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Die Transformation einer geschlossenen Kurve
in eine Ellipse

Wolfgang Schuster

Wolfgang Schuster wurde 1940 in Kdln geboren. Er studierte katholische Theologie,
Philosophie und Mathematik in Bonn und Innsbruck und promovierte 1970 im Fach
Mathematik an der Universitat Bonn. Anschliessend war er als wissenschaftlicher
Assistent in Bonn und im Schuldienst titig. Seit 1980 arbeitet er am Deutschen
Institut fiir Fernstudienforschung an der Universitit in Tibingen. In seiner Freizeit
beschaftigt er sich mit Wittgenstein, Musil, Joyce und Proust, und auf der sportlichen
Seite mit Drachenfliegen.

Einleitung

In [3] wird gezeigt, wie man durch sukzessive Anwendung einer endlichen Folge von
Parallelogramm-Konstruktionen ein beliebiges Polygon in ein affin-regulires iiberfithren
kann. Ein affin-regulires Polygon ist das Bild eines reguldren Polygons unter einer af-
finen Abbildung. Die Vorgehensweise dabei ist folgende: Ein Polygon betrachten wir
als n-tupel z = (2, z1, ..., 2,—1) komplexer Zahlen. Mit Hilfe einer Parallelogramm-
Konstruktion P, fithren wir das Polygon z in ein Polygon w iiber. Die Parallelogramm-
Konstruktion P, wird durch einen reellen Streckungsfaktor p > 0 festgelegt: Man ergénzt
die benachbarten Eckpunkte z; 1, 2;, Zj+1 durch einen vierten Punkt z]‘ =zj41+2j-1—Z;
zu einem Parallelogramm und trigt im Punkt z; den Vektor p(z]‘ —z;) an. Dessen Spitze
markiert den Eckpunkt

Wy =2; + plgi—1 — % s —%) (1)

eines neuen Polygons w = (wo, w, ..., Wu—1) = Pyz.
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Abb. 1 Die Parallelogrammkonstruktion P,.

Satz 1 Die Transformationen P, px = 1/(4sin® %) k=2,3,...,1(n—1), fithren
ein beliebiges Polygon z mit ungerader Eckenzahl n in ein affin-regulires Polygon

W:Pﬂz Pﬂs"'Pﬂ%(n,l)z (2)

itber. Dabei ist die Reihenfolge der Transformationen P, beliebig.

Abb. 2 Die Parallelogrammkonstruktion P, mit p = % (1 - %) fuhrt ein vorgegebenes Funfeck in ein
affin-regulares Funfeck tuber.

Die Faktoren pj besitzen eine geometrische Bedeutung: Die Linge der Diagonalen
(1, A), A = ¢, in dem von der n-ten Einheitswurzel \ erzeugten reguliren n-Eck
(1, A, A%, .o, A1y st |1 — A¥| = 2sin ZE,

Hat das Ausgangspolygon z gerade Eckenzahl, dann mufy zu den Transformationen P, ,
k=2,3,..., 2(n—1), noch die Transformation S hinzutreten, die ein Polygon z in
das Polygon w der Seitenmitten w; = 1(z; + zj;1) iberfilhrt. S kann beim Anfangs-
polygon oder bei einem beliebigen Zwischenpolygon ausgefiihrt werden. Das Polygon
w=P,P, - P l)Sz ist dann affin-reguldr. Das Regularisierungsverfahren fiir Po-

P4 (n—

2
lygone iibertragen wir auf eine Klasse hinreichend glatter geschlossener Kurven z(t) der
komplexen Ebene.
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1 Erste heuristische Uberlegung

Durch eine periodische Funktion z : R — C mit Periode 1 wird in der Ebene C eine
geschlossene Kurve mit der Punktmenge {z(t)|¢ € [0, 1]} und der Parametrisierung
z gegeben; diese, die Punktmenge mit Parametrisierung, wird im folgenden mit z(¢)
bezeichnet. Wir nehmen an, daBl die Funktion z an jeder Stelle ¢+ € R in eine Taylorreihe
entwickelt werden kann. Die obige Parallelogrammkonstruktion P, iibertragen wir auf
die Kurvenpunkte z(¢), z(t — 1), z(t + 1) mit n € N.

