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Die Transformation einer geschlossenen Kurve
in eine Ellipse

Wolfgang Schuster

Wolfgang Schuster wurde 1940 in Köln geboren. Er studierte katholische Theologie,

Philosophie und Mathematik in Bonn und Innsbruck und promovierte 1970 im Fach

Mathematik an der Universität Bonn. Anschliessend war er als wissenschaftlicher
Assistent in Bonn und im Schuldienst tätig. Seit 1980 arbeitet er am Deutschen

Institut für Fernstudienforschung an der Universität in Tübingen. In seiner Freizeit
beschäftigt er sich mit Wittgenstein, Musil, Joyce und Proust, und auf der sportlichen
Seite mit Drachenfliegen.

Einleitung
In [3] wird gezeigt, wie man durch sukzessive Anwendung einer endlichen Folge von
Parallelogramm-Konstruktionen ein beliebiges Polygon in ein affin-reguläres überführen
kann. Ein affin-reguläres Polygon ist das Bild eines regulären Polygons unter einer
affinen Abbildung. Die Vorgehensweise dabei ist folgende: Ein Polygon betrachten wir
als n-tupel z (z0, Zi, z„_i) komplexer Zahlen. Mit Hilfe einer Parallelogramm-
Konstruktion Pp führen wir das Polygon z in ein Polygon w über. Die Parallelogramm-
Konstruktion Pp wird durch einen reellen Streckungsfaktor p > 0 festgelegt: Man ergänzt
die benachbarten Eckpunkte z;_i, z;-, z]+\ durch einen vierten Punkt z' zi+i+z;_i —z]
zu einem Parallelogramm und trägt im Punkt z; den Vektor p(z' - Zj) an. Dessen Spitze
markiert den Eckpunkt

Wj =Zj + p(Zj-i -Zj +Z;+1 -Zj) (1)

eines neuen Polygons w (w0, W\, wn-\) Ppz.

rührt man in jedem Eckpunkt eine:; Polygons eine im vorliegenden Beitrag näher
beschriebene einfache Parallclogrammkonstruklion durch, so entsteht ein affin-reguläres
Poh gon. d.h. das affine Bild eines regulären Pol\ gons. Ausgehend von dieser diskreten

Überlegung entwickelt Wolfgang Schuster ein kontinuierliches Verfahren, von dem er
anschliessend zeigt, dass es beliebige hinreichend reguläre, geschlossene Kurven in
eine Ellipse überführt, also in das affine Bild eines Kreises. Ein schönes Beispiel für
eine nicht auf der Hand liegende Übertragung vom Diskreten ins Kontinuierliche, usi
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Abb. 1 Die Parallelogrammkonstruktion Pp.

Satz 1 Die Transformationen PPk, pk 1/(4sin2 ^), k 2, 3,..., \{n - 1), führen
ein beliebiges Polygon z mit ungerader Eckenzahl n in ein affin-reguläres Polygon

w — (2)

über. Dabei ist die Reihenfolge der Transformationen PPk beliebig.

Abb. 2 Die Parallelogrammkonstruktion Pp mit p y 1 ^ führt ein vorgegebenes Fünfeck in ein

affin-reguläres Fünfeck über.

Die Faktoren pk besitzen eine geometrische Bedeutung: Die Länge der Diagonalen
(1, Xk), X e ", in dem von der n-ten Einheitswurzel A erzeugten regulären n-Eck
(1, A, A2, A""1) ist |l-Afc| =2sin^.
Hat das Ausgangspolygon z gerade Eckenzahl, dann muß zu den Transformationen PPk,

k 2, 3, \(n - 1), noch die Transformation S hinzutreten, die ein Polygon z in
das Polygon w der Seitenmitten Wj \{z} + z;+i) überführt. S kann beim Anfangspolygon

oder bei einem beliebigen Zwischenpolygon ausgeführt werden. Das Polygon
w PP2PPi ¦ ¦ ¦ PPl_ Sz ist dann affin-regulär. Das Regularisierungsverfahren für

