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Uber den Beweis der Fermat-Vermutung II
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1 Einleitung

Diese Note ist eine Fortsetzung des Artikels [7]; dementsprechend werden die dort ein-
gefiihrten Bezeichnungen verwendet. In der in [7] mit méglichst elementaren Mitteln
gegebenen Ubersicht iiber die Strategie des Beweises der Fermat-Vermutung stellte sich
die Vermutung von Shimura und Taniyama im Spezialfall semistabiler elliptischer Kur-
ven als die noch zu beweisende Schliisselstelle heraus. Der vollstindige Beweis dieser
Vermutung gelang A. Wiles und R. Taylor im Herbst 1994 und wurde im Sommer 1995
in den beiden Arbeiten [23] und [21] publiziert. In diesem Artikel wird nun der Versuch
unternommen, dem durch [7] neugierig gewordenen Leser eine Ubersicht iiber den Be-
weis des Satzes von Wiles und Taylor anzubieten. Da dieser Artikel mathematisch etwas
anspruchsvoller als der vorhergehende ist, wurde im sechsten Abschnitt ¢in Anhang iiber
die ¢-adischen Zahlen, die Gruppenstruktur einer elliptischen Kurve und die Hilbertsche
Theorie Galoisscher Zahlkorper beigefiigt. Wir hoffen, damit méglichst vielen, die sich
durch die Note [7] angesprochen fiihlten, einen Einblick in den Ideenreichtum und die
Komplexitit des Beweises des Schliisselsatzes zum Beweis der Fermat-Vermutung zu er-
moéglichen. Dem interessierten Leser empfehlen wir auch die Lektiire der erst vor kurzem
erschienenen, weitaus detaillierteren Abhandlungen [1], [3], [13], [15] und der beiden
Originalartikel [23], [21], zu denen dieser Artikel eine gewisse Orientierungshilfe bieten
konnte.

2 Galois-Darstellungen

Im folgenden soll also ein Uberblick iiber den durch A. Wiles und R. Taylor in [23] und
[21] dargestellten Beweis der Vermutung von Shimura und Taniyama (s. [7], Vermutung
4.5) fur semistabile elliptische Kurven E /Q gegeben werden, d.h. iiber den Beweis des

2.1 Satz (Wiles, Taylor). Jede semistabile elliptische Kurve E /Q ist modular zur Stufe
N = Ng.

2.2 Definition. Es sei Q ein algebraischer Abschluss von Q, G = Gal(Q/Q) die absolute
Galois-Gruppe und ¢ > 2 eine Primzahl. Mit F;, = Z/{ Z sei der Korper mit £ Elementen
und mit Z, der Ring der ganzen (-adischen Zahlen (s. Anhang 6.1) bezeichnet. Wir
betrachten dann zwei Typen von 2-dimensionalen Darstellungen von G:

@) 7, : G — GLy(F), Galois-Darstellung in Charakteristik (.
(i) p¢: G — GL(Zy), l-adische Galois-Darstellung.

2.3 Bemerkung. Da Z,/(¢) = [, gilt, erhalten wir durch Betrachtung eciner gegebe-
nen (-adischen Galois-Darstellung p, modulo dem Hauptideal (¢) = (Z; eine Galois-
Darstellung p, in Charakteristik ¢ und damit das folgende, kommutative Diagramm:

G —— GLy(Z )
mod ()

GL,(F )



Elem. Math. 53 (1998) 47

2.4 Beispiele (Elliptische Kurven). Es sei E/Q ecine eclliptische Kurve mit geome-
trischem Fiihrer Nr. Wie im Anhang 6.2 ausgefiihrt ist, besitzt E die Struktur einer
kommutativen Gruppe; dabei berechnen sich die Koordinaten der Summe P + Q zweier
Punkte P,Q € E durch rationale Funktionen mit rationalen Koeffizienten in den Koordi-
naten von P, Q. Daraus erkennen wir sofort, dass die absolute Galois-Gruppe G auf dem
Kern E[n] C E(Q) des Homomorphismus [1] : E — E (Multiplikation mit 1) operiert.
Aufgrund der Isomorphie E 1] =2 (Z/nZ)? erhalten wir also die Galois-Darstellungen

PEn: G — Aw(E[n]) = GL,(Z/nZ).

e

+

Tevm v‘kt o G

Andrew John Wiles vor der Wandtafel in seinem Biiro an der Princeton University
(Keystone/Charles Rex Arbogast/AP Photo).

Speziell fiir n = ¢ ergibt sich somit eine Galois-Darstellung vom Typ (i)
pE,[ i G = GLz(F[)

Durch Betrachtung des (projektiven) Systems {pr ;, pr 2, P 3, - - -} von Galois-Darstel-
lungen erhalten wir durch Ubergang zum inversen Limes

PEe = lim pp

v—ro0

eine Galois-Darstellung vom Typ (ii)
pEe: G — GLy(Zy).

Zur Beschreibung der Eigenschaften von pp , und pr, zichen wir Anhang 6.3 heran.
Wir betrachten den Fixpunktkdrper K »/Q zum Kern kerpg ;, von pg 4. d.h.