N\

-1y

0

20 2+ 1)

Abb. 3 Ubertragung der Parallelogrammkonstruktion P, auf eine geschlossene Kurve z(#).

Dadurch erhalten wir eine Kurve wy ,,(¢) mit

Wi a(t) =z(t) + @ <z <t - %) —z(t) +z <t+ %) —z(t)> .

Die Taylorentwicklung des Ausdrucks in der Klammer lautet:

. <t - %) bz <t + %) 2a(t) = 2(t) — %z/(t) + %nzz”(t)

()~ 22(t) 4

1
B+ =2 () + —
+z()+nz()+2n2
1
= ﬁz” (t)+ -+ + (Terme hoherer Ordnung)
Also gilt
1
Wit =z(t) + ————E"H)+ ) .
kolt) =500+ s O 1)
Wegen
lim nsinﬂ =k
n—o0 n
folgt

wie(t) = nlggo Wia(t) = 2(t) + (2mk)?
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Dieses Ergebnis gibt Veranlassung, die Differentialoperatoren

P14 o @20 =50

k=1,2,..., (3)

einzufithren, die miteinander kommutieren. Es gilt dann

wntt) = ((1+ oo ) ) (0 = @)

Geometrische Deutung
Die Transformation der Kurve z(¢) in die Kurve wy (¢) 1aBt sich aufgrund der Zerlegung
von Py in Lincarfaktoren P," und P, geometrisch deuten. Offenbar ist

B D iD iD\ .

e e iz'(t)
2 () = (P D)) = 2(8) — 5
ist die Ortskurve der Spitze des in den Kurvenpunkten z(#) in bezug auf den Durchlauf-

sinn nach rechts angetragenen Normalenvektors z'(¢)/27k. Entsprechend ist z*(t) die
Ortskurve der Spitzen der nach links angetragenen Normalenvektoren.

Die Kurve

Beispiel: Der Operator P, transformiert die Ellipse
z(t) = acos2nt + ibsin2nt
mit den beiden Halbachsen 4, b in die Kurve
2z~ (t) = (a+ b)(cos2xt +isin2xt) .

Das ist die Parameterdarstellung eines Kreises um den Mittelpunkt der Ellipse mit dem
Radius a + b. Der Normalenvektor im Punkt z(#) ist

—iz/(t)
27

. , 1
= {asin2xt + bcos2nwt = —iz <t + Z) .

Dieser geht also durch eine Drehung um 90° im Uhrzeigersinn aus dem Vektor z(t + 1)
hervor. Der Vektor z(t + ;) hat die Richtung der Tangente an die Ellipse im Punkt

z(t). D.h, |‘zz/ff) | ist gleich der Linge des halben Durchmessers, der zu dem durch z(#)
bestimmten Durchmesser der Ellipse konjugiert ist. — Damit haben wir den Satz von
Napoleon-Barlotti fiir ein “affin-regulires Polygon mit unendlicher Eckenzahl”, das ist
eine Ellipse, gewonnen (vgl. [2]). Die Anwendung des Differentialoperators 1+ % auf die
Gleichung der Ellipse fiihrt auf die Variante dieses Satzes, bei der die Normalenvektoren

nach innen angetragen werden.
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Jede glatte 1-periodische Kurve z(t) der komplexen Eben ist als Fourierreihe

2(t) = a + Z (aleZm'lt +a71872mlt)
IeN

mit Koeffizienten a,, a;, a_; € C darstellbar. Dabei kann der Summand

el(t) = ul627rilt +a71672ﬂ’ilt7 0 g t S 1’

als Parameterdarstellung einer [-fach durchlaufenen Ellipse interpretiert werden.

Man erhilt unmittelbar die Beziehungen

12
Pient) = (1- 5z ) alt),
aus denen man fiir kK = [ den Ausloschungseffekt Prex = 0 abliest.
Es ist daher zu vermuten, dafl die Funktionenfolge

Zu(t) = (Puzm—1)(t), m=2,3, ...,

(7)

mit z;(¢t) = z(¢) fiir m — oo gegen eine Ellipse z.(t) konvergiert, sofern nur die
Anfangsfunktion z(¢) hinreichend glatt, d.h. hinreichend oft stetig differenzierbar, ist. In
einem letzten Schritt kann z. (#) dann mit Hilfe des Operators P,~ oder P;" (entsprechend

dem Satz von Napoleon-Barlotti) in einen Kreis transformiert werden.

