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Die harmonische Reihe: Historisches und Mathematisches51

Urs Stammbach

Urs Stammbach studierte an der ETH Zürich, wo er 1965 bei Beno Eckmann mit
einer Dissertation über die Homologietheorie der Gruppen promovierte. Nach einem

mehrjährigen Aufenthalt an der Cornell University in Ithaca, NY wurde er 1969

Professor an der ETH in Zürich. In seiner Forschung beschäftigt er sich mit der

homologischen Algebra und deren Anwendungen in der Gruppentheorie, insbesondere
in der modularen Darstellungstheorie. In jüngerer Zeit bearbeitet er auch Themen aus

der Geschichte der Mathematik. Er ist Autor bzw. Mitautor von mehreren Büchern.
1990 und 1991 amtete er als Präsident der Schweizerischen Mathematischen
Gesellschaft. In seiner Freizeit beschäftigt er sich gerne mit Geschichte, Literatur und

Musik.

1. Jedermann weiss, was die harmonische Reihe ist:

11111+2+3+4+5+

Der Weg zur Unendlichkeit ist mit Paradoxien gepflastert. Wer eben Zeno's Paradoxon

zu durchschauen beginnt, lässl sich von neuem verblüffen durch die Eigenschaften
der harmonischen Reihe. Die überraschende Tatsache ihrer Divergenz wurde in der
mittelalterlichen Mathematik erstaunlich früh entdeckt. Weitergehende Untersuchungen
über das Wachstums\ erhalten der Parlialsummcn /.ur harmonischen Reihe sind ohne

analytische Methoden kaum denkbar. So wurden weitere Fortschritte erst durch Jakob
und Johann Bernoulli. Eulcr und andere erzielt. Eulers Auseinandersetzung mit dem
Thema führte zu einer numerischen Näherungsrechnung für Eulers Konstante ~ auf
16 Dezimalen. Wenn Sie Lust und etwas Zeit haben, fordern Sie ihren PC heraus, es

Eulcr gleich zu tun! - Urs Slaininbach verfolgt, wie sich unser Verständnis rund um
die harmonische Reihe im Zeitraum von rund 1.150 bis 1750 entwickelt hat. In der

Einbettung mathematischer Entwicklungen in ihrem historisch-biographischen Umfeld
liegt ein besonderer Reiz. Sie ist ein Markenzeichen dieser Arbeit, hrs

*) Der Text entspricht im wesentlichen dem Inhalt von Vorträgen über dieses Thema, die am 27. November
1996 im Rahmen 13. Kolloquiums für Mathematiklehrer an der Universität Basel, am 26. Februar 1998

im Rahmen des 14. Eichstätter Kolloquiums zur Didaktik der Mathematik und am 11. Mai 1998 im
Kolloquium über Didaktik an der Universität Essen gehalten wurden.



94 Elem. Math. 54 (1999)

Aber nicht jedermann scheint zu wissen, weshalb sie so heisst. Sie heisst harmonisch,
weil jedes ihrer Glieder das harmonische Mittel der beiden Nachbarglieder ist:

2_i i_
n—1 n+1 _ _j_

n-\ ~"~ n+ï

Jedermann weiss, dass die harmonische Reihe divergiert, aber wenige scheinen zu wissen,

wann und durch wen diese Tatsache entdeckt worden ist.

In der Entwicklung der Mathematik nimmt die harmonische Reihe zweifellos einen wichtigen

Platz ein. Und die Tatsache, dass die harmonische Reihe divergiert, hat profunde
Konsequenzen: Die Welt würde zweifellos anders aussehen, wenn die harmonische Reihe

konvergieren würde. Umso erstaunlicher ist es, dass die historischen Hintergründe, selbst

unter Mathematikern, nicht allgemeiner bekannt sind. Hat der Mathematikunterricht in
der Vergangenheit vielleicht allzusehr die historische Dimension vernachlässigt?

2. Beweise für die Divergenz der harmonischen Reihe allerdings sind wohlbekannt. Hier
ist einer davon:

Man stellt fest, dass für jede natürliche Zahl a die Ungleichung

1 1 1 1 a2 - a 1

gilt. Daraus folgt

Somit sind die Partialsummen der harmonischen Reihe nach oben nicht beschränkt, und
die Reihe divergiert.