Keo= Q7 = {a €Qlo(a) = a Yo €kerpry},
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mit dem Ring der ganzen Zahlen Ok;,. Man beweist nun, dass pr 4, resp. pr ¢, fiir alle
Primzahlen p, p # ¢ und p { Np. unverzweigt ist; fiir diese Primzahlen besteht dann die
Primidealzerlegung

P'@KE)/Z:DI pr

mit ¥ Primidealen p1,. .., p,. Den Primidealen p; sind die Frobenius-Automorphismen
Froby, € G (j = 1,...,r) zugeordnet, welche simtlich zueinander konjugiert sind. Da-
mit sind die Spuren trpg, ,(Froby, ). resp. tr p ¢ (Froby, ), und die entsprechenden Determi-
nanten eindeutig festgelegt, d.h. unabhéingig von j. Wir schreiben deshalb trpg ,(Frob,),
resp. tr pg ¢(Froby,), und detpg ,(Frob,), resp. det pg o(Frob,). Mit den Bezeichnungen
von [7], Abschnitt 3.5, weist man nun folgende Eigenschaften fiir pg , nach:

trpg o(Froby) = b, =p — N, mod( Vp # (,p{Ng,
det pg ,(Frob,) = p mod ¢ Vp # ¢, ptNE.

Entsprechend ergibt sich fiir pr ,:

trpg o(Froby) = b, =p — N, Vp # L,p{ N,
det pr ¢(Frob,) = p Vp # L,p{Nk.

2.5 Numerisches Beispiel. Wir betrachten die elliptische Kurve mit der minimalen Glei-
chung
E:Y’+Y =X +X*-9X - 15.

Fiir deren minimale Diskriminante A}}‘in und deren geometrischen Fithrer Ng berechnet
man (s. auch [20], S. 82) _
ABR — _19% Np = 19.

Wir wihlen jetzt ¢ = 3. Mit Hilfe der Additionsformeln in Anhang 6.2 iiberpriift man
leicht, dass der Kern E[3] aus dem unendlich fernen Punkt Or und den folgenden 8
Punkten besteht (bei diesen Rechnungen beachte man die Koordinatentransformation
X=X, Y—Y—-1/2):

P = (5,9) P, = (5,-10)

4 1 19 4 1 19
Py={—2,—=+—+/-3 Py= (-2, —2——J=3
3<372+18 ) 4(3’218 >

5 1 301 51 1
PSZ(‘E*EV 375*5“3) P6:(_5+EV 37272 —3>

Insbesondere stellt man fest, dass E[3] die dirckte Summe der durch P, resp. Ps, er-
zeugten zyklischen Untergruppen (P, ), resp. (P;), der Ordnung 3 ist, d.h.

E[3] = (P) ® (Ps) = Z/3Z & Z/3L.
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Da nun E[3] C E(K) mit K := Q(v/=3) gilt, faktorisiert die Galois-Darstellung 7 5 :
G — GLy(F;) iiber die Galois-Gruppe Gal(K/Q), d.h. pg 5 ist bestimmt durch die
Wirkung von Gal(K/Q) auf E[3]. Beachten wir noch, dass die letztere Galois-Gruppe
zyklisch von der Ordnung 2 ist, also

Gal(K/Q) = (o) = {id, o}
gilt, wobei o der nicht-triviale Automorphismus von Q(v/—3) mit o(v/—3) = —/=3

ist, so ergibt sich
_ 1 0\ _ 10
estit) = (§ 1) westr = (§ 3)

Wir berechnen schliesslich die Spuren und die Determinanten der Frobenius-Automor-
phismen Frob, zu den Primzahlen p # 3,19. Dazu stellen wir zunéchst mit Hilfe des
quadratischen Reziprozititsgesetzes die Gleichheit der Legendre-Symbole

)=

p /) \3
fest. Ist also p = 1 mod 3, so ist —3 ein quadratischer Rest modp, und p léasst sich mit
ganzen Zahlen &, 7 in der Form &2+ 37 darstellen. Daraus ergibt sich fiir das Hauptideal
p - Ok die Zerlegung

p-Ox=p1-p2

mit zwei verschiedenen Primidealen p;, p,. Somit besteht fiir den Restklassengrad von
p die Gleichung f = 1, also gilt Frob, = id. Ist andererseits p = 2 mod 3, so ist —3
ein quadratischer Nichtrest modp, also ist das Hauptideal p - Ox selbst ein Primideal mit

f = 2. In diesem Fall gilt Frob, = o. Insgesamt erhalten wir fiir Primzahlen p # 3,19
die Kongruenzen

trpg 5(Frob,) =2 mod3, p=1mod3,
trpg 5(Frob,) =0 mod3, p =2 mod3,
und
detpp 5(Frob,) =1 mod3, p=1mod3,
detpg 5(Frob,) =2 mod3, p =2 mod3.

Wir bemerken abschliessend, dass die in diesem Beispiel konstruierte Galois-Darstellung
P 5 hicht irreduzibel ist.

