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Die harmonische Reihe: Historisches und Mathematisches*

Urs Stammbach

Urs Stammbach studierte an der ETH Ziirich, wo er 1965 bei Beno Eckmann mit
einer Dissertation iiber die Homologietheorie der Gruppen promovierte. Nach einem
mehrjahrigen Aufenthalt an der Cornell University in Ithaca, NY wurde er 1969
Professor an der ETH in Zirich. In seiner Forschung beschiftigt er sich mit der ho-
mologischen Algebra und deren Anwendungen in der Gruppentheorie, insbesondere
in der modularen Darstellungstheorie. In jiingerer Zeit bearbeitet er auch Themen aus
der Geschichte der Mathematik. Er ist Autor bzw. Mitautor von mehreren Biichern.
1990 und 1991 amtete er als Prisident der Schweizerischen Mathematischen Ge-
sellschaft. In seiner Freizeit beschiftigt er sich gerne mit Geschichte, Literatur und
Musik.

1. Jedermann weiss, was die harmonische Reihe ist:

R
2 '3 45T

” )Jndr‘Johann

*) Der Text entspricht im wesentlichen dem Inhalt von Vortrigen tiber dieses Thema, die am 27. November
1996 im Rahmen 13. Kolloquiums fiir Mathematiklehrer an der Universitat Basel, am 26. Februar 1998
im Rahmen des 14. Eichstatter Kolloquiums zur Didaktik der Mathematik und am 11. Mai 1998 im
Kolloquium tiber Didaktik an der Universitit Essen gehalten wurden.
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Aber nicht jedermann scheint zu wissen, weshalb sie so heisst. Sie heisst harmonisch,
weil jedes ihrer Glieder das harmonische Mittel der beiden Nachbarglieder ist:
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Jedermann weiss, dass die harmonische Reihe divergiert, aber wenige scheinen zu wissen,
wann und durch wen diese Tatsache entdeckt worden ist.

In der Entwicklung der Mathematik nimmt die harmonische Reihe zweifellos einen wich-
tigen Platz ein. Und die Tatsache, dass die harmonische Reihe divergiert, hat profunde
Konsequenzen: Die Welt wiirde zweifellos anders aussehen, wenn die harmonische Reihe
konvergieren wiirde. Umso erstaunlicher ist es, dass die historischen Hintergriinde, selbst
unter Mathematikern, nicht allgemeiner bekannt sind. Hat der Mathematikunterricht in
der Vergangenheit vielleicht allzusehr die historische Dimension vernachlissigt?

2. Beweise fiir die Divergenz der harmonischen Reihe allerdings sind wohlbekannt. Hier
ist einer davon:

Man stellt fest, dass fiir jede natiirliche Zahl a die Ungleichung

1 n 1 > 1 it 1 >a2—u71 1
a+1 a+2 a+3 @2 - @2 a
gilt. Daraus folgt
1Jr 1 " 1 " 1 n " 1 -1
a a+1 a+2 a+3 az =

Somit sind die Partialsummen der harmonischen Reihe nach oben nicht beschrankt, und
die Reihe divergiert.

Dies ist im wesentlichen der Beweis, den schon Jakob Bernoulli” gegeben hat, und den
wir in dieser oder in einer leicht abgewandelten Form auch heute noch in den Vorlesungen
geben.

Der Beweis steht in der Arbeit Positiones arithmeticae de seriebus infinitis, 1689; Teil
XVI Summa seriei infinitae harmonice progressionalium % + % + % + % + % & est infinita
(siehe [1], p. 45ff), in der ersten der fiinf berithmten “Dissertationen” (Arbeiten) iiber
Reihen, die Jakob Bernoulli zwischen 1689 und 1704 veroffentlicht hat.

Jakob war allerdings nicht der erste! André Weil bemerkt im Vorwort der Ausgabe
der Werke Jakob Bernoulli’s (siche [1], p. 12—13), dass die Divergenz der harmonischen
Reihe bereits 1650 von Pietro Mengoli nachgewiesen worden sei,2) wobei Weil als sicher
annimmt, dass Jakob Bernoulli die Schrift von Mengoli nicht gekannt hat.

1) Jakob Bernoulli lebte von 1654 bis 1705. Er studierte zuerst Theologie an der Universitit Basel, beschaf-
tigte sich aber schon wihrend seines Studiums mit Mathematik. Nach einem lingeren Auslandaufenthalt
kehrte er nach Basel zuriick und wurde 1687 Professor an der dortigen Universitat.