Polygone übertragen wir auf eine Klasse hinreichend glatter geschlossener Kurven z(t) der

komplexen Ebene.
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1 Erste heuristische Überlegung
Durch eine periodische Funktion z : R —> C mit Periode 1 wird in der Ebene C eine

geschlossene Kurve mit der Punktmenge {z(t)\t e [0, 1]} und der Parametrisierung
z gegeben; diese, die Punktmenge mit Parametrisierung, wird im folgenden mit z(t)
bezeichnet. Wir nehmen an, daß die Funktion z an jeder Stelle t G R in eine Taylorreihe
entwickelt werden kann. Die obige Parallelogrammkonstruktion PPk übertragen wir auf
die Kurvenpunkte z(t), z{t - \), z{t + £) mit n G N.

/ /
/ /

/

Abb. 3 Übertragung der Parallelogrammkonstruktion Pp auf eine geschlossene Kurve z(t)

Dadurch erhalten wir eine Kurve Wk,n(t) mit

z(0 + z (t + i) - z

Die Taylorentwicklung des Ausdrucks in der Klammer lautet:

(0+ ^'
—z"(t) H + (Terme höherer Ordnung)

Also gilt

4n2 sin ^
Wegen

lim nsin— irk

folgt
z"(0

wk(t) lim a>jt,„(O z(0 + ,s2
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Dieses Ergebnis gibt Veranlassung, die Differentialoperatoren

P> l + S$> PM) d-f- * 1,2,..., (3)

einzuführen, die miteinander kommutieren. Es gilt dann

Geometrische Deutung
Die Transformation der Kurve z(t) in die Kurve Wt (t) läßt sich aufgrund der Zerlegung
von Pk in Linearfaktoren P£ und P^ geometrisch deuten. Offenbar ist

Die Kurve

ist die Ortskurve der Spitze des in den Kurvenpunkten z(t) in bezug auf den Durchlaufsinn

nach rechts angetragenen Normalenvektors z'(t)/2irk. Entsprechend ist z+(f) die
Ortskurve der Spitzen der nach links angetragenen Normalenvektoren.

Beispiel: Der Operator Pj transformiert die Ellipse

z(t) a cos 2irt + ib sin27rf

mit den beiden Halbachsen a, b in die Kurve

z~(t) (a + b)(cos2irt + isin27rf)

Das ist die Parameterdarstellung eines Kreises um den Mittelpunkt der Ellipse mit dem
Radius a + b. Der Normalenvektor im Punkt z(t) ist

— iasin27rf + bcos2irt -iz (t + -27T \ 4,

Dieser geht also durch eine Drehung um 90° im Uhrzeigersinn aus dem Vektor z{t+\)
hervor. Der Vektor z{t + \) hat die Richtung der Tangente an die Ellipse im Punkt

z(t). D.h., |^j^| ist gleich der Länge des halben Durchmessers, der zu dem durch z(t)
bestimmten Durchmesser der Ellipse konjugiert ist. - Damit haben wir den Satz von
Napoleon-Barlotti für ein "affin-reguläres Polygon mit unendlicher Eckenzahl", das ist
eine Ellipse, gewonnen (vgl. [2]). Die Anwendung des Differentialoperators 1 + ^ auf die

Gleichung der Ellipse führt auf die Variante dieses Satzes, bei der die Normalenvektoren
nach innen angetragen werden.
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Jede glatte 1-periodische Kurve z(t) der komplexen Eben ist als Fourierreihe

w2nm+a-ie-2mU) (5)

mit Koeffizienten a0, a.\, a-i e C darstellbar. Dabei kann der Summand

ei(t) aie2nlt + a-ie-2nlt, 0 < t < 1,

als Parameterdarstellung einer /-fach durchlaufenen Ellipse interpretiert werden.