Dies ist im wesentlichen der Beweis, den schon Jakob Bernoulli1' gegeben hat, und den

wir in dieser oder in einer leicht abgewandelten Form auch heute noch in den Vorlesungen
geben.

Der Beweis steht in der Arbeit Positiones arithmeticae de seriebus infinitis, 1689; Teil
XVI Summa seriei infinitae harmonice progressionalium j + ^ + ^ + ^ + ^&est infinita
(siehe [1], p. 45ff), in der ersten der fünf berühmten "Dissertationen" (Arbeiten) über

Reihen, die Jakob Bernoulli zwischen 1689 und 1704 veröffentlicht hat.

Jakob war allerdings nicht der erste! André Weil bemerkt im Vorwort der Ausgabe
der Werke Jakob Bernoulli's (siehe [1], p. 12-13), dass die Divergenz der harmonischen
Reihe bereits 1650 von Pietro Mengoli nachgewiesen worden sei,2' wobei Weil als sicher

annimmt, dass Jakob Bernoulli die Schrift von Mengoli nicht gekannt hat.

1) Jakob Bernoulli lebte von 1654 bis 1705. Er studierte zuerst Theologie an der Universität Basel, beschäf¬

tigte sich aber schon während seines Studiums mit Mathematik. Nach einem längeren Auslandaufenthalt
kehrte er nach Basel zurück und wurde 1687 Professor an der dortigen Universität.

2) Pietro Mengoli (1625-1686) war Schüler Cavalieris und wurde dessen Nachfolger an der Universität in
Bologna.
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Aber auch Mengoli war nicht der erste! Bereits um 1350 hatte nämlich Nicole Oresme
die Divergenz der harmonischen Reihe entdeckt.3'

Diese früheren Resultate von Mengoli und Oresme4' scheinen beide wieder in Vergessenheit

geraten zu sein: Auch für mathematische Entdeckungen muss offenbar die Zeit
reif sein. Man vergleiche dazu auch [7], p. 91-93.

3. Auf Mengoli und auf Oresme nimmt Jakob Bernoulli in seiner Veröffentlichung nicht
Bezug. Hingegen sagt er, die Divergenz der harmonischen Reihe sei vor ihm von seinem

jüngeren Bruder Johann5' entdeckt worden: Id primus deprehendit fraterf1
Johann Bernoulli's Beweis war dieser. Er setzt

und subtrahiert davon gliedweise die Reihe

11111
Er erhält7' 11111+ + + +

Nun rechnet er weiter

1111 1

2345 1-22-33-4 4-511111-2 2-3 3-4 4-5
1 1 1

2-3 3-4 4-5
1 1

3) Nicole Oresme lebte von ca. 1320 bis 1382, zeitweise in Paris. Ab 1377 war er Bischof von Lisieux.
Der Beweis für die Divergenz der harmonischen Reihe ist in einer Schrift von Oresme mit dem Titel
Quaestiones super Geometnam Euchdis zu finden, die um 1350 geschrieben worden ist.

4) Die Beweise von Bernoulli, Mengoli und Oresme sind verschieden, für Details siehe Conway, Guy [4].

5) Johann Bernoulli lebte von 1667 bis 1748. Er wurde anfanglich von seinem um 13 Jahre älteren Bruder
Jakob in der Mathematik unterrichtet, insbesondere in der Leibnizschen Differential- und Integralrechnung.
Nach Reisen nach Genfund Paris wurde er 1695 Professor in Groningen. 1705 kehrte er nach Basel zurück,

wo er nach dem Tode seines Bruders den Lehrstuhl für Mathematik übernahm.

6) Es mag erstaunen, dass Jakob hier mit seinem Bruder Johann so pfleglich umgeht, aber die beiden Brüder

waren damals offenbar noch ein Herz und eine Seele; ihr Streit begann erst 1695.

7) Dieses Resultat war damals bereits bekannt; siehe z.B. Lord Viscount Brouncker: The squaring of the

hyperbola, 1668; aber ebenso bei Mengoli und Leibniz. Ob Bernoulli das Resultat selbst entdeckt oder es

einfach übernommen hat, weiss man nicht.
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1111
Man liest ab

N - l N.
Dies ist ein Widerspruch.