3 Modulare Galois-Darstellungen

Einleitend bemerken wir, dass die in 2.2 gegebene Definition einer Galois-Darstellung in
Charakteristik ¢, bzw. einer (-adischen Galois-Darstellung, dahingehend verallgemeinert
werden kann, indem der Korper F, durch eine endliche Erweiterung k /F,, bzw. der Ring
Z, durch eine endliche Erweiterung O/Z,, ersetzt wird. Von dieser Verallgemeinerung
werden wir in der folgenden Definition Gebrauch machen.
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3.1 Definition. (i) Eine Galois-Darstellung p, : G — GLy(k/F,) in Charakteristik ¢
heisst modular zur Stufe N, falls 0 # f € S,(To(N)), f(7) = g+ Y.<, cug”, existiert,
so dass
trj,(Frob,) = ¢, mod¢ Vp # £,p{N,
detp,(Frob,) =p mod{ Vp #{,pfN

gilt. Um die Abhingigkeit von der Spitzenform f hervorzuheben, schreiben wir Pra
anstelle von p,.

(ii) Eine ¢-adische Galois-Darstellung p; : G — GL2(0/Z;) heisst modular zur Stufe
N, falls 0 # f € S,(To(N)). f(7) =g+ 3,2, caq". existiert, so dass

trpe(Frob,) = ¢, Vp # {,p{N,
detp¢(Frob,) =p VYp#LptN

gilt. Um die Abhingigkeit von der Spitzenform f hervorzuheben, schreiben wir pr,
anstelle von p;.

3.2 Bemerkung. Um den Artikel méglichst einfach zu gestalten, werden wir im folgen-
den immer annehmen, dass die zu betrachtenden Spitzenformen ganzzahlige Fourierko-
effizienten besitzen. Damit brauchen wir dann auch keine echten Erweiterungen k /Iy,
bzw. 0/Z,, heranzuzichen. Wir betonen aber, dass man bei einer korrekten Behandlung
des Gegenstandes nicht um diese Verallgemeinerung herumkommt.

3.3 Bemerkung. Ist die Galois-Darstellung p, : G — GL»(k/F,) in Charakteristik
¢ modular im Sinne der vorhergehenden Definition, so ist die Stufe N nicht eindeutig
bestimmt. In der Arbeit [17] hat J-P. Serre unter anderem eine Vorschrift zur Bestimmung
der minimal moglichen Stufe N (,) vermutet. In der Folge sind viele Beitrédge zu dieser
Problemstellung entstanden; der entscheidende Durchbruch, welcher zur Bestitigung der
Serre’schen Vermutungen fiihrte, gelang K.A. Ribet mit der Arbeit [14].

3.4 Numerisches Beispiel. Wir betrachten die Galois-Darstellung pp 5 : G — GL(F3)
aus Beispiel 2.5. Fiir die Spuren der Frobenius-Automorphismen Frob, hatten wir ge-

funden
trpg 5(Frob,) =2 mod3, p =1 mod3,

trpg 5(Frob,) =0 mod3, p =2 mod3.
Andererseits berechnet man mit der in [7], Abschnitt 4, gegebenen Formel
dime 52(T°5(19)) = 1.

Die dadurch eindeutig festgelegte Spitzenform 0 # f € S;(I'0(19)), f(r) = g+
Z;ﬁz ¢yq", entnimmt man der Tabelle [20], S. 117; wir geben hier die Fourierkoef-
fizienten ¢, zu den Primzahlen p # 3,19, p <97, wieder:

=0 s =3 cg=—-1 en=3 c3=—-4 ¢7=-3
3=0 (=6 1=—4 37=2 (4=-6 (n=-1
C7=-3 ¢3=12 C50=—-6 ¢i=—-1 Cc67=—-4 ¢nn =6

C;3 = -7 C79 = 8 Cg3 = 12 Cgo — 12 Co7 = 8.
Ein Vergleich zeigt schliesslich, dass dic Galois-Darstellung 7y ; in Charakteristik 3
modular zur Stufe N = 19 ist.
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3.5 Bemerkung, (a) Es sei E/Q eine elliptische Kurve mit geometrischem Fithrer Np.
Falls die Kurve E/Q modular zur Stufe N = N ist (s. [7], Abschnitt 4.3), so folgt
unmittelbar, dass die in Beispiel 2.4 konstruierten Galois-Darstellungen pr , und pg ¢ fiir
jede Primzahl ¢ im Sinne der Definition 3.1 modular zur Stufe N sind. Umgekehrt geht
aus einem Satz von G. Faltings (s. [2]) hervor, dass die Modularitit von pg ¢ fiir eine
Primzahl ¢ die Modularitit von E /Q zur Stufe N = N zur Folge hat.