Man erhält unmittelbar die Beziehungen

(Pkei)(t) (l - Ç) ei(t) (6)

aus denen man für k 1 den Auslöschungseffekt Pjtejt 0 abliest.

Es ist daher zu vermuten, daß die Funktionenfolge

zm(0 (Pm2m-i)(0, m 2, 3, (7)

mit Z\{t) z(t) für m -^ oo gegen eine Ellipse Zoo(t) konvergiert, sofern nur die

Anfangsfunktion z(t) hinreichend glatt, d.h. hinreichend oft stetig differenzierbar, ist. In
einem letzten Schritt kann Zoo (0 dann mit Hilfe des Operators Px oder P^ (entsprechend
dem Satz von Napoleon-Barlotti) in einen Kreis transformiert werden.

Die Vermutung ist sicher richtig, wenn die Reihe (5) endlich ist. Denn wenden wir auf

2(0 flo + J2 (aie2mH + a-i^2mU) (8)
l=\

den Produktoperator

f[ f[( ^)m>2, (9)
k=2 k=2

an, dann erhalten wir

n f1 - à
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denn es ist (Tme;)(f) 0 für l > 2. Bekanntlich ist

also ergibt sich für m —> oo schließlich

Zoo(0=öo + ^(flie2^+fl-ie-2rf) (10)

das ist, bis auf den Faktor 1/2, die Anfangsellipse der Fourierentwicklung (8) von z(t).

Ist die Reihe (5) nicht endlich, dann erhält man, sofern nur der Operator Tm gliedweise
angewendet werden darf,

(Tmz)(t) =ao f[^"t (11)

l=m+\ k=2

Wegen ]\T=2 (l ~ f) \ mu^ sicn ^e Überlegung zur Konvergenz der Funktionenfolge

zm(t) (Tmz)(t) nur noch um das Verhalten des Restgliedes

12

(**"+-*"') (12)
l=m+\ k=2

kümmern (s. Abschnitt 3).

2 Zweite heuristische Überlegung

Wir berechnen im folgenden den Grenzwert T^ lim Tm der Operatorenfolge Tm und

bestimmen die Funktion Zoo TooZ. Ohne daß wir auf die Fourieranalyse von z Bezug
nehmen, ergibt sich dann direkt: Zoo ist die Parameterdarstellung einer Ellipse.

Aus der Produktdarstellung der Sinusfunktion

Lu*x_ -i«x) ¦ fr (l _ t.
2.{e e sm« «i^ R2

ergibt sich mit iirx \ die Beziehung

e*-e-l=yf[(l
it=i v



Elem. Math. 53 (1998) 67

die mit y D in die Operatorgleichung

it=i

übergeht. Darin ist das unendliche Produkt rechts durch den Grenzwert

D2
Pz lim TT 1 +

(2irk)2

erklärt, dessen Existenz wir für eine gewisse Klasse von Funktionen z hier voraussetzen

und im folgenden Abschnitt beweisen wollen. (Auf einen strikten Beweis der

Operatorgleichung (13) wollen wir hingegen verzichten. Er ließe sich z.B. mit Hilfe der

Laplace-Transformation führen. Man hat dann zu zeigen, daß die Funktionen T\Z und T2z

dieselbe Laplace-Transformierte besitzen, wenn T\ der bei (13) links stehende und T2 der
rechts stehende Operator ist und die Funktion z im Durchschnitt der Definitionsbereiche
von T] und T2 liegt.) Der Operator ecD, c e R, ist durch die Exponentialreihe

k=0 ^ ' ' k=0

erklärt. Hat z(t) eine überall konvergente Potenzreihenentwicklung, so gewinnt man nach
einfacher Rechnung:

(ecDz)(t)=z(t + c) (14)

Erfüllt die Funktion w die Beziehung

d.h., ist w eine Lösung der Differentialgleichung

dann erhält man wegen der Vertauschbarkeit der Operatoren D und Pk für den in (9)
definierten Operator Tm

und durch Grenzübergang m —> 00 folgt mit (13)