4. Johann's Beweis ist sicher genial. Er erfüllt aber wohl die Ansprüche nicht, die wir
heutzutage an einen mathematischen Beweis stellen. Zwar lässt sich mit dem heutigen

Wissen daraus ein mathematisch korrekter Beweis konstruieren, aber zu Bernoulli's
Zeiten waren einige der wesentlichen Tatsachen gar noch nicht bekannt. Schon Jakob

Bernoulli war sich bewusst, dass die Schlussweise bedenklich ist: Er beschreibt in der
oben erwähnten Publikation den Beweis seines Bruders Johann ausführlich, fügt dann
aber hinzu, dass man diese Methode nicht ohne besondere Vorsicht anwenden dürfe:
Observandum tarnen, non sine cautela hac utendum esse methodo. Zur Illustration setzt

und subtrahiert gliedweise

Er erhält 11112 2-3 3-4 4-5
im Widerspruch zum obigen Resultat!

Das Beispiel illustriert so nebenbei, wie sich der Begriff des mathematischen Beweises
im Laufe der Zeit verändert hat. Es zeigt aber auch auf überzeugende Weise, dass es in
der Mathematik neben den strengen Beweisen Überlegungen heuristischer Art gibt, die

auf einer gewissen Stufe der Erkenntnis und des Entdeckens eine grosse Rolle spielen:
Die Mathematik besteht nicht nur darin, Aussagen zu beweisen, sondern ebensosehr auch

darin, wohlbegründete Vermutungen zu erarbeiten.

5. Gerade an der harmonischen Reihe kann man diesen Schritt, nämlich die Erarbeitung
einer wohlbegründeten Vermutung auf einem leicht zugänglichen Niveau illustrieren.
Man trage zu diesem Zweck (etwa mit Hilfe eines Computeralgebrasystems) die Parti-
alsummen der harmonischen Reihe gegen den Index auf. Macht man dies für genügend
viele Glieder, so sind in der Figur die einzelnen Punkte nicht mehr einzeln zu identifizieren

und sie verschmelzen zu einer Kurve (siehe Figur 1).

Was ist das für eine Kurve? Die Vermutung liegt auf der Hand, und sie ist richtig. Es

ist in der Tat die Logarithmuskurve, oder wenigstens fast: Es ist die um weniges nach
oben verschobene Logarithmuskurve.
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Fig. 1 Die harmonische Reihe, 256 Glieder

Um das näher zu erklären, betrachten wir die Funktion x i-s- l/x. Für die Summe der
Inhalte der in Figur 2 eingezeichneten Rechtecke erhält man unmittelbar

2 3 4 5
¦

n ~ Vi x

Dies beweist übrigens noch einmal die Divergenz der harmonischen Reihe.

Fig. 2 Die untere Abschätzung

Betrachten wir die Rechtecke unter der Kurve (siehe Figur 3), so ergibt sich die Beziehung

S{n)- 1 < f -dx logn

Man hat also für S(n) die Ungleichungen

log(n + l) <S(n) < 1 + logn

aus denen folgt, dass die "Kurve" in Figur 1 tatsächlich im wesentlichen die log-Kurve
ist.
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6. Wir wollen die letzte Abschätzung noch etwas näher betrachten. Zu diesem Zweck
führen wir folgende Bezeichnung ein: Es sei rm der Flächeninhalt des dreieckförmigen
Bereichs zwischen dem Rechteck über dem Intervall [m, m+l] und der Kurve y l/x.
Dann gilt

S(n) logn
n-\

Fig. 3 Die obere Abschätzung

Die Reihe J2T rm hat nur positive Glieder. Durch Verschieben (siehe Figur 4) der

dreiecksförmigen Flächenstücke in das durch den Punkt (1,1) gegebene Quadrat folgt

Fig. 4 Die Konvergenz von 5Zf° rm

Damit ist gezeigt, dass die Reihe J2T r™ konvergiert und dass die Summe eine positive
reelle Zahl zwischen 0 und 1/2 ist. In der Gleichung

S(n) logn

gilt im Grenzübergang n —>¦ oo also 1/2 < 1 - Y,T rm <1.
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Damit ist das Computerbild vollständig erklärt: S(n) und logn unterscheiden sich für
grosse n im wesentlichen nur um eine additive Konstante. Ausserdem hat die Überlegung
auch über das Ausmass der Verschiebung Informationen geliefert: die Verschiebung ist
für n —> oo gegeben durch 1 - Y^° I'm, also durch eine Zahl zwischen 1/2 und 1. Dieser
Limes ist die berühmte Eulersehe Konstante, sie wird üblicherweise mit 7 bezeichnet:8'