Die Vermutung ist sicher richtig, wenn die Reihe (5) endlich ist. Denn wenden wir auf

n
Z(t) =g+ Z (alezmlt +a_1672ﬂilt>
I=1

den Produktoperator

- 1 v ,
(Tm )(t) =ao+ H (1 — ﬁ) (alEZWlt + u71€72ﬂ1t> ,
k=2

(8)
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denn es ist (Tye;)(t) = 0 fiir [ > 2. Bekanntlich ist

i 1 1
(-5) -

also ergibt sich fiir m — oo schlieBlich
1 27ik —2mit
Zoo(t) =0+ 5 (mE™ +a,e™) (10)

das ist, bis auf den Faktor 1/2, die Anfangsellipse der Fourierentwicklung (8) von z(¢).

Ist die Reihe (5) nicht endlich, dann erhélt man, sofern nur der Operator T, gliedweise
angewendet werden darf,

(Twuz)(t) = a0 + ﬁ (1 — %) ( 2mit g e*Zﬂ'ii)

Wegen [T, (1 — £z) = 3 muB sich die Uberlegung zur Konvergenz der Funktionen-

folge z,(t) = (Tuz)(¢) nur noch um das Verhalten des Restgliedes

o0

Z H (1 _ _> 27rilt Jru_lefzmlt) (12)

I=m+1 k=2

kiimmern (s. Abschnitt 3).

2 Zweite heuristische Uberlegung
Wir berechnen im folgenden den Grenzwert To, = hm T, der Operatorenfolge T, und

bestimmen die Funktion z., = Toz. Ohne dah wir auf die Fourieranalyse von z Bezug
nehmen, ergibt sich dann direkt: z, ist die Parameterdarstellung einer Ellipse.

Aus der Produktdarstellung der Sinusfunktion

1 iTx —imx\ _ o O 1 xz
E(e —e ™) =sinmx = mx [ | L

k=1

ergibt sich mit iwx = ¥ die Bezichung




Elem. Math. 53 (1998) 67

die mit y = D in die Operatorgleichung

e%—e%Dﬁ(l—%) (13)

iibergeht. Darin ist das unendliche Produkt rechts durch den Grenzwert

_ D?
PZ:JE&E <1+ (27rk)2>z

erklart, dessen Existenz wir fiir eine gewisse Klasse von Funktionen z hier voraus-
setzen und im folgenden Abschnitt beweisen wollen. (Auf einen strikten Beweis der
Operatorgleichung (13) wollen wir hingegen verzichten. Er lieBe sich z.B. mit Hilfe der
Laplace-Transformation fithren. Man hat dann zu zeigen, dah die Funktionen 71z und T>z
dieselbe Laplace-Transformierte besitzen, wenn T der bei (13) links stehende und T; der
rechts stehende Operator ist und die Funktion z im Durchschnitt der Definitionsbereiche
von T; und T; liegt.) Der Operator el ¢ e R, ist durch die Exponentialreihe

@i -3 (D) -3 G
| > T

k=0

erklart. Hat z(¢) eine iiberall konvergente Potenzreihenentwicklung, so gewinnt man nach
einfacher Rechnung;:
€Pz)(t) =z(t+¢) . (14)

Erfiillt die Funktion w die Bezichung

o &)= -

d.h., ist w eine Losung der Differentialgleichung

w'(t) + =z(t) (15)

dann erhilt man wegen der Vertauschbarkeit der Operatoren D und Py fiir den in (9)
definierten Operator T,

Tz = (D(lJr%)Tm)w (le[l(lJr%))w 3

und durch Grenziibergang 1 — oo folgt mit (13)

Tasm = (e% —e“%) /7 (16)
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Bezeichnet man mit L den zu (15) gehorigen Losungsoperator, das ist die Abbildung L,
dic jeder Funktion z dic Menge L(z) der zugehdrigen Losungen w von (15) zuordnet,
dann 146t sich der Grenzoperator T, in der Form