(16)
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Bezeichnet man mit L den zu (15) gehörigen Lösungsoperator, das ist die Abbildung L,
die jeder Funktion z die Menge L(z) der zugehörigen Lösungen w von (15) zuordnet,
dann läßt sich der Grenzoperator T^ in der Form

(17)

notieren. Diese Schreibweise kann man folgendermaßen rechtfertigen: Als Bild der

Menge L(z) unter der Abbildung eD/2 - e~D/2 definieren wir die Funktion (eD/2 -
e~Dl2)w, wobei w ein beliebiges Element aus L(z) ist. Mit (14) ergibt sich also (in
Übereinstimmung mit (16)):

/ i \ / i \
(18)

Diese Definition des Operators T^ ist eindeutig, also unabhängig von der speziellen
Wahl der Lösung w G L(z). Ist nämlich W\ G L(z) eine andere Lösung, dann gilt
W\ w + h, wobei h(t) C\e2ml + c2e~2mt + c3, C\, c2, c3 g C, eine Lösung der zu
(15) gehörigen homogenen Differentialgleichung ist. Die Funktion h ist 1-periodisch. Es

folgt daher h{t + \)-h{t-\) 0, also w(t + \) - w(t - \) =wl{t + \) -W\{t -\).
Ist nun Z eine Stammfunktion von z, dann ist

w(t) Z(t)- / cos27r(f-T)z(r)dT (19)
Jo

eine Lösung von (15), wie man leicht nachrechnet. Mit (18) ergibt sich also

¦¦': rl+l2 i
z(r)dr - / cos2tt [ t -\ ¦

t-i Jo \ 2

H / l
cos 2tt I t - - - t

Die Integranden sind 1-periodische Funktionen, so daß mit TooZ Zoo weiter gilt:

/ z(r)dr + / cos27r(f - t)z{t)At
Jo Jo

f z(r)dT + \ f e-2nTz(T)dr • e2nt + \ f e2nTz(T)dr • e-2nt
Jo -^ Jo 2 Jo

Mit den Koeffizienten

fl0 / z(r)dT ,«!=/" e-27r!Tz(r)dr fl_i /" e27r!rz(r)dr (20)
JO ,70

erhalten wir also wieder die Grenzkurve

2oo(0 «o + ^ (flie2"1 + fl-ie-2"1) • (21)

Die Zahlen a0, «i, ß-i sind die ersten Koeffizienten der Fourierentwicklung der Funktion

z.
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3 Eine Konvergenzbedingung
Die Funktion / sei in einem Gebiet holomorph, das einen Kreisring Kr

< R} mit R > 1 enthält. Sie kann dann dort in eine Laurentreihe

öo+ aiZ'+a-iZ 0 (22)

entwickelt werden. Für die Koeffizienten a\, «_; dieser Entwicklung gilt eine Abschätzung

der Form (vgl. [1], S. 189 ff.)

a-i\<
M
R''

(23)

wenn M > 0 eine obere Schranke für |/(z)|, z G Kr, darstellt. Wir betrachten das Bild
des Einheitskreises unter der Abbildung /, das durch die 1-periodische Funktion z mit

te. (24)

parametrisiert wird. Da die Reihe (22) beliebig oft gliedweise differenziert werden darf,
darf der Operator Tm auf die Entwicklung (24) gliedweise angewendet werden. Die
Funktionenfolge Tmz konvergiert also genau dann gegen eine Grenzfunktion Zoo, wenn
das Restglied (12) für m —> oo gegen Null geht. Mit (23) erhalten wir zunächst die

Abschätzung

IM

l=m+\
n
k=2

1 - k2 Rl

für den in (12) definierten Term. Wir betrachten daher den Ausdruck

n«-
Zwischen arithmetischem und geometrischem Mittel positiver Zahlen a\, a2, a„
besteht die Ungleichung

also

Daher gilt

also

(fli ¦ a2 «„)" < -(fli +Ö2 +

«1 • «2 «n < « "(öl + «2

2M
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Die Funktion g mit g(x) x2m 2R x, m > 2, x > 0, hat ihr Maximum bei x0