2) Pietro Mengoli (1625-1686) war Schiller Cavalieris und wurde dessen Nachfolger an der Universitit in
Bologna.
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Aber auch Mengoli war nicht der erste! Bereits um 1350 hatte namlich Nicole Oresme
die Divergenz der harmonischen Reihe entdeckt.)

Diese fritheren Resultate von Mengoli und Oresme* scheinen beide wieder in Verges-
senheit geraten zu sein: Auch fiir mathematische Entdeckungen muss offenbar die Zeit
reif sein. Man vergleiche dazu auch [7], p. 91-93.

3. Auf Mengoli und auf Oresme nimmt Jakob Bernoulli in seiner Verdffentlichung nicht
Bezug. Hingegen sagt er, die Divergenz der harmonischen Reihe sei vor ihm von seinem
jiingeren Bruder Johann® entdeckt worden: Id primus deprehendit frater.)

Johann Bernoulli’s Beweis war dieser. Er setzt

TR . =N
tatstytst =

und subtrahiert davon gliedweise die Reihe

1 1 1 1 1
§+§+Z+§+g+"':N—l.
Er erhalt?
1 1 1 1 1
E+6+E+_+_+ =1,
Nun rechnet er weiter
1 1 1 1 1 2 3 4
33 TITE T T E AT R AT
(1 1 1 1
*(ﬁ*z— —4+ﬁ+"'>+
1 1 1
+(ﬁ+—4 4—+"'>+
1 1
+<—4+4—+“‘>+
1
RIS

6)

7)

Nicole Oresme lebte von ca. 1320 bis 1382, zeitweise in Paris. Ab 1377 war er Bischof von Lisieux.
Der Beweis fiir die Divergenz der harmonischen Reihe ist in einer Schrift von Oresme mit dem Titel
Quaestiones super Geometriam Euclidis zu finden, die um 1350 geschrieben worden ist.

Die Beweise von Bernoulli, Mengoli und Oresme sind verschieden, fir Details siche Conway, Guy [4].

Johann Bernoulli lebte von 1667 bis 1748. Er wurde anfanglich von seinem um 13 Jahre alteren Bruder
Jakob in der Mathematik unterrichtet, insbesondere in der Leibnizschen Differential- und Integralrechnung.
Nach Reisen nach Genf und Paris wurde er 1695 Professor in Groningen. 1705 kehrte er nach Basel zuriick,
wo er nach dem Tode seines Bruders den Lehrstuhl fiir Mathematik iibernahm.

Es mag erstaunen, dass Jakob hier mit seinem Bruder Johann so pfleglich umgeht, aber die beiden Briider
waren damals offenbar noch ein Herz und eine Seele; ihr Streit begann erst 1695.

Dieses Resultat war damals bereits bekannt; siehe z.B. Lord Viscount Brouncker: The squaring of the
hyperbola, 1668; aber ebenso bei Mengoli und Leibniz. Ob Bernoulli das Resultat selbst entdeckt oder es
einfach tibernommen hat, weiss man nicht.
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Man liest ab

Dies ist ein Widerspruch.

4. Johann’s Beweis ist sicher genial. Er erfiillt aber wohl die Anspriiche nicht, die wir
heutzutage an einen mathematischen Beweis stellen. Zwar lisst sich mit dem heuti-
gen Wissen daraus ein mathematisch korrekter Beweis konstruieren, aber zu Bernoulli’s
Zeiten waren einige der wesentlichen Tatsachen gar noch nicht bekannt. Schon Jakob
Bernoulli war sich bewusst, dass die Schlussweise bedenklich ist: Er beschreibt in der
oben erwihnten Publikation den Beweis seines Bruders Johann ausfiihrlich, fiigt dann
aber hinzu, dass man diese Methode nicht ohne besondere Vorsicht anwenden diirfe:
Observandum tamen, non sine cautela hac utendum esse methodo. Zur Illustration setzt
er

3 4 5
2+5+§+Z+“'*5
und subtrahiert gliedweise
3 4 5
I 4. =62
2+3+4+
Er erhalt
1 1 1 1
_+_+_+_+...:27

2 23 34 4.5
im Widerspruch zum obigen Resultat!