(b) Das eben erwihnte Resultat von G. Faltings liefert folgende Strategie zum Beweis
des Satzes von Wiles und Taylor: Fiir eine semistabile elliptische Kurve E /Q gilt es eine
Primzahl £ zu finden, fiir welche die ¢-adische Galois-Darstellung pr ¢ modular ist. Diese
Primzahl findet man, indem man zuerst eine Primzahl ¢ sucht, fiir welche die Galois-
Darstellung pp , in Charakteristik ¢ modular ist. Dies ist relativ einfach; wir werden
in Abschnitt 5 darauf zuriickkommen. Weiter gilt es dann fiir simtliche Hochhebungen
(‘Deformationen’) dieser Galois-Darstellung oy , zu £-adischen Galois-Darstellungen p;
G — GL,(Zy), fir welche definitionsgemass das kommutative Diagramm

G —— GL,(Z)
mod ()
GL,(F )

besteht, unter Verwendung der Modularitiit von pg, , die Modularitit von p, nachzuweisen.
Dies ist schwierig; wir werden in Abschnitt 4 darauf eingehen. Zusammengenommen
ergibt sich dann insbesondere die gewiinschte Modularitét von pg , und damit der Beweis
des Satzes 2.1.

3.6 Hecke-Algebra. Auf S,(T'y(N)) wirken gewisse Operatoren, die sogenannten Hecke-
Operatoren T, (p { N) und U, (p|N). Thre Wirkung auf eine Spitzenform f(7) = g +
>ooo, cuf” ist wie folgt gegeben

(Tpf)(T) = Z(Cnp +p- Cn/p)qn (P fN),
(upf)(T) = Z Cnpqn (P|N),

hierbei ist ¢/, = 0 zu setzen, falls n/p ¢ Z gilt. Die Hecke-Operatoren erzeugen eine
kommutative Z-Algebra, die sogenannte Hecke-Algebra T(N). Es zeigt sich, dass die
Hecke-Operatoren T, (p { N) beziiglich eines gewissen Skalarprodukts auf S (T'o(N)),
des sogenannten Petersson-Skalarprodukts, selbstadjungiert sind. Aufgrund der Kommu-
tativitdt von T(N) existiert somit eine Basis von S;(I'o(N)), welche aus simultanen
Eigenfunktionen beziiglich der Hecke-Operatoren T, (p 1 N) besteht. Ist f eine solche
Eigenfunktion, welche zudem Eigenfunktion der Hecke-Operatoren U, (p|N) ist, so wird
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f primitive Eigenform oder kurz Neuform genannt. Fiir eine Neuform f bestchen also
die Bezichungen

Tof =cp-f (PIN), Uf =cp- f (pIN),

wobei ¢, gerade der p-te Fourierkoeffizient von f ist, und die Zuordnungen
Tp—=¢ (PtN), Uy =y (pIN)

definieren einen Algebrenhomomorphismus ¢y von T(N) nach (einer Erweiterung von)
Z,. Umgekehrt definiert ein Algebrenhomomorphismus «» von T(N) nach Z; eine ein-
deutig bestimmte Neuform f € S,(T'o(N)), f(7) =g+ 3, ¢»g". mit der Eigenschaft

¢p = P(Tp) (PIN), ¢ = () (pIN);

es sei darauf hingewiesen, dass die vorhergehende Aussage richtig bleibt, wenn ¢ nur
fiir fast alle Erzeugenden von T(N) erklart ist.

3.7 Bemerkung. Spitzenformen zu modularen elliptischen Kurven der Stufe N bzw. zu
modularen Galois-Darstellungen der Stufe N sind Neuformen zur Hecke-Algebra T(N).
Ist umgekehrt f € S,(T'4(N)) eine Neuform zur Hecke-Algebra T(N), so lassen sich
mit Hilfe der Theorie von Eichler-Shimura (s. [18], Section 7.6) Galois-Darstellungen
Pe, bzw. py, konstruieren, welche modular zur Stufe N sind.

4 Deformationen von Galois-Darstellungen

4.1. In diesem Abschnitt fixieren wir eine endliche Menge 3. von Primzahlen mit ¢ € 3
und eine (absolut) irreduzible Galois-Darstellung p, : G — GL,(IF,) in Charakteristik
¢, welche fiir alle p ¢ > unverzweigt ist (s. Anhang 6.3) und fiir p € 3 ein gewisses
Verhalten hat, auf das wir hier nicht ndher eingehen kénnen. Unter Verwendung der von
B. Mazur entwickelten Methoden beweist man dann den folgenden Satz (s. [12], Section
1.2 und [23], Chapter 1, Section 1).

4.2 Satz. Mit den vorhergehenden Bezeichnungen gilt: Es existiert eine lokale, vollstin-
dige Zy-Algebra R (mit maximalem Ideal Mg, und Restklassenkérper R/ma = Fy) und
eine universelle Galois-Darstellung pg, - G — GLy(R) mit den folgenden Eigenschaf-
ten:

(1) pa modmg = p,.

(2) pa ist unverzweigt fiir alle p ¢ ..

(3) det pg(Frob,) =p fir allep ¢ %.

(4) pa hat ein gewisses Verhalten fiir die Primzahlen p € ¥, auf das hier nicht niher
eingegangen werden soll.