00

7= lim (S(n)-logn) 1-Vrm

Man würde natürlich nicht eine spezielle Bezeichnung für diese Zahl einführen, wenn
sie nur im Zusammenhang mit der harmonischen Reihe vorkommen würde. Aber es hat
sich seit Euler gezeigt, dass 7 in sehr vielen mathematischen Problemen eine Schlüsselrolle

spielt. Zum Beispiel tritt sie völlig überraschend an verschiedenen Stellen in der
Zahlentheorie auf, so etwa bei der Primzahlverteilung und bei der Gammafunktion.9^

Die arithmetische Natur der Zahl 7 ist übrigens auch heute noch nicht geklärt: Man
weiss nicht, ob 7 irrational oder rational ist, auch wenn mit grosser Wahrscheinlichkeit
anzunehmen ist, dass 7 irrational ist.10' Selbst wenn man diese erste Frage beantworten

könnte, bleiben andere offen: Ist 7 algebraisch oder transzendent?

7. Ich will das einfache Resultat über den Zusammenhang von S(n) und logn zum
Anlass nehmen, um einige weitere Bemerkungen über die Divergenz der harmonischen
Reihe zu machen. Diese Divergenz ist extrem langsam, und es ist instruktiv, an dieser

Langsamkeit die Möglichkeiten des Computers zu testen. Zuerst einmal ist festzuhalten,
dass beim naiven Rechnen auf dem Computer eigentlich jede Reihe "konvergiert", wenn
nur die Reihenglieder gegen Null streben. Da nämlich der Computer nur endlich viele
Zahlen darstellen kann, kennt er eine kleinste positive Zahl. Streben nun die Glieder einer
Reihe gegen Null, so wird der Computer diese von einem gewissen Index an als Null
ansehen; sie tragen also zur Reihensumme nichts mehr bei, und die Reihe erscheint als

konvergent. Aber wir wollen hier einmal absehen von diesen technischen Begrenzungen
und uns einen idealen Computer vorstellen, der mit beliebig kleinen positiven reellen

8) Die Konstante 7 wird auch etwa nach Euler und Mascheroni benannt. Leonard Euler (1707-1783) studierte
bei Johann Bernoulli an der Universität Basel. Bereits als 20jähriger ging er nach St. Petersburg und wurde
dort 1731 Professor für Physik und ab 1733 für Mathematik. 1741 folgte er einem Ruf Friedrich II an
die Akademie in Berlin. Nach dem Tode von Maupertuis im Jahre 1759 war Euler faktisch, wenn auch

nicht nominell, der Leiter der Akademie. 1766 kehrte er nach St. Petersburg zurück, wo er - obschon

erblindet - bis zu seinem Tod unermüdlich tätig war. - Lorenzo Mascheroni (1750-1800) wurde 1786

Professor für Mathematik in Pavia. Er ist berühmt für seine Studien über geometrische Konstruktionen mit
dem Zirkel, also ohne Lineal, die er in seinem Napoleon gewidmeten Werk "La geometria del compasso"
veröffentlichte. - Euler's erste Veröffentlichung über 7 datiert aus dem Jahr 1734; Lorenzo Mascheroni
hat sich 1790 mit 7 beschäftigt. Euler hatte 15 Dezimalstellen für 7 angegeben, Mascheroni 32. Es stellte
sich allerdings später heraus, dass nur 19 davon richtig waren. Es ist deshalb wohl angebracht, wenn wir
die Konstante nur nach Euler benennen.

9) Für Beispiele konsultiere man z.B. Conway, Guy [4], Dickson [5], Nunemacher [13].

