren noch P durch 2P({0}) = 2P({4}) = P({2}) = P({5}) = 1/3.
Eine kanonische Rechnung zeigt, daB die f/; zu Darstellungen gehoren, dah die Or-
thogonalititsrelationen erfiillt sind und dah P x P = U. (Zur Kontrolle berechnen wir

P(MP) = (1/12) ( 3 “g), und das ist wirklich eine nilpotente nichttriviale Matrix.)

2w —
(ii) G; sei die Quaternionengruppe. Die besteht aus den acht Elementen 1, +i, +§, £k,
fiir die die Gruppenstruktur durch 2 = j? = k? = —1,ij = k,jk = i,ki = j,ji =
—k,kj = —i,ik = —j erklért ist (die Rechenregeln fiir +-1 und + sollen so sein, wie
man es von komplexen Zahlen gewohnt ist; z. B. ist k(—i) = —ki = —j).

Auf G, gibt es neben dem trivialen Charakter x; noch drei weitere Charaktere, die hier
mit x;, X;,xk bezeichnet werden. Sie sind durch

xi £l +i—1,%j, £k — -1,
xj L Ej— 1, £k, i — -1,
Xk £l xk — 1,4, +j — —1

definiert. Und dann gibt es noch eine zweidimensionale Darstellung M. Die ist durch
+1— +E, +i— I, +j— £], £k — £K

erklart, wobei E, I, ], K die folgenden Matrizen bezeichnen:

e (00 =2 () = (58) =20

(Das “i” in diesen Matrizen ist die 0bliche imaginire Einheit, die auf den ersten Blick mit dem § € G, nichts
zu tun hat. Es besteht aber ein Zusammenhang: Die Quaternionengruppe erzeugt die Quaternionen, die C
umfassen.)

Damit ist, auch wenn wir die elementaren Rechnungen hier nicht ausfithren werden, die
Existenz geniigend vieler Darstellungen nachgewiesen.

Sei nun P ein Wahrscheinlichkeitsmah auf G, mit P x P = U; es ist P = U zu zeigen.
Dazu setzen wir 7, == P({a}) + P({—a}) fir « = 1,i, ], k. Da P ein Wahrscheinlich-
keitsmaB ist und da nach Satz 3.2 die (P(x,))? und folglich die P(y,) fiir o = i, j, k
verschwinden, folgt

ntT+T+=1 ntn-—7-7=0,
m—=Ti+7T =Tk =0, n—7i—7+7% =0,

und dieses Gleichungssystem hat als eindeutig bestimmte Losung 71 = 7, = 77 = 7% =
1/4. Wir schreiben daher — mit geeigneten 61, 6;,6;, 6y — P({a}) = 1/8+6,, P({—a}) =
1/8 — &,.

Werte nun die Identitit P « P = U bei 1 aus:

1/8=(1/8+8 ) +(1/8 =8 +2 Y (1/8+8)(—1/8—6.),
a=i,j,k
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also 0 = (8)* — (6)* — (6;)* — (6x)*. Analog ergibt die Auswertung bei i, j, k die
weiteren Gleichungen 0 = 616; = 6;6; = 66¢. Diese Beziehungen implizieren 6 =
6; = 6; = 6 = 0, und das war zu zeigen. O

Die genaue Antwort auf die Frage, ob sich eine Gruppe wie in (i) oder wie in (ii)
des vorigen Satzes verhilt, wurde in [2] gegeben (s. a. [6]): Fiir ein nichtkommutatives
kompaktes G kann man genau dann stets von P « P = U auf P = U schlieBen, wenn G
ein Produkt aus der Quaternionengruppe und einer Gruppe des Typs {0, 1}/, (I irgendeine
Menge) ist. Die hier bereitgestellten elementaren Methoden reichen aber bei weitem nicht
aus, um diesen Charakterisierungssatz zu beweisen.

4 Erginzungen

Die vorstehenden Kapitel haben uns von einem konkreten Entscheidungsfindungs-Pro-
blem bis in die harmonische Analysis nichtkommutativer Gruppen gefiihrt. Die am An-
fang aufgeworfenen Fragen konnten vollstindig geklirt werden, sogar dann, wenn man
die zur Motivation gehorige Gruppe Z, durch ein beliebiges kommutatives endliches
(oder sogar kompaktes) G ersetzt. Im nichtkommutativen Fall liegen nach der allge-
meinen Charakterisierung aus [2] sofort einige Fragen nahe, z. B.: Wann impliziert
U=Px*---x P (k-faches Faltungsprodukt), dah P = U? Welche Zusatzeigenschaften
an P garantieren, daB P = U aus P = P = U folgt?