(5) Jede andere Galois-Darstellung ps © G — GL,(A) (hierbei bedeute A eine
lokale, vollstindige Z,-Algebra mit maximalem Ideal m, und Restklassenkérper
A/my = Fy) mit den Eigenschaften (1)—(4) definiert einen eindeutig bestimmten
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Algebrenhomomorphismus o @ R — A mit pa = pa o pg, d.h. es besteht das
Jfolgende, kommutative Diagramm:

GL,(R)

G —— GLy(A)
mod 1Ty

GLy(F )

4.3. Zur Formulierung des nichsten Satzes bezeichne M das Produkt aller Primzahlen
p € ¥ mit gewissen nichtnegativen Exponenten, welche durch das Verhalten von p, an
den Stellen p € ¥ bestimmt werden; wir konnen hier nicht néiher darauf eingehen. Weiter
setzen wir voraus, dass die (absolut) irreduzible Galois-Darstellung 5, : G — GL(IFy)
in Charakteristik ¢ modular zur Stufe M ist, d.h. es gilt p, = py . wobei f € S>(I'o(M)),
flr) = g+ 3.2, cug”, die entsprechende Neuform ist. Wir bemerken, dass das Bei-
spiel 3.4 in diesem Zusammenhang nicht herangezogen werden kann, da die Galois-
Darstellung von 3.4 nicht irreduzibel ist. Das zu formulierende, wichtige Ergebnis von
A. Wiles ist nun ein Analogon zu Satz 4.2, in dem diejenigen Hochhebungen der Galois-
Darstellung p, zu (-adischen Galois-Darstellungen charakterisiert werden, welche mo-
dular sind. Dazu wird mit Hilfe der Hecke-Algebra T(M) eine ‘universelle’ Hecke-
Algebra konstruiert, welche durch den nachfolgenden Satz beschrieben wird (s. [23],
Chapter 2, Section 3).

4.4 Satz. Mit den vorhergehenden Bezeichnungen gilt: Es existiert eine lokale, vollstan-
dige Zy-Algebra I (mit maximalem Ideal mg und Restklassenkorper T /mg = Fy) und
eine universelle Galois-Darstellung ps © G — GLy(J) mit den folgenden Eigenschaf-
ten:

(1) Es existiert ein maximales Ideal m C T(M) derart, dass T die Vervollstindigung
der Lokalisierung T(M)y von T(M) an m ist.

(2) PT modmg = pf,[‘

(3) pg ist unverzweigt fiir alle p ¢ i, und es gilt tr pg(Frob,) = T, fiir alle p ¢ ¥
(hierbei wurde fiir das natiirliche Bild von T, € T(M) in J wieder T, geschrieben).

(4) det pg(Frob,) =p fiir alle p ¢ 3.

(5) Jede andere modulare Galois-Darstellung ps © G — GL2(A) (hierbei bedeute
A eine lokale, vollstindige Z,-Algebra mit maximalem Ideal m, und Restklas-
senkorper Ajmy = Fy) mit den Eigenschaften (2)—(4) definiert einen eindeutig
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bestimmten Algebrenhomomorphismus 4 T — A mit pa = b4 o pg, dh. es
besteht das folgende, kommutative Diagramm:

GL»(7)

A

G GL,(A)

mod Ny
GL,(F )

4.5 Bemerkung. (a) Eine Analyse der Konstruktion der Algebra J, insbesondere Satz
4.4 (1), zeigt, dass die (natiirlichen Bilder der) Hecke-Operatoren T, p ¢ 3, die Algebra
J erzeugen.

(b) Aufgrund von Satz 4.2 (5) (mit A = J) existiert ein eindeutig bestimmter Algebren-
homomorphismus g : R — I mit der Eigenschaft p5 = ¢g 0 pg. Zusammen mit der
Eigenschaft (3) von pg fiihrt dies fiir alle p ¢ 3 zu der Bezichung

wg (tr pg,(Froby,)) = tr pg(Frob,) = T,.

Da nun die Hecke-Operatoren T,,, p ¢ ¥, nach (a) die Algebra J erzeugen, ergibt sich
sofort die Surjektivitit von g .

(c) Wir zeigen nun unter der Annahme der Injektivitit von g, d.h. der Isomorphie von
g, wiederum unter Verwendung der Sitze 4.2 und 4.4, dass jede (-adische Galois-
Darstellung p; : G — GL»(Z¢) mit der Eigenschaft p,mod (¢) =~ p;, modular zur
Stufe M ist: Zunichst beachten wir dazu das kommutative Diagramm

GLy (%) —— GL(9)
Z

Z

o

G — GLy(Z)

mod ()

GL,(F )

Nach der Bemerkung am Ende des Abschnitts 3.6 existiert dann zum Algebrenho-
momorphismus ¢z, : I — Z, eine eindeutig bestimmte Neuform ¢ € S,(I'o(M)),
Q(r) =q+>,°,d.q", so dass fiir alle Primzahlen p ¢ 3 die Gleichung

dP = "/)ZZ(TP)
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gilt. Mit Hilfe des vorhergehenden Diagramm berechnet man schliesslich fiir diese Prim-
zahlen p

tr pe(Froby,) = tr (7, © pa) (Froby)
= g, (tr par(Froby,)) = ¢z, (tr((p5" © pg)(Frob,)))
= (pz, © ()DJ;]) (trPT(Fmbp)) = ¢Zz(Tp) = dp~

Daraus folgt, wie behauptet, dass die ¢-adische Galois-Darstellung p;, : G — GL2(Zy)
modular zur Stufe M ist. Es ist zu beachten, dass dic beiden Neuformen £, g im allgemei-
nen verschieden sind, deren Fourierkoeffizienten aber fiir alle p ¢ 3 den Kongruenzen
¢, = d, mod ¢ geniigen.