(2m - 2)1 logß und fallt streng mononton für x < x0. Ist logR > 2, also R > e2, dann
ist Xo < m, so daß gilt

da die links stehende Summe als Summe von Rechteckflächen gedeutet werden kann,
die unterhalb des Graphen von g liegen. Das Integral kann man dann mit Hilfe der
Transformation t x log R auf die Integraldarstellung der Gammafunktion zurückführen:

oo i /"oo (Im — 211

Damit erhalten wir die Abschätzung

(2m-2)!2M1 ral jl S

und wegen R > e2, d.h. logR > 2, folgt

(2m-2)! 4M
|Rm(0l <

(m!)222m

Mit Hilfe der Stirlingschen Formel n! n"e n-^2irn e^, 0 <â < 1, ergibt sich daraus

schließlich die Abschätzung

Diese Abschätzung kann sicherlich noch verbessert werden. Sie soll hier nur dem Zweck
dienen, eine hinreichende Bedingung für lim Rm(t) 0 zu formulieren.

m—>oo

Damit ist gezeigt, daß die Klasse der Funktionen z, die zu einer konvergenten
Funktionenfolge Tmz Anlaß geben, umfassender ist als die Klasse der Funktionen z mit einer
endlichen Fourierentwicklung. - Unser Ergebnis fassen wir zusammen:

Satz 2 Die Funktion f sei holomorph in einem Gebiet, das den Kreisring Kei {z\e~2 <
< e2} enthält, und

f(z) fl0 + ^2 (aiZ' + a-iz l)

sei ihre Laurentreihe. Ist dann z{t) f{e2mt), t G [0, 1], das Bild des Einheitskreises
unter der Abbildung f, dann konvergiert die Funktionenfolge Tmz, m > 2, mit

r,,=n (¦+<^
gleichmäßig in [0, 1] gegen die Funktion z^ mit

Der Graph der Funktion z^ ist eine Ellipse.



Elem. Math. 53 (1998) 71

z(f)=sin(7le2jtit)

T2SZ

Abb. 4 Transformation der Kurve z(f) sin(7re27rif) in den Kreis Zoo(t) lire271'1. Man beachte das

explosionsartige Größenwachstum bei den Anfangsgliedern der Folge Tmz.

Bemerkung: Es mag von einem geometrischen Standpunkt aus unbefriedigend erscheinen,

daß die Transformation einer geschlossenen Kurve z(t) in eine Ellipse auf eine
spezielle Parametrisierung der Kurve Bezug nimmt. Die Länge der anzutragenden Normalenvektoren

ändert sich dann im allgemeinen mit dem Kurvenpunkt. Daß die Transformation
einer geschlossenen Kurve in eine Ellipse auch durch Antragen von Normalenvektoren
gleicher Länge möglich ist, zeigt man mit Hilfe der natürlichen Parametrisierung durch
die Bogenlänge s. Die Funktion z hat dann die Periode L, wenn L die Länge der Kurve
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ist. Besitzt z eine Fourierentwicklung

z(s) bo + y^ (he^1 + b-ie L

so transformiert die Folge der Differentialoperatoren

die Kurve z(s) in die Ellipse

fr0 + 2

sofern z(s) eine hinreichend glatte Kurve ist. Wegen |z'(s)| 1 ist die Länge L/2irk
der Normalenvektoren jetzt unabhängig von dem Kurvenpunkt, an dem sie angetragen
werden.

Für die kritische Durchsicht des Manuskripts und wertvolle Verbesserungsvorschläge
danke ich Herrn Günter Pickert (Gießen). Herrn Carsten Kühn danke ich für die
sorgfältige Herstellung des Textes und der Abbildungen.
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