Das Beispiel illustriert so nebenbei, wie sich der Begriff des mathematischen Beweises
im Laufe der Zeit verdndert hat. Es zeigt aber auch auf iiberzeugende Weise, dass es in
der Mathematik neben den strengen Beweisen Uberlegungen heuristischer Art gibt, die
auf einer gewissen Stufe der Erkenntnis und des Entdeckens eine grosse Rolle spielen:
Die Mathematik besteht nicht nur darin, Aussagen zu beweisen, sondern ebensoschr auch
darin, wohlbegriindete Vermutungen zu erarbeiten.

5. Gerade an der harmonischen Reihe kann man diesen Schritt, nimlich die Erarbeitung
einer wohlbegriindeten Vermutung auf einem leicht zugéinglichen Niveau illustrieren.
Man trage zu diesem Zweck (etwa mit Hilfe eines Computeralgebrasystems) die Parti-
alsummen der harmonischen Reihe gegen den Index auf. Macht man dies fiir geniigend
viele Glieder, so sind in der Figur die einzelnen Punkte nicht mehr einzeln zu identifi-
zieren und sie verschmelzen zu einer Kurve (siche Figur 1).

Was ist das fiir eine Kurve? Die Vermutung liegt auf der Hand, und sie ist richtig. Es
ist in der Tat die Logarithmuskurve, oder wenigstens fast: Es ist die um weniges nach
oben verschobene Logarithmuskurve.
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0 100 150 200 250

Fig. 1 Die harmonische Reihe, 256 Glieder

Um das niher zu erklédren, betrachten wir die Funktion x — 1/x. Fiir die Summe der
Inhalte der in Figur 2 eingezeichneten Rechtecke erhélt man unmittelbar

S(n)—lJr1 1+1 1+ +1> " dx =log(n+1)
=ltytztzts n= ) M TR T

Dies beweist iibrigens noch einmal die Divergenz der harmonischen Reihe.

N
w
IS
(&)

Fig. 2 Die untere Abschitzung

Betrachten wir die Rechtecke unter der Kurve (siche Figur 3), so ergibt sich die Bezie-
hung

n
Sn)—1 g/ ldleogn .
1 x
Man hat also fiir S(#) die Ungleichungen
login+1) <S(n) <1+logn,

aus denen folgt, dass die “Kurve” in Figur 1 tatsichlich im wesentlichen die log-Kurve
ist.
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6. Wir wollen die letzte Abschitzung noch etwas niher betrachten. Zu diesem Zweck
fithren wir folgende Bezeichnung ein: Es sei r,, der Flacheninhalt des dreieckformigen
Bereichs zwischen dem Rechteck iiber dem Intervall [, m + 1] und der Kurve y = 1/x.

Dann gilt
n—1
S(n) =logn + (1 - Zrm) ‘
1

.

e ———— -
.
1 2 o

4 5

Fig. 3 Die obere Abschatzung

Die Reihe [ 7, hat nur positive Glieder. Durch Verschicben (siche Figur 4) der
dreiecksformigen Flachenstiicke in das durch den Punkt (1,1) gegebene Quadrat folgt

= 1
0<Zrm<§.
1

Fig. 4 Die Konvergenz von Y {°

Damit ist gezeigt, dass die Reihe > r,, konvergiert und dass die Summe eine positive
reelle Zahl zwischen 0 und 1/2 ist. In der Gleichung

S(n) =logn + (1 - nzrm) )

gilt im Grenziibergang 11 — oo also 1/2 <1 =31, < 1.
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Damit ist das Computerbild vollstindig erklart: S(n) und logn unterscheiden sich fir
grosse 71 im wesentlichen nur um eine additive Konstante. Ausserdem hat die Uberlegung
auch iiber das Ausmass der Verschiebung Informationen geliefert: die Verschiebung ist
fiir n — oo gegeben durch 1 — "% 4, also durch eine Zahl zwischen 1/2 und 1. Dieser
Limes ist die berithmte Fulersche Konstante, sie wird iiblicherweise mit v bezeichnet:®

n—oo

v = lim (S(n) —logn) =1 —Zrm .
1

Man wiirde natiirlich nicht eine spezielle Bezeichnung fiir diese Zahl einfithren, wenn
sie nur im Zusammenhang mit der harmonischen Reihe vorkommen wiirde. Aber es hat
sich seit Euler gezeigt, dass -y in sehr vielen mathematischen Problemen eine Schliissel-
rolle spielt. Zum Beispiel tritt sie vollig iiberraschend an verschiedenen Stellen in der
Zahlentheorie auf, so etwa bei der Primzahlverteilung und bei der Gammafunktion.®)
Die arithmetische Natur der Zahl ~ ist iibrigens auch heute noch nicht geklirt: Man
weiss nicht, ob v irrational oder rational ist, auch wenn mit grosser Wahrscheinlichkeit
anzunchmen ist, dass ~ irrational ist.'”) Selbst wenn man diese erste Frage beantworten
konnte, bleiben andere offen: Ist + algebraisch oder transzendent?