10) J. Borwein (Dezember 1993) gibt 172'000 Stellen von 7 an und folgert aus seinem Resultat, dass der
Nenner von 7 mehr als 60'000 Stellen besitzen muss, wenn 7 rational ist. Diese Information ist unter
http://www.mathsoft.com/asolve/constant/euler/euler.html zu finden.
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Zahlen richtig umzugehen weiss. Wir haben im Bild gesehen, dass die Partialsumme
S (256) der harmonischen Reihe etwa 6 beträgt. Wieviele Glieder braucht es, um die
Summe 10, 40, 100 zu erreichen? Dabei wollen wir uns mit groben Abschätzungen
begnügen und die (ebenfalls interessante) Frage nach der genauen Anzahl der für die
Summe notwendigen Glieder nicht betrachten.11) Es sind nach unserem Resultat die

Gleichungen
logn 10 —7, logn 40-7, logn=100-7

zu lösen. Die Zahl n ist also in den drei Fällen approximativ durch

gegeben. Man erhält (für 7 0.577218):

n 12'367, n=1.32-1017, n=1.50 1043.

Nehmen wir an, dass unser Computer pro Sekunde l'000'OOO reelle Zahlen (mit beliebiger

Genauigkeit) addieren kann. Dann erhalten wir als approximativen Zeitbedarf der
durchzuführenden Rechnungen

12 msec 4'190 Jahre 4.78 • 1029 Jahre

Das Beispiel ist instruktiv: Bereits im sehr einfachen Fall der harmonischen Reihe ist
der Computer nicht in der Lage, den Resultaten der Mathematik wirklich gerecht zu
werden. Und er wird es auch nie können, denn selbst der Einsatz eines Computers, der
eine Million Mal schneller ist, bringt in dieser Richtung wenig.

8. Diese Überlegungen zeigen auch, dass für die numerische Berechnung von 7 die
Definition als Limes der Differenz von S(n) und logn nicht günstig ist. Dies wird
besonders deutlich, wenn man eine genauere Abschätzung durchführt. Die Berechnung
von 7 muss auf anderen Wegen erfolgen, und wir werden später zwei entsprechende
Ideen von Euler eingehender beschreiben.

Für die Abschätzung benützen wir die bereits früher eingeführte Bezeichnung (vergleiche
dazu Young [16]): Es ist rm der Flächeninhalt des dreieckförmigen Bereichs zwischen
dem Rechteck über dem Intervall [m, m+l] und der Kurve y l/x. Dann erhalten wir

00 n—1 00 00

1 m=\ m=n m=n

Als Nächstes versuchen wir, rm abzuschätzen. Aus der Figur 5 liest man ohne Schwierigkeiten

ab:
1 1 1

m

11) Zu dieser Frage siehe z.B. Comtet [3], Newton [12], Young [16], Zemyan [17].
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Fig. 5 Abschätzung für rm

und damit ergibt sich, da man eine Teleskopfolge vor sich hat,

~ 1 1

Dies liefert eine Fehlerabschätzung für die Berechnung von 7 aus der Gleichung

00

7 lim (S(n) - logn) (S(n) - logn) -Vrra.
n^oo *—*

m=n

Man erhält:

Um 7 auf 10
z

genau zu berechnen, müssen mindestens 10' Terme der harmonischen

Reihe berücksichtigt werden.

Wegen dieser ausserordentlich langsamen Konvergenz ist die Folge S(n) - logn für die

Berechnung von 7 nicht geeignet.

9. Dass sich die direkte Definition für die Berechnung von 7 nicht eignet, erkannte

natürlich auch Euler. Er schlug deshalb 1734 das folgende Verfahren vor:12)

Man betrachte die übliche Potenzreihe des Logarithmus

iog(i
9 -} A

X X X

12) De progressionibus harmonicis observationes, Commentarii Academiae Petropolitanae ad annum 1734 et
1735. T. VII, 150-161. Siehe [8] Opera omnia, Series prima, Band XIV, p. 87-100
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Setzt man x l/k, so erhält man

loef. + IW-
oder

Durch Summenbildung ergibt sich daraus

i 111 1

i

oder

ill 7 it=i it=i it=i

Im Grenzübergang erhält man 7 als Limes einer rasch konvergierenden alternierenden

Reihe; eine Fehlerabschätzung ist folglich trivial. Euler hat diese Methode verwendet,

um 7 auf 6 Stellen genau zu berechnen: 7 0.577218. Es treten hier die Reihen der
inversen Quadrate, Kuben etc.13' auf, die in der Zahlentheorie als Werte der Zetafunktion
und auch in der Geschichte der Mathematik eine grosse Rolle spielen.

10. Euler hat wenig später (1736) noch eine andere Methode angegeben, die noch
effizienter ist.14' Sie ist ebenfalls sehr interessant, denn sie führt auf die Formel von
Euler-Maclaurin15' und damit zu Techniken, die mit der Numerischen Mathematik in
enger Verbindung stehen (siehe z.B. Henrici [11]).