Toa= (e% —e*%) L (17)

notieren. Diese Schreibweise kann man folgendermaBen rechtfertigen: Als Bild der
Menge L(z) unter der Abbildung eP/?> — ¢~ P/? definieren wir die Funktion (eP/? —
e P/)w, wobei w ein beliebiges Element aus L(z) ist. Mit (14) ergibt sich also (in
Ubereinstimmung mit (16)):

(Tooz)(t):w<t+%> —w(t—%) . (18)

Diese Definition des Operators T, ist eindeutig, also unabhingig von der speziellen
Wahl der Losung w € L(z). Ist ndmlich w; € L(z) eine andere Losung, dann gilt
wy = w + h, wobei h(t) = c16™ + c267?™ 3, €1, €2, ¢3 € C, eine Losung der zu
(15) gehorigen homogenen Differentialgleichung ist. Die Funktion  ist 1-periodisch. Es
folgt daher hi(t+ 1) —h(t—%) =0, alsow(t+3) —w(t— 1) =wi(t+ 1) —wi (t = 1).
Ist nun Z eine Stammfunktion von z, dann ist
t
w(t) = Z(t) - / cos2m(t — )z(r)ir (19)
0

eine Losung von (15), wie man leicht nachrechnet. Mit (18) ergibt sich also

(Too)(t) = /t i — /0 " et (t " % - T> 2(r)dr

1
2
t—1 1
+/ cos 2w <t 5~ 'r> z(r)dT .
0

Die Integranden sind 1-periodische Funktionen, so dah mit Tooz = 2o Weiter gilt:
1 1
Zaslt) = /Z(T)d’?’ + / cos2m(t — 7)z(7)dr
0 0
1 1 1 . X 1 1 X .
= /Z(’T)d’l‘ + = / e (r)dT e < / ey (r)dr et
0 2 0 2 0

Mit den Koeffizienten
a = /OIZ(T)d7'7 m = /Ole‘z’r”z(T)dm a_y = /Olez””z(T)dT (20)
erhalten wir also wieder die Grenzkurve
Zoo(t) =0 + % (@™ ta_je ) . (21)

Die Zahlen ay, a,, a_; sind die ersten Koeffizienten der Fourierentwicklung der Funk-
tion z.
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3 Eine Konvergenzbedingung
Die Funktion f sei in einem Gebiet holomorph, das einen Kreisring Kp = {z|[R™! <
|z| < R} mit R > 1 enthilt. Sie kann dann dort in eine Laurentreihe

fz) =a0+ ) (' +az7) (22)

IeN

entwickelt werden. Fiir die Koeffizienten a;, a_; dieser Entwicklung gilt eine Abschit-
zung der Form (vgl. [1], S. 189 ff.)

M
|ﬂl|7 |a*l| < ﬁ7 (23)
wenn M > 0 eine obere Schranke fir |f(z)|, z € Kg, darstellt. Wir betrachten das Bild
des Einheitskreises unter der Abbildung f, das durch die 1-periodische Funktion z mit

) =ao+» (@™ +a ™) teR (24)
IeN

parametrisiert wird. Da die Reihe (22) beliebig oft gliedweise differenziert werden darf,
darf der Operator T, auf die Entwicklung (24) gliedweise angewendet werden. Die
Funktionenfolge T,z konvergiert also genau dann gegen eine Grenzfunktion z.,, wenn
das Restglied (12) fiir m — oo gegen Null geht. Mit (23) erhalten wir zunichst die

Abschitzung
— |1 2\ |2M
Rl < 3 (T (1- )| 5
I=m+1 k=2

fiir den in (12) definierten Term. Wir betrachten daher den Ausdruck

m lz 1 m
11 (1 - F)‘ I [[a-0a+k).

k=2 k=2

Zwischen arithmetischem und geometrischem Mittel positiver Zahlen a,, 4,, . . ., 4, be-
steht die Ungleichung

1 1
@)t Sl aa ),
also
By ~lly = A <@ a4 )"
Daher gilt
n
[Te-ka+k <rm=,
k=2
also
M sl lZm—Z
Ru(t)] <
Ru®)] < s >