4.6 Hauptsatz. Mit den Bezeichnungen von Satz 4.2 und den Voraussetzungen von Satz
4.4 folgt, dass der surjektive Algebrenhomomorphismus o5 : R — T injektiv, d.h. ein
Isomorphismus ist.

Der Beweis soll in fiinf Schritten kurz skizziert werden; bei jedem Schritt verweisen wir
den interessierten Leser fiir weitere Einzelheiten auf die entsprechenden Seiten in [23]
und [21]:

Schritt 1. Die Zuordnung T, — ¢, (hierbei ist ¢, der p-te Fourierkoeffizient von f) defi-
niert einen Algebrenhomomorphismus 7 : J — Z,. Damit setze man pg := kerm und
Pa := ker (mopg) = ¢y (Pg). Aus einem Resultat von B. Mazur (s. [11], Sections I1.15—
11.17) folgt weiter, dass J eine Gorenstein-Algebra ist, d.h. es gilt Homy, (T, Z;) = J.
Es bezeichne dann ' € J das Bild von m € Homyg,(J,Z,) unter diesem Isomorphis-
mus, und man setze n = w(7') € Z;. Mit diesen Bezeichnungen beweist man die
Ungleichungen
#0q /0% > #Dg /DG 2 #Le/ (n).

Dies ist relativ einfach und findet sich in [23], S. 515.

Schritt 2. Die Komposition der Galois-Darstellung 5y, : G — GL»(FF;) mit der adjun-
gierten Darstellung Ad : GL,(F;) — Aut(M;(F,)) induziert die Darstellung

Adﬁﬂ[ G — Aut(Vg)

mit V;:=M,(F;). Damit stellt man fest, dass der Tangentialraum Hom (mg /(m2,,¢),F¢)
von Spec R/(¢), d.h. der speziellen Faser von Spec % tiber Spec Z;, der Bijektion

Hom (m%/(mé, £)>F5) = Héel(G> Vl)

geniigt, wo H!,(G,V;) eine gewisse Untergruppe der Galois-Kohomologiegruppe
H(G,V;) ist, welche durch lokale Bedingungen an den Primstellen p € 3 erklirt ist
(s. [23], S. 460f.); H., (G, V;) heisst Selmer-Gruppe. Allgemeiner lassen sich fiir jedes
v =1,2,3,... Selmer-Gruppen H! ,(G, V;») definieren, wo V;» := M,(Z/¢"Z) ist; damit
setzt man

Hiy(G,V) = | ) Héa(G, V).

v=1



56 Elem. Math. 53 (1998)

Die obige Bijektion fithrt dann zu der Gleichheit
#Da/p5 = #H5(G, V).
Die Einzelheiten hierzu finden sich in [23], Proposition 1.2, S. 464f.

Schritt 3. Die lokale, vollstindige Z,-Algebra J lasst sich in der Form
T =Z[Xa,..., X:])/1

darstellen, wobei Xj,...,X, Unbestimmte und [ ein Ideal des Potenzreihenrings
Z¢[[Xy,. .., X.]] ist. Man beweist nun, dass das Ideal I durch (r — dimJ) Elemente
erzeugt wird, d.h. dass die Algebra J ein vollstindiger Durchschnitt ist. Man erhilt
dieses wichtige Ergebnis, indem man anstelle der “universellen” Hecke-Algebra J zur
Stufe M eine unendliche Folge von analog konstruierten ‘universellen’ Hecke-Algebren
Jun (n = 1,2,3,...), im wesentlichen zu den Stufen M - ¢; - ... - g,, betrachtet, wobei
qi,...,q- Primzahlen sind, welche g; = 1 mod ¢" erfiillen und weiteren technischen Be-
dingungen geniigen. Fiir 7 > 0 ergibt sich dann, dass die Algebra J,, ein vollstandiger
Durchschnitt ist, und mit dem Kriterium von E. Kunz (s. [8], Section 2) folgt damit, dass
J ein vollstindiger Durchschnitt ist. Die Einzelheiten hierzu finden sich in der Arbeit
[21].

Schritt 4. Die vollstandige Durchschnitt-Eigenschaft der Algebra J fiithrt mit etwas Kom-
mutativer Algebra unmittelbar zur Gleichung

#0g /DG = #Zo/ ().

Dies findet sich in [23], Appendix, Proposition 2. Eine weitere Konsequenz der vollstin-
digen Durchschnitt-Eigenschaft der Algebra J ist die Ungleichung

#H5 (G, V) < #0g /.
Dies ist der Inhalt von [23], Chapter 3.

Schritt 5. Fasst man jetzt die Resultate der Schritte 1, 2 und 4 zusammen, so hat man
die Gleichheiten

#Hs, (G, V) = #Da /05 = #Dg /05 = #Zs/ (n).