Auch im kommutativen Fall, selbst fiir die Z,, ergeben sich durch Variation der Aus-
gangssituation schnell noch offene Probleme. Wir denken wieder an die Freunde vom An-
fang, die gemeinsam dadurch eine Entscheidung zwischen 7 Alternativen treffen wollen,
dah jeder etwas aus {0,...,n — 1} auswihlt und dann die Summe modulo # als gemein-
same Entscheidung akzeptiert wird. Diesmal wird aber gewiinscht, daB die Ergebnisse
entsprechend einem vorher vereinbarten Wahrscheinlichkeitsmah Py gefunden werden.
In unserer Terminologie heilt das: Diskutiere Py x P, = P, bei vorgelegtem P;. Findet
man z. B. zu jedem P, ein P mit P « P = P, (das entspricht dem Fall, daf beide Freunde
das gleiche Entscheidungsverfahren verwenden)? Fiir kleine # kann man das noch leicht
diskutieren. Sei etwa 1 = 2. P, sei gegeben, und wir fragen nach Zahlen p,q > 0 (unse-
ren Kandidaten fiir P({0}), P({1})) mit p +¢q = 1,p* + ¢* = Po({0}),2pg = Po({1}).
Die ersten beiden Bedingungen implizieren die dritte (denn Py ist ein Wahrscheinlich-
keitsmaB), und die Losung kann geometrisch leicht gefunden werden: Es geht um die
Schnittpunkte der Geraden p + ¢ = 1 mit dem Kreis p> + g> = Py({0}). Es zeigt sich
etwa, dah es Losungen genau dann gibt, wenn Po({0}) > 1/2 ist.

Fiir beliebige n scheint keine einfache Charakterisierung der Py, zu denen es P mit
PxP = P, gibt, mdglich zu sein. Nur soviel liht sich sagen: P« P = Py gilt genau dann,
wenn (Ia(xj)2 = Po(x;) fiir j = 1,...,n — 1. Das macht klar, dah das Problem mit den
Wurzeln der I%(X]') zusammenhéngt, und man sieht auch, warum der oben diskutierte
Fall P, = U zu einem einfach zu behandelnden Problem fiihrt (da sind nimlich alle
diese Zahlen Null).

Noch verwickelter ist in diesem Zusammenhang die folgende Fragestellung, die im Fall
P, = U in Kapitel 2 vollstindig diskutiert wurde: Gibt es zu P, POA ein PAz mit P; x P, =
P,? Eine Umformulierung mit Hilfe von Charakteren fiihrt auf Py (x)P5(x) = Po(x).
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und das impliziert die notwendige Bedingung |131 ()] < |130(X)| fiir alle x (da |P(x)| <
1). Daher werden die Zahlen «; = ﬁo(x]') /131 (x;) eine Rolle spiclen (wir wollen der
Einfachheit halber annehmen, dab alle ﬁ(xj) = 0 sind), und dann steht man vor dem
Problem zu entscheiden, ob die «; als p(xj) fiir ein geeignetes Wahrscheinlichkeitsmaf
P realisiert werden konnen. Das ist der schwierige Teil, nur fiir kleine n bieten sich
Charakterisierungen an.

Sei z. B. n = 3. Fiir welche a1, s gibt es po, p1,p2 > 0 (die Kandidaten fur die Wahrscheinlichkeiten
von 0, 1,2) mit po+p1+p2 = 1, po+p1§+p26 = a1, po+p1&+p2€ = ap (mit § := exp(27i/3))? Es
mub oy = @ sein, und «; mub in der konvexen Hiille C von 1, £, €& liegen. Fiir das Ausgangsproblem
heifit das: Genau dann ist P * P, = Py fiir ein geeignetes P,, wenn Py(x;)/P1(x1) in C liegt.

Wir kommen noch einmal auf den Beginn der Arbeit zuriick: Faire Entscheidungen durch
Fingerheben®). Nachtriglich wird klar, warum der Daumen als Finger wichtig war. LaBt
man ihn nimlich weg, so geht man von # = 6 zu n = 5 iiber, und dann sind die Summen
modulo 2 nicht mehr gleichverteilt. Es sind noch zwei weitere Punkte zu besprechen.
Zum ecinen ist es nicht so, daB man 0 oder 1,...,5 Finger (der Daumen zahlt wieder
mit) gleichverteilt hebt, wenn man sich einbildet, das zu tun. Ungerade Zahlen haben
eine hohere Wahrscheinlichkeit als gerade, wohl deswegen, weil 1,3,5 Finger leichter
zu strecken sind als 2 oder 4. Damit taucht “Summe gerade” ofter auf als “Summe
ungerade”, auch wenn beide Teilnehmer um eine gleichverteilte Entscheidung bemiiht
sind.

Und ganz schwierig wird es, wenn man dieser Frage unabhéngig von der Physiologie der
Finger auf den Grund gehen méchte: Kann ein Mensch iiberhaupt zufillig reagieren, kann
er etwa ohne Hilfsmittel eine faire Miinze simulieren? Mir sind nur ziemlich gekiinstelte
Losungen eingefallen, jeder ist herzlich eingeladen, sich eigene Verfahren auszudenken.
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2) Das ist iibrigens, glaubt man [3], Seite 69, ein gingiges Entscheidungsverfahren unter Kindern.
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