7. Ich will das einfache Resultat iiber den Zusammenhang von S(n) und logn zum
Anlass nehmen, um einige weitere Bemerkungen iiber die Divergenz der harmonischen
Reihe zu machen. Diese Divergenz ist extrem langsam, und es ist instruktiv, an dieser
Langsamkeit die Moglichkeiten des Computers zu testen. Zuerst einmal ist festzuhalten,
dass beim naiven Rechnen auf dem Computer eigentlich jede Reihe “konvergiert”, wenn
nur die Reihenglieder gegen Null streben. Da nimlich der Computer nur endlich viele
Zahlen darstellen kann, kennt er eine kleinste positive Zahl. Streben nun die Glieder einer
Reihe gegen Null, so wird der Computer diese von einem gewissen Index an als Null
anschen; sie tragen also zur Reihensumme nichts mehr bei, und die Reihe erscheint als
konvergent. Aber wir wollen hier einmal absehen von diesen technischen Begrenzungen
und uns einen idealen Computer vorstellen, der mit beliebig kleinen positiven reellen

8) Die Konstante -y wird auch etwa nach Euler und Mascheroni benannt. Leonard Euler (1707-1783) studierte
bei Johann Bernoulli an der Universitat Basel. Bereits als 20jahriger ging er nach St. Petersburg und wurde
dort 1731 Professor fiir Physik und ab 1733 fur Mathematik. 1741 folgte er einem Ruf Friedrich II an
die Akademie in Berlin. Nach dem Tode von Maupertuis im Jahre 1759 war Euler faktisch, wenn auch
nicht nominell, der Leiter der Akademie. 1766 kehrte er nach St. Petersburg zuriick, wo er — obschon
erblindet — bis zu seinem Tod unermuidlich tatig war. — Lorenzo Mascheroni (1750-1800) wurde 1786
Professor fur Mathematik in Pavia. Er ist bertthmt fiir seine Studien tiber geometrische Konstruktionen mit
dem Zirkel, also ohne Lineal, die er in seinem Napoleon gewidmeten Werk “La geometria del compasso”
verdffentlichte. — Euler’s erste Verdffentlichung tiber +y datiert aus dem Jahr 1734; Lorenzo Mascheroni
hat sich 1790 mit -y beschéftigt. Euler hatte 15 Dezimalstellen fiir v angegeben, Mascheroni 32. Es stellte
sich allerdings spater heraus, dass nur 19 davon richtig waren. Es ist deshalb wohl angebracht, wenn wir
die Konstante nur nach Euler benennen.

9) Fiir Beispiele konsultiere man z.B. Conway, Guy [4], Dickson [5], Nunemacher [13].
10) J. Borwein (Dezember 1993) gibt 172000 Stellen von ~ an und folgert aus seinem Resultat, dass der

Nenner von 7 mehr als 60’000 Stellen besitzen muss, wenn -~y rational ist. Diese Information ist unter
http://www.mathsoft.com/asolve/constant/euler/euler.html zu finden.
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Zahlen richtig umzugehen weiss. Wir haben im Bild gesehen, dass die Partialsumme
5(256) der harmonischen Reihe etwa 6 betrigt. Wieviele Glieder braucht es, um die
Summe 10, 40, 100 zu erreichen? Dabei wollen wir uns mit groben Abschitzungen
begniigen und die (ebenfalls interessante) Frage nach der genauen Anzahl der fiir die
Summe notwendigen Glieder nicht betrachten.'") Es sind nach unserem Resultat die
Gleichungen

logn =10 —+~, logn=40—+~, logn =100 —~

zu ldsen. Die Zahl 7 ist also in den drei Féllen approximativ durch

40—y

nael® pa e, nae!

gegeben. Man erhilt (fiir v = 0.577218):

n=12'367, n=132-10""7, n=150-10% .