Es geht um eine Summe der Form

{=1

13) Zur Erinnerung:

¦K i—( 1 7T4 *-^ 1 7T° *-^ 1

^ k2 6 ' ^ kA 90 ' -^ k6 945 ' ^ ks 9450 ' ' '

k=l k=l k=l k=l

14) Inventio summae cujusque seriei ex dato termino generali. Commentarii Academiae Petropolitanae ad

annum 1736. T. VIII, 9-22. Siehe [8] Opera omnia, Series prima, Vol. XIV, p. 108-123

15) Colin Maclaurin (1698-1746) wurde 1675 auf Empfehlung von Newton Nachfolger von Gregory auf dem

Lehrstuhl für Mathematik an der Universität in Edinburgh. Maclaurin hat die Formel 1742 in seinem

zweibändigen Werk^4 Treatise of Fluxions veröffentlicht; Euler's erste Veröffentlichung darüber datiert

von 1736. Bereits 1737 hatte Maclaurin die Formel aber Stirling mitgeteilt, der ihn auf entsprechende
Resultate hinwies, die er brieflich von Euler erhalten hatte.
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Mit Hilfe der Taylorentwicklung mit x0 i und x - x0 -1 berechnen wir

Summation ergibt dann

î=l '
!=1

' î=l

Dies liefert einmal

J2f(i) =/(») -/(o) + ^ E/"(f) - i[{=1 ' {=1 ' !=1

und - wenn man /' durch / ersetzt -

+ h
¦ i=\ {=i

Mit Hilfe der Gleichung (1) und ihrer Ableitungen ersetzt man nun sukzessive die auf
der rechten Seite der Gleichung (2) auftretenden Summen. Man erhält auf diese Weise

+ A2(J"(n)-f"(0))+A3(f"'(n)-f"\0)) + ---

Die Koeffizienten lassen sich durch Ableiten und Einsetzen bestimmen. Es ergibt sich

Ao \, A1 l, A2 0, A3 -±,...
Man erhält schliesslich die gewünschte Formel

Bereits Euler hat die enge Verbindung bemerkt, die zwischen den hier auftretenden
Koeffizienten und den - ganz anders definierten - Bernoullizahlen B„ besteht: Für n > 2

gilt An Bn/«!-16)

16) Es gilt

B3=0, B4 -^-, B5 0, B6 ±
30 42
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Wählt man/(x) (l + x)~\ so ergibt sich wegen f{n\x) (-l)"(n!)(l +
sofort

11 1 /•" 1 1

12

Die Addition von 1 auf beiden Seiten und die Ersetzung von n + 1 durch n liefert
schliesslich

1 " ' im -Yi{h) + ^{^) + ---
Lässt man in dieser Formel n gegen unendlich streben, so ergibt sich sofort C 7.
Heutzutage kann man auch das Fehlerglied auf geschickte Weise ausdrücken; man schreibt:

11 1 1/1\ A 8a „ B2m+2

±T2T3T Tn~ '^^'^2 \n)~ ^ 2Jcn2* ™'« (2m+ 2)n2™+2
'

Dabei bezeichnet Bn die n-te Bernoullizahl, und öm„ ist eine Zahl im Intervall (0,1).
Die Reihe, die hier entstanden ist, ist für festes n divergent, denn der absolute Betrag
der Bernoullizahlen nimmt für grosse Indizes rasch zu. Hingegen lässt sich für festes m
der Fehlerterm beliebig klein machen, wenn nur n genügend gross gewählt wird. Euler
besass noch keine Beschreibung des Restgliedes, dieses wurde erst durch C.G.J. Jacobi

[9] näher untersucht. Später hat W Wirtinger [15] das Restglied mit Hilfe der Bernoulli-
Polynome behandelt. Dies ist der Zugang, den man heute in Lehrbüchern beschreitet, um
zur Euler-Maclaurin Formel zu gelangen. Auch ohne Kenntnis des Restglieds machte

Euler von der Reihe Gebrauch und berechnete damit 7 auf 16 Stellen genau, 7
0.577'215/664/901'532/5. Dazu setzte er n 10 und berücksichtigte Terme bis zur
Ordnung l/n14.17)

