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Über den Beweis der Fermât-Vermutung II

Jürg Kramer

Jürg Kramer studierte Mathematik und Physik an der Universität Basel; im Jahre

1985 promovierte er dort bei Martin Eichler über Modul- und Jacobiformen.

Forschungsaufenthalte schlössen sich an: am Max-Planck-Institut für Mathematik in
Bonn, an der Harvard University in Cambridge (MA) und am Mathematical Sciences

Research Institute in Berkeley (CA). Dann wurde er Assistent von Gisbert Wüstholz

an der Universität Wuppertal. Mit diesem kam er 1988 an die ETH in Zürich.
Im Oktober 1994 trat er eine ordentliche Professur am Institut für Mathematik an
der Humboldt-Universität in Berlin an, wo er einerseits seine Forschungsinteressen

im Bereich der arithmetischen algebraischen Geometrie und der automorphen
Formen weiterverfolgt und andererseits für die Lehrerausbildung in Mathematik
verantwortlich ist. Seine Interessen ausserhalb der Mathematik erstrecken sich auf die

Geschichte, insbesondere die Wissenschaftsgeschichte, und auf klassische und
moderne Sprachen.

Der Beweis der Fcrmal-Vcnmilung durch Andrew Wiles und Richard Taylor ist zweifellos

eine der ganz grossen Leistungen der Mathematik in diesem Jahrhundert. Zu
Recht wurde denn auch die Lösung des allen Problem:; in weilen Kreisen als Sensation

gefeiert. Für die Entwicklung der Mathematik dürften allerdings die liier neu eingeführten

Methoden noch von grösscrer Tragweite sein. Sie haben Wiles und Taylor erlaubt.
sehr allgemeine und tiefliegende Sätze zu beweisen, aus denen sich als ganz spezielle
Folgerung die Richtigkeit der Fermai-Vermul ung ergab. Diese abstrakten Methoden und
Sätze lassen sich nicht auf einfache Weise darstellen und erklären: die inhärente
Komplexität der Sache macht dies schlicht unmöglich. Trotzdem isl es Jürg Kramer in einem

ersten Artikel | El. Math. 50 (1995). 11-25| gelungen, die grundsätzliche Bewcisstruk-
tur (Zurück!uhrung der Fermai-Vermutung auf die Vermutung von Shimura-Tanivama)
übersichtlich darzustellen. Im vorliegenden Beilrag stellt er nun auf ähnliche Weise

den von Wiles und Taylor erbrachten Beweis der Vermutung von Shimura-Tanivama

vor. - Der Beitrag mag schw icrigkeitsmässig an der oberen Grenze des für unsere
Zeitschrift Vertretbaren liegen; wir haben uns trotzdem für eine Veröffentlichung
entschieden: die Elemente der Maihcmuiik wollen an dein epochalen Fnlwicklungsschritt
der Mathematik nicht vorbeigehen, der mit den Arbeiten von Wiles und Taylor gemacht
worden ist. ust
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1 Einleitung
Diese Note ist eine Fortsetzung des Artikels [7]; dementsprechend werden die dort
eingeführten Bezeichnungen verwendet. In der in [7] mit möglichst elementaren Mitteln
gegebenen Übersicht über die Strategie des Beweises der Fermât-Vermutung stellte sich
die Vermutung von Shimura und Taniyama im Spezialfall semistabiler elliptischer Kurven

als die noch zu beweisende Schlüsselstelle heraus. Der vollständige Beweis dieser

Vermutung gelang A. Wiles und R. Taylor im Herbst 1994 und wurde im Sommer 1995

in den beiden Arbeiten [23] und [21] publiziert. In diesem Artikel wird nun der Versuch

unternommen, dem durch [7] neugierig gewordenen Leser eine Übersicht über den
Beweis des Satzes von Wiles und Taylor anzubieten. Da dieser Artikel mathematisch etwas

anspruchsvoller als der vorhergehende ist, wurde im sechsten Abschnitt ein Anhang über
die ^-adischen Zahlen, die Gruppenstruktur einer elliptischen Kurve und die Hilbertsche
Theorie Galoisscher Zahlkörper beigefügt. Wir hoffen, damit möglichst vielen, die sich
durch die Note [7] angesprochen fühlten, einen Einblick in den Ideenreichtum und die