Die mittlere Gleichheit und die vollstindige Durchschnitt-Eigenschaft der Algebra J
fithren schliesslich zur behaupteten Isomorphie %R =2 J. Dies findet sich in [23], Appen-
dix, Proposition 1. O
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5 Das Ende des Beweises

5.1. In diesem Abschnitt soll der Beweis des Satzes 2.1 abgeschlossen werden. Es sei
also E /Q eine semistabile elliptische Kurve mit geometrischem Fithrer Np. Wir haben
7u zeigen, dass E modular zur Stufe N = N ist. Dazu betrachten wir die Galois-
Darstellung pp 5 in Charakteristik 3, wahlen . als die Menge aller Primteiler von N
zusammen mit ¢ = 3 und definieren M wie in Abschnitt 4.3. Es werden nun drei Félle
unterschieden. Den interessierten Leser verweisen wir fiir weitere Einzelheiten auf die
Seiten 541-544 in [23].

5.2. Zuerst nehmen wir an, dass die Galois-Darstellung p 5 irreduzibel ist. Aufgrund
dieser Annahme, der Wahl von > und der Semistabilitit von E zeigt sich, dass die
Voraussetzungen 4.1 von Satz 4.2 erfiillt sind. Weiter zeigt man mit Hilfe eines Resultats
von R.P. Langlands (s. [10]) und einer Erginzung dazu von J. Tunnell (s. [22]), dass
Pr,3 modular zur Stufe M ist. Somit gilt pg ; = py; mit einer Neuform f € S,(I'o(M)).
Damit sind jetzt auch die Voraussetzungen 4.3 von Satz 4.4 erfiillt. Eine Anwendung
des Hauptsatzes 4.6 zusammen mit der Bemerkung 4.5(c) beweist dann die Modularitét
der 3-adischen Galois-Darstellung pr 3 und somit die Modularitéit von E zur Stufe M;
daraus ergibt sich schliesslich auch die Modularitit von E zur Stufe N = Ng.

5.3. Als nichstes nehmen wir an, dass die Galois-Darstellung pp 5 reduzibel, aber pr, s
irreduzibel ist. Unter dieser Voraussetzung konstruiert man eine semistabile elliptische
Kurve E’/Q, welche die beiden folgenden Eigenschaften hat:

(1) Die Galois-Darstellung pr. 5 ist irreduzibel.

(i) Es besteht ein G-dquivarianter Isomorphismus E’[5] = E[5], d.h. die Galois-Dar-
stellungen pg/ s und pr 5 sind isomorph.

Wegen (i) lassen sich die in 5.2 durchgefithrten Uberlegungen auf die elliptische Kurve
E’/Q anwenden. Damit ergibt sich die Modularitit der 3-adischen Galois-Darstellung
PE’3, also mit dem Satz von Faltings auch die Modularitit der 5-adischen Galois-
Darstellung pg 5, insbesondere also auch die Modularitit von pg, 5. Aufgrund der Iso-
morphie (ii) folgt dann die Modularitiit der Galois-Darstellung pr. 5. Nun folgert man wie
in 5.2 die Modularitit der 5-adischen Galois-Darstellung pr s und somit die Modularitit
von E zur Stufe N = Ng.

S.4. Es bleibt schliesslich der Fall, dass sowohl ¢ 5 als auch pg s reduzibel sind. Unter
dieser Voraussetzung iiberlegt man sich, dass dann die Semistabilitat von E /Q verletzt
ist, d.h. dieser Fall braucht nicht behandelt zu werden. Trotzdem bemerken wir, dass sich
in diesem Fall die elliptische Kurve ebenfalls als modular zur Stufe N = N herausstellt.

O

Anhang

6.1 (-adische Zahlen. Es sci ¢ eine Primzahl. Fiir jedes v = 1,2, 3, ... betrachte man
dic Restklassenringe Z/¢”Z; mit Hilfe der Zuordnung

a mod ¢ — g mod ¢!
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erhilt man Ringhomomorphismen
o, LT — T L.

Die ganzen (-adischen Zahlen Z, sind nun definiert als dic Menge aller Tupel (.. ., a,,

c.n ) mita, € Z/CVZ (v = 1,2,3,..)und ¢,(a,) =a,_; furalle v = 2,3,4,....

Man sagt, Z, sci der inverse Limes des (projektiven) Systems {Z/¢VZ}5° |, und schreibt
Zy= lim Z/"Z.

)

Es zeigt sich, dass Z, ein Integrititsbereich ist und dass die Isomorphie Z,/¢Z; =~ F,
besteht. Indem man einer ganzen Zahl a € Z das Tupel (...,a mod¢”,...,a mod{)
zuordnet, erhilt man eine Einbettung der ganzen Zahlen Z in die ganzen (-adischen
Zahlen Z,;. Der Quotientenkdrper von Z, ist der Korper der (-adischen Zahlen Q,,
welcher folgende weitere Charakterisierung hat: Ist 2 € @Q, so kdnnen wir mit eindeutig
bestimmtem o € Z, a = £ - @’ schreiben, wobei a’ eine rationale Zahl ist, deren Zahler
und Nenner nicht durch ¢ teilbar sind. Die (-adische Norm ||a||; von a ist dann gegeben
durch
llalle :=e*.