11. Natürlich erlaubt die genaue Kenntnis von 7, in einem zweiten Schritt die Partialsum-

men der harmonischen Reihe mit derselben Genauigkeit zu bestimmen. Auch dies hat
Euler in der zitierten Schrift getan. Die gleichen Berechnungen treten interessanterweise
auch in einem freundschaftlichen Wettstreit zwischen Euler und seinem ehemaligen Lehrer

Johann Bernoulli auf. Dies geht aus einigen Briefen aus der Korrespondenz hervor,
welche die beiden lebenslang führten und welche Zeugnis ablegt für ihre gegenseitige
hohe Wertschätzung (siehe dazu [10]). Johann Bernoulli - damals bereits 73 Jahre alt

- hatte seinem um 40 Jahre jüngeren Schüler Euler eine Reihen-Formel für die n-te
Partialsumme der harmonischen Reihe mitgeteilt. Euler antwortete freundlich und
anerkennend; gleichzeitig äusserte er aber seine Zweifel über die Nützlichkeit von Bernoulli's

17) Für verschiedene weitere Berechnungsarten für 7 vergleiche man Nunemacher [13].
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Formel für grosse n und beschrieb anschliessend seine (die oben dargestellte) Methode.
Er lieferte als Beispiel die Summe der ersten Million Glieder der harmonischen Reihe
auf 17 Stellen genau: 14.392'726/722'865/723/29. Dadurch fühlte sich Johann Bernoulli
offenbar herausgefordert, und er gab in seinem Antwortbrief eine "neue Methode", eine
einfache Abschätzung an, um die Summe der ersten 107 und schliesslich der ersten 108

Glieder zu bestimmen. Hatte er nicht bemerkt, dass Euler's Idee auch dieses geliefert
hätte?

Dank Der Autor dankt Herrn E.A. Fellmann für den wichtigen Hinweis auf die Arbeit
[10] und Herrn R. Suter für die Herstellung der Mathematica-Figuren.
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Zusatz bei der Korrektur Nach einem Vortrag über das Thema der harmonischen Reihe

an der Universidad Püblica de Navarra in Pamplona teilten mir die Zuhörer zu meiner
Überraschung mit, dass Nicole Oresme dort gut bekannt sei, es gebe an der Universität

sogar einen Repräsentationsraum, der seinen Namen trage. Genauere Nachforschungen
deckten Verbindungen zwischen Nicole Oresme und dem ehemaligen Königreich
Navarra auf: Johanna I, Königin von Navarra, hatte 1284 König Philipp IV von Frankreich
geheiratet. 1305 stiftete sie an der damals jungen Sorbonne das Collège de Navarre. Hier
war Nicole Oresme von 1348 bis 1361 tätig, ab 1356 stand er dem Collège als grand
maître (Rektor) vor. - Der Oresme-Raum an der Universidad Püblica de Navarra befindet

sich übrigens nicht im Gebäude, in dem die Mathematik untergebracht ist, sondern

in demjenigen der Ökonomie. In der Geschichte der Ökonomie ist Oresme wegen seines

Tractatus de mutationibus monetarum berühmt, den man als Beginn dieser Wissenschaft
ansieht. Noch im 17. Jahrhundert war diese Schrift weit verbreitet und wurde mehrfach

nachgedruckt (1605, 1609, 1618, 1654, 1671). - Wie eine nähere Beschäftigung mit
seinen Schriften zeigt, verfügte Nicole Oresme über eine ausserordentlich vielseitige
Begabung, die sich über alle Wissenschaftszweige erstreckte. Wie schon die hier erwähnten

Beispiele aus dem Bereich der Mathematik und der Ökonomie vermuten lassen, war
er seiner Zeit in vielem weit voraus. Zahlreiche weitere Beispiele ähnlicher Art aus
den verschiedensten Gebieten Hessen sich anfügen. Es muss erstaunen, dass er in der

Wissenschaftsgeschichte nicht besser bekannt ist. Seine Begabungen waren aber nicht
auf die Wissenschaften beschränkt: Nach seiner Tätigkeit am Collège de Navarre war
Oresme in einer politisch schwierigen Zeit als Berater und Diplomat des Dauphins und
nachmaligen Königs Karl II von Frankreich tätig; 1377 wurde er Bischof von Lisieux.
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