Komplexität des Beweises des Schlüsselsatzes zum Beweis der Fermât-Vermutung zu
ermöglichen. Dem interessierten Leser empfehlen wir auch die Lektüre der erst vor kurzem
erschienenen, weitaus detaillierteren Abhandlungen [1], [3], [13], [15] und der beiden
Originalartikel [23], [21], zu denen dieser Artikel eine gewisse Orientierungshilfe bieten
könnte.

2 Galois-Darstellungen
Im folgenden soll also ein Überblick über den durch A. Wiles und R. Taylor in [23] und

[21] dargestellten Beweis der Vermutung von Shimura und Taniyama (s. [7], Vermutung
4.5) für semistabile elliptische Kurven E/Q gegeben werden, d.h. über den Beweis des

2.1 Satz (Wiles, Taylor). Jede semistabile elliptische Kurve E/Q ist modular zur Stufe
N NE.

2.2 Definition. Es sei Q ein algebraischer Abschluss von Q, G Gal(Q/Q) die absolute

Galois-Gruppe und £ > 2 eine Primzahl. Mit F^ 7Lj£ 7L sei der Körper mit £ Elementen
und mit TLi der Ring der ganzen ^-adischen Zahlen (s. Anhang 6.1) bezeichnet. Wir
betrachten dann zwei Typen von 2-dimensionalen Darstellungen von G:

(i) ~pf : G —> GL2(F^), Galois-DarStellung in Charakteristik £.

(ii) pi : G —> GL2(Zy, i-adische Galois-DarStellung.

2.3 Bemerkung. Da Ze/(£) ¥( gilt, erhalten wir durch Betrachtung einer gegebenen

^-adischen Galois-Darstellung pe modulo dem Hauptideal {£) £Z( eine Galois-

Darstellung pt in Charakteristik £ und damit das folgende, kommutative Diagramm:

G GL2(Z

mod

GL2(F
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2.4 Beispiele (Elliptische Kurven). Es sei E/Q eine elliptische Kurve mit
geometrischem Führer Ne. Wie im Anhang 6.2 ausgeführt ist, besitzt E die Struktur einer
kommutativen Gruppe; dabei berechnen sich die Koordinaten der Summe P + Q zweier
Punkte P,Q e E durch rationale Funktionen mit rationalen Koeffizienten in den Koordinaten

von P, Q. Daraus erkennen wir sofort, dass die absolute Galois-Gruppe G auf dem

Kern E[n] c E(Q) des Homomorphismus [n] : E —> E (Multiplikation mit n) operiert.
Aufgrund der Isomorphie E [n] (Z/nZ)2 erhalten wir also die Galois-Darstellungen

-pEn : G —> Aut(E[n]) GL2(Z/nZ).

Andrew John Wiles vor der Wandtafel in seinem Büro an der Princeton University
(Keystone/Charles Rex Arbogast/AP Photo).

Speziell fwn £ ergibt sich somit eine Galois-Darstellung vom Typ (i)

-pE/ : G —>

Durch Betrachtung des (projektiven) Systems {~Pe/>~Pe/2>~Pe,p> ¦ ¦ •} von Galois-Darstellungen

erhalten wir durch Übergang zum inversen Limes

PE,e := lim pEt

eine Galois-Darstellung vom Typ (ii)

PE,e ¦ G —> GL2(Z^).

Zur Beschreibung der Eigenschaften von pEe und pE/ ziehen wir Anhang 6.3 heran.

Wir betrachten den Fixpunktkörper KE//Q zum Kern kerpE^ von pEh d.h.