Nehmen wir an, dass unser Computer pro Sekunde 1'000’000 reelle Zahlen (mit belie-
biger Genauigkeit) addieren kann. Dann erhalten wir als approximativen Zeitbedarf der
durchzufithrenden Rechnungen

12 msec 4190 Jahre 4.78 - 10* Jahre

Das Beispiel ist instruktiv: Bereits im sehr einfachen Fall der harmonischen Reihe ist
der Computer nicht in der Lage, den Resultaten der Mathematik wirklich gerecht zu
werden. Und er wird es auch nie konnen, denn selbst der Einsatz eines Computers, der
eine Million Mal schneller ist, bringt in dieser Richtung wenig.

8. Diese Uberlegungen zeigen auch, dass fiir dic numerische Berechnung von ~ die
Definition als Limes der Differenz von S(n) und logn nicht giinstig ist. Dies wird
besonders deutlich, wenn man eine genauere Abschitzung durchfiihrt. Die Berechnung
von v muss auf anderen Wegen erfolgen, und wir werden spiter zwei entsprechende
Ideen von Euler eingehender beschreiben.

Fiir die Abschitzung beniitzen wir die bereits frither eingefiihrte Bezeichnung (vergleiche
dazu Young [16]): Es ist r,, der Flicheninhalt des dreieckformigen Bereichs zwischen
dem Rechteck iiber dem Intervall [m,m + 1] und der Kurve y = 1/x. Dann erhalten wir

o] n—1 o] o]
Y= 1= Yt = 1= 3 = Yt = (S(m) —Togm) = 31
1 m=1 m=n n=r

Als Nichstes versuchen wir, 7, abzuschétzen. Aus der Figur 5 liest man ohne Schwierig-

keiten ab:
1 1 1
> | ————
2\m+1 m+2

11) Zu dieser Frage siche z.B. Comtet [3], Newton [12], Young [16], Zemyan [17].
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Fig. 5 Abschitzung fur ry,

und damit ergibt sich, da man eine Teleskopfolge vor sich hat,

(o o)
Y 3
m=n

Dies liefert eine Fehlerabschatzung fiir die Berechnung von ~ aus der Gleichung

1
n+1"

N =

n—o0

v = lim (S(n) —logn) = (S(n) — logn) — irm '

Man erhilt:

Um ~ auf 10~ genau zu berechnen, miissen mindestens 10" Terme der harmoni-
schen Reihe beriicksichtigt werden.

Wegen dieser ausserordentlich langsamen Konvergenz ist die Folge S(n) —logn fiir die
Berechnung von + nicht geeignet.

9. Dass sich die direkte Definition fiir die Berechnung von + nicht eignet, erkannte
natiirlich auch Euler. Er schlug deshalb 1734 das folgende Verfahren vor:'?)

Man betrachte die iibliche Potenzreihe des Logarithmus

h'S

2 %
log(ler)fx—?Jr?—Zer.

12) De progressionibus harmonicis observationes, Commentarii Academiae Petropolitanae ad annum 1734 et
1735. T. VIL, 150-161. Siche [8] Opera omnia, Series prima, Band XIV, p. 87-100
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Setzt man x = 1/k, so erhélt man

lo 1+l 71_L+L_L+
& k)% 2k T3k Ak

oder
k+1 1 1 1 1 1 1

k 10g< T )jLﬁ_erTk“_‘ 1og(k+1)—logk+2k2—3—k3+4—k4—~-~‘
Durch Summenbildung ergibt sich daraus
WL S +1710(71“”1” 1 11 1” 1

273 7"% no o8 1L TILE TilE
oder

2737 n) 8 AR T34k ik

Im Grenziibergang erhilt man ~ als Limes einer rasch konvergierenden alternierenden
Reihe; eine Fehlerabschitzung ist folglich trivial. Euler hat diese Methode verwendet,
um ~ auf 6 Stellen genau zu berechnen: v = 0.577218. Es treten hier die Reihen der
inversen Quadrate, Kuben etc.'® auf, dic in der Zahlentheorie als Werte der Zetafunktion
und auch in der Geschichte der Mathematik eine grosse Rolle spiclen.

10. Euler hat wenig spiter (1736) noch eine andere Methode angegeben, die noch ef-
fizienter ist.!* Sie ist ebenfalls sehr interessant, denn sie fiihrt auf die Formel von
Euler-Maclaurin'® und damit zu Techniken, die mit der Numerischen Mathematik in
enger Verbindung stehen (sieche z.B. Henrici [11]).