Man beweist, dass der Korper Q, die Vervollstindigung von Q beziiglich der ¢-adischen
Norm ist.

Eine ausgezeichnete und ausfiihrlichere Behandlung der ¢-adischen Zahlen findet sich in
[16], Chapter II.

6.2 Die Gruppenstruktur einer elliptischen Kurve. Eine elliptische Kurve E/Q sei
vorgelegt (s. [7], Abschnitt 3); der Einfachheit halber sei hier angenommen, dass E durch
eine Gleichung der Form

E:Y?=X4+mX>+aX+a

mit 4,,44,a6 € Q gegeben ist. Sind P, Q zwei Punkte auf E, so kann diesen wie folgt
ein dritter Punkt R € E zugeordnet werden: Man legt zunachst die Verbindungsgerade
L durch P, Q; ist P = Q, so wihlt man fiir L. die Tangente an P. Da die Kurve E vom
Grad 3 ist, schneidet L die Kurve E in genau einem weiteren Punkt R’ € E; indem
man R’ an der X-Achse spiegelt, erhilt man den gewiinschten Punkt R € E. Man setzt
nun P + Q := R und iiberzeugt sich, dass damit E zu einer kommutativen Gruppe wird.
Der unendlich ferne Punkt Or € E iibernimmt dabei die Rolle des neutralen Elements.
Ist P = (xp,yp),Q = (x0, o) und xp # xo. so sind die Koordinaten (xg,yr) von R
gegeben durch die Formeln

2

Yo—Yp

= —Xp — X — 4y,
Xo — Xp

Yr= <yQ_yp) - (Xp —xR) — Yp-

XQ — Xp
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Im Fall xp = x¢ hat man P = FQ; im ersteren Fall ergibt sich R = P — P = Og; im
letzteren folgt R = P + P mit den Koordinaten
: Xp — 2845 — 8asxp + a3 — 40245
4yp
X3 — 3XpXR — 20XpXR — Aa(Xp + XR) — 245
2yp
Ist n € Z, so bezeichne man mit [1] : E — E den Morphismus ‘Multiplikation mit #’;
dieser ist also gegeben durch
n(P)=P+---+P (n—mal).

Im Spezialfall # = 2 erhilt man die Koordinaten von [2](P) = P-+P gerade mit Hilfe der
vorhergehenden Formeln. Im allgemeinen beweist man, dass E [#] := ker[n] als Z-Modul
isomorph zu (Z/nZ)?* ist.

Wie bereits in [7] seien zu diesem Themenkomplex wieder die Lehrbiicher [5], [6] und
[19] empfohlen.

XR

?

YR =

6.3 Der Frobenius-Automorphismus. Es sei K/Q eine endliche Galois-Erweiterung
und Ox C K der Ring der ganzen Zahlen von K. Ist dann p eine Primzahl, so ist das
Ideal p - Ok im allgemeinen kein Primideal, aber es lisst sich (bis auf die Reihenfolge)
in eindeutiger Weise als Potenzprodukt von » Primidealen p,. .., p, schreiben, nimlich

p-Ox =P ...-p)"

Die natiirliche Zahl e heisst der Verzweigungsindex von p; die Primzahl p heisst unver-
zweigt in O, falls e = 1 ist, andernfalls heisst p verzweigt in Og. Die Galois-Gruppen
D; := Gal(Ox/p; / F,) der endlichen Galois-Erweiterungen Ok /p; von [F,, haben unab-
hingig von j alle dieselbe Ordnung f, der Restklassengrad von p; mit diesen Bezeich-
nungen besteht iibrigens die Formel

e-f-r=[K:Q].

Die Galois-Gruppen D; sind zyklisch und werden durch die Substitutionen o +— o
(o € Ok/b;) erzeugt, welche durch Froby, (j = 1,...,7) bezeichnet und Frobenius-
Automorphismen genannt werden. Im unverzweigten Fall lassen sich die Galois-Gruppen
D; in die absolute Galois-Gruppe G einbetten; sic werden dann Zerlegungsgruppen von
b; genannt. Mit Froby, (j = 1,...,r) erhilt man somit r ausgezeichnete Elemente von
G, welche sich samtlich als zueinander konjugiert herausstellen.
Es sei schliesslich p : G — GL,(R) (R = F;, Zy) eine Galois-Darstellung, d.h. ein
in der Krull-Topologie stetiger Gruppenhomomorphismus. Dann betrachten wir speziell
den (galoisschen) Fixpunktkorper K/Q zum Kern kerp von p, d.h.

K=Q"" ={aecQ|o(a)=a Yo ckerp},
mit dem Ring der ganzen Zahlen Ox. Die Galois-Darstellung p heisst dann unverzweigt
(resp. verzweigt) fir die Primzahl p, falls p unverzweigt (resp. verzweigt) in O ist.
Weitere Einzelheiten zu diesem Themenkomplex sind in den Lehrbiichern [4], 1. Teil,
und [9], Chapter I, zu finden.
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