I=m+1



70 Elem. Math. 53 (1998)

Die Funktion g mit ¢(x) = x> 2R*, m > 2, x > 0, hat ihr Maximum bei x, =
(2m — 2)/logR und fillt streng mononton fiir x < xo. Ist log R > 2, also R > ¢?, dann
ist xo < m, so daB gilt

o0 12m72

R </0 x¥M 2Ry

I=m+1

da die links stehende Summe als Summe von Rechteckflichen gedeutet werden kann,
dic unterhalb des Graphen von g liegen. Das Integral kann man dann mit Hilfe der
Transformation ¢t = x log R auf die Integraldarstellung der Gammafunktion zuriickfithren:

B By 1 e (2m —2)!
2m ZR he _ / 2m—2 t _ )
R e [ e = o

Damit erhalten wir die Abschitzung
2m-=-2)12M
(mt)*(log R)>m=1

und wegen R > ¢%, d.h. logR > 2, folgt

|Rm(8)] <

(2m —2)14M

Mit Hilfe der Stirlingschen Formel n! = n"e™"v/27mn e%, 0 < ¥ < 1, ergibt sich daraus
schlieBblich die Abschitzung

IRm(£)] <

.
(m —1)2/m -
Diese Abschitzung kann sicherlich noch verbessert werden. Sie soll hier nur dem Zweck
dienen, eine hinreichende Bedingung fiir lim R,(¢) = 0 zu formulieren.
mM—00

[Rm(£)] <

Damit ist gezeigt, dah die Klasse der Funktionen z, die zu einer konvergenten Funktio-
nenfolge T,z Anlab geben, umfassender ist als die Klasse der Funktionen z mit einer
endlichen Fourierentwicklung. — Unser Ergebnis fassen wir zusammen:

Satz 2 Die Funktion f sei holomorph in einem Gebiet, das den Kreisring Kz = {z|e™2 <
|z| < €%} enthdlt, und

f(z) =a0+ Z (@2 +a_iz™)

leN

sei ihre Laurentreihe. Ist dann z(t) = f(e*™), t € [0, 1], das Bild des Einheitskreises
unter der Abbildung f, dann konvergiert die Funktionenfolge Tz, m > 2, mit

A Dz d t
mzH(HW) , (D2)(t) = 25)7

k=2

gleichmapig in [0, 1] gegen die Funktion z, mit

1 . .
Zoo(t) =q, + 5 (aleth +ﬂ71€72mt> )

Der Graph der Funktion z ist eine Ellipse.
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2(H=sin (TE eZnit) ] e Ti0z

T2

T3z T3z

2mit

Abb. 4  Transformation der Kurve z(t) = sin(7e*™) in den Kreis 200 (f) = %Tre”“. Man beachte das
explosionsartige GroBenwachstum bei den Anfangsgliedern der Folge Tr,2.

Bemerkung: Es mag von einem geometrischen Standpunkt aus unbefriedigend erschei-
nen, daf die Transformation einer geschlossenen Kurve z(t) in eine Ellipse auf eine spe-
zielle Parametrisierung der Kurve Bezug nimmt. Die Linge der anzutragenden Normalen-
vektoren dndert sich dann im allgemeinen mit dem Kurvenpunkt. Dah die Transformation
einer geschlossenen Kurve in eine Ellipse auch durch Antragen von Normalenvektoren
gleicher Linge mdglich ist, zeigt man mit Hilfe der natiirlichen Parametrisierung durch
die Bogenlinge s. Die Funktion z hat dann die Periode L, wenn L die Linge der Kurve
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ist. Besitzt z eine Fourierentwicklung

2(5)=bo+ > (blez“—ils Fb_e ) 7

IeN

so transformiert die Folge der Differentialoperatoren

po—14 (LDY _ (1+iL—D> (1 iLD)

(2rk)? 27k C 2nk

die Kurve z(s) in die Ellipse
1 2nis _ s
Zoo(5) = b+ 5 (ble 4 p_e ) :

sofern z(s) eine hinreichend glatte Kurve ist. Wegen |z'(s)| = 1 ist die Lénge L/27k
der Normalenvektoren jetzt unabhiingig von dem Kurvenpunkt, an dem sie angetragen
werden.

Fiir die kritische Durchsicht des Manuskripts und wertvolle Verbesserungsvorschlige
danke ich Herrn Giinter Pickert (GieBen). Herrn Carsten Kiihn danke ich fiir die sorg-
faltige Herstellung des Textes und der Abbildungen.
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