Es geht um eine Summe der Form

FO) 4 @) 44 fn) =D () -

13) Zur Erinnerung:

> 7|'
Er:m

»l_.
a-|_.

T Twe

k=1

Ngk
»|_

~
I

14) Inventio summae cujusque seriei ex dato termino generali. Commentarii Academiae Petropolitanae ad
annum 1736. T. VIII, 9-22. Siehe [8] Opera omnia, Series prima, Vol. XIV, p. 108-123

15) Colin Maclaurin (1698-1746) wurde 1675 auf Empfehlung von Newton Nachfolger von Gregory auf dem
Lehrstuhl fur Mathematik an der Universitit in Edinburgh. Maclaurin hat die Formel 1742 in seinem
zweibdndigen Werk A Treatise of Fluxions verdffentlicht; Euler’s erste Verdffentlichung dariiber datiert
von 1736. Bereits 1737 hatte Maclaurin die Formel aber Stirling mitgeteilt, der ihn auf entsprechende
Resultate hinwies, die er brieflich von Euler erhalten hatte.
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Mit Hilfe der Taylorentwicklung mit xo =i und x — xo = —1 berechnen wir
. . ! 1 1" l’ 111 1’
fi-p=gi- L2 L0_F8

Summation ergibt dann
£l =0 = 3 F ) = 37 3170 + 5 o =
Dies liefert einmal
GRS ORSORS DAURE DWAORSS )
und — wenn man f” durch f ersetzt —

>0 = [ et g 30 =y @+ @)

Mit Hilfe der Gleichung (1) und ihrer Ableitungen ersetzt man nun sukzessive die auf
der rechten Seite der Gleichung (2) auftretenden Summen. Man erhilt auf diese Weise

S = [ fxid + Ann) = 00+ An(s'm) - £10))
AS(f ) = F(0) + As(F(m) = £O) + -+

Die Koeffizienten lassen sich durch Ableiten und Einsetzen bestimmen. Es ergibt sich

1 1

AOZ Al:ﬁ’ 142:07 Agi——

1
2 T
Man erhiilt schliesslich die gewiinschte Formel

> 0= [ S+ 50600~ O + g5

—PO) = s (1) = O -+

Bereits Euler hat die enge Verbindung bemerkt, die zwischen den hier auftretenden
Koeffizienten und den — ganz anders definierten — Bernoullizahlen B,, besteht: Fiir n > 2
gilt A, = B,,/n!.'9

16) Es gilt
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Wiihlt man f(x) = (1 +x)~', so ergibt sich wegen " (x) = (—=1)"(n!)(1 + x)~"+1)

sofort
11++17/n1dx+111
23 n+1  J, 1+x 2\n+1
1 1
— = ——= -1
s ()

720 \ (n+ 1) ‘

Die Addition von 1 auf beiden Seiten und die Ersetzung von 7 + 1 durch n liefert
schliesslich

Ll D ctogme LA Z LY, Ly,
totgtety s etleent oy ) "2 \Ge) T 1o\ '
Lisst man in dieser Formel 7 gegen unendlich streben, so ergibt sich sofort C = ~. Heut-
zutage kann man auch das Fehlerglied auf geschickte Weise ausdriicken; man schreibt:

1+1+l+...+1, + lo 71+ zm: Bk + 0 %
273 78 2km2F U 2 2y

Dabei bezeichnet B, die n-te Bernoullizahl, und 6,,, ist eine Zahl im Intervall (0, 1).
Die Reihe, die hier entstanden ist, ist fiir festes n divergent, denn der absolute Betrag
der Bernoullizahlen nimmt fiir grosse Indizes rasch zu. Hingegen lésst sich fiir festes m
der Fehlerterm beliebig klein machen, wenn nur 7 geniigend gross gewahlt wird. Euler
besass noch keine Beschreibung des Restgliedes, dieses wurde erst durch C.G.J. Jacobi
[9] nédher untersucht. Spéter hat W. Wirtinger [15] das Restglied mit Hilfe der Bernoulli-
Polynome behandelt. Dies ist der Zugang, den man heute in Lehrbiichern beschreitet, um
zur Euler-Maclaurin Formel zu gelangen. Auch ohne Kenntnis des Restglieds machte
Euler von der Reihe Gebrauch und berechnete damit « auf 16 Stellen genau, v =
0.577'215'664'901’532'5. Dazu setzte er n = 10 und beriicksichtigte Terme bis zur
Ordnung 1/n'*17)

11. Natiirlich erlaubt die genaue Kenntnis von -, in einem zweiten Schritt die Partialsum-
men der harmonischen Reihe mit derselben Genauigkeit zu bestimmen. Auch dies hat
Euler in der zitierten Schrift getan. Die gleichen Berechnungen treten interessanterweise
auch in einem freundschaftlichen Wettstreit zwischen Euler und seinem ehemaligen Leh-
rer Johann Bernoulli auf. Dies geht aus einigen Briefen aus der Korrespondenz hervor,
welche die beiden lebenslang fithrten und welche Zeugnis ablegt fiir ihre gegenseitige
hohe Wertschiatzung (siche dazu [10]). Johann Bernoulli — damals bereits 73 Jahre alt
— hatte seinem um 40 Jahre jiingeren Schiiler Euler eine Reihen-Formel fiir die n-te
Partialsumme der harmonischen Reihe mitgeteilt. Euler antwortete freundlich und aner-
kennend; gleichzeitig dusserte er aber seine Zweifel iiber die Niitzlichkeit von Bernoulli’s

17) Fiir verschiedene weitere Berechnungsarten fiir -y vergleiche man Nunemacher [13].
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Formel fiir grosse # und beschrieb anschliessend seine (die oben dargestellte) Methode.
Er lieferte als Beispiel die Summe der ersten Million Glieder der harmonischen Reihe
auf 17 Stellen genau: 14.392/726/722/865723'29. Dadurch fiihlte sich Johann Bernoulli
offenbar herausgefordert, und er gab in seinem Antwortbrief eine “neue Methode”, eine
einfache Abschiitzung an, um die Summe der ersten 107 und schliesslich der ersten 103
Glieder zu bestimmen. Hatte er nicht bemerkt, dass Euler’s Idee auch dieses geliefert
hatte?

Dank Der Autor dankt Herrn E.A. Fellmann fiir den wichtigen Hinweis auf die Arbeit
[10] und Herrn R. Suter fiir die Herstellung der Mathematica-Figuren.
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Zusatz bei der Korrektur Nach einem Vortrag iiber das Thema der harmonischen Reihe
an der Universidad Piiblica de Navarra in Pamplona teilten mir die Zuhdrer zu meiner
Uberraschung mit, dass Nicole Oresme dort gut bekannt sei, es gebe an der Universitit
sogar einen Reprasentationsraum, der seinen Namen trage. Genauere Nachforschungen
deckten Verbindungen zwischen Nicole Oresme und dem ehemaligen Konigreich Na-
varra auf: Johanna I, K&nigin von Navarra, hatte 1284 Konig Philipp IV von Frankreich
geheiratet. 1305 stiftete sie an der damals jungen Sorbonne das Collége de Navarre. Hier
war Nicole Oresme von 1348 bis 1361 titig, ab 1356 stand er dem College als grand
maitre (Rektor) vor. — Der Oresme-Raum an der Universidad Publica de Navarra befin-
det sich iibrigens nicht im Gebdude, in dem die Mathematik untergebracht ist, sondern
in demjenigen der Okonomie. In der Geschichte der Okonomie ist Oresme wegen seines
Tractatus de mutationibus monetarum berithmt, den man als Beginn dieser Wissenschaft
ansieht. Noch im 17. Jahrhundert war diese Schrift weit verbreitet und wurde mehrfach
nachgedruckt (1605, 1609, 1618, 1654, 1671). — Wie eine nihere Beschiftigung mit
seinen Schriften zeigt, verfiigte Nicole Oresme iiber eine ausserordentlich vielseitige Be-
gabung, die sich iiber alle Wissenschaftszweige erstreckte. Wie schon die hier erwédhnten
Beispicle aus dem Bereich der Mathematik und der Okonomie vermuten lassen, war
er seiner Zeit in vielem weit voraus. Zahlreiche weitere Beispiele ahnlicher Art aus
den verschiedensten Gebieten liessen sich anfiigen. Es muss erstaunen, dass er in der
Wissenschaftsgeschichte nicht besser bekannt ist. Seine Begabungen waren aber nicht
auf die Wissenschaften beschrankt: Nach seiner Tatigkeit am College de Navarre war
Oresme in einer politisch schwierigen Zeit als Berater und Diplomat des Dauphins und
nachmaligen Konigs Karl IT von Frankreich tétig; 1377 wurde er Bischof von Lisieux.
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