KE,i Qker~PEe {« G Q | a(a) a Va G kerpE/ },
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mit dem Ring der ganzen Zahlen Gkei,- Man beweist nun, dass pEh resp. pE/, für alle
Primzahlen p, p ^ £ und p \NE, unverzweigt ist; für diese Primzahlen besteht dann die

Primidealzerlegung
P-GKej, Pi -...-pr

mit r Primidealen p\,... ,pr. Den Primidealen pj sind die Frobenius-Automorphismen
FrobP; G G (;' 1,..., r) zugeordnet, welche sämtlich zueinander konjugiert sind. Damit

sind die Spuren tr pE ^(Frobp. resp. trpE^(Frobp.), und die entsprechenden Determinanten

eindeutig festgelegt, d.h. unabhängig von j. Wir schreiben deshalb trpE ^(Frobp),
resp. tr/OE/(Frobp), und detpE^(Frobp), resp. det/OE/(Frobp). Mit den Bezeichnungen
von [7], Abschnitt 3.5, weist man nun folgende Eigenschaften für pEf nach:

trpE/(Frobp) bp=p-Np mod£ Vp^£,p\NE,
detpE/(Frobp) p mod^ Vp ^ £,p\NE-

Entsprechend ergibt sich für pE/.

bp p-Np Vju ^
=p Vp ^ £,p\NE-

2.5 Numerisches Beispiel. Wir betrachten die elliptische Kurve mit der minimalen
Gleichung

E : Y2 + Y X3 + X2 - 9X - 15.

Für deren minimale Diskriminante Afm und deren geometrischen Führer Ne berechnet

man (s. auch [20], S. 82)

Af -193,NE 19.

Wir wählen jetzt £ 3. Mit Hilfe der Additionsformeln in Anhang 6.2 überprüft man
leicht, dass der Kern E [3] aus dem unendlich fernen Punkt OE und den folgenden 8

Punkten besteht (bei diesen Rechnungen beachte man die Koordinatentransformation
X h^ X, Y h^ Y - 1/2):

P\ (5,9) P2 (5,-10)

Insbesondere stellt man fest, dass E[3] die direkte Summe der durch P1; resp. P3,

erzeugten zyklischen Untergruppen (Pj), resp. (P3), der Ordnung 3 ist, d.h.

E[3] (Pi> e (P3> Z/3Z0Z/3Z.
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Da nun E[3] C E(K) mit K := Q(y/=3") gilt, faktorisiert die Galois-Darstellung ~pEß :

G —> GL2(F3) über die Galois-Grappe Gal(K/Q), d.h. pEß ist bestimmt durch die

Wirkung von Gal(K/Q) auf E[3]. Beachten wir noch, dass die letztere Galois-Gruppe
zyklisch von der Ordnung 2 ist, also

gilt, wobei a der nicht-triviale Automorphismus von Q(y/-^) mit <r(\/—3) -y7-
ist, so ergibt sich

(1

Wir berechnen schliesslich die Spuren und die Determinanten der Frobenius-Automor-
phismen Frobp zu den Primzahlen p =/= 3,19. Dazu stellen wir zunächst mit Hilfe des

quadratischen Reziprozitätsgesetzes die Gleichheit der Legendre-Symbole

V

fest. Ist also p 1 mod3, so ist -3 ein quadratischer Rest modp, und p lässt sich mit
ganzen Zahlen £, rj in der Form £2 + 3ry2 darstellen. Daraus ergibt sich für das Hauptideal
p ¦ €k die Zerlegung

p ¦ ÜK pi • p2

mit zwei verschiedenen Primidealen pi, p2. Somit besteht für den Restklassengrad von
p die Gleichung / 1, also gilt Frobp id. Ist andererseits p 2 mod 3, so ist -3
ein quadratischer Nichtrest modp, also ist das Hauptideal p ¦ Ox selbst ein Primideal mit

/ 2. In diesem Fall gilt Frobp a. Insgesamt erhalten wir für Primzahlen p ^ 3,19
die Kongruenzen

trpE3(Frobp) 2 mod 3, p 1 mod3,

trpE3(Frobp) 0 mod 3, p 2 mod 3,

und

det/oEj3(Frobp) 1 mod 3, p 1 mod 3,

det/oEj3(Frobp) 2 mod 3, p 2 mod 3.

Wir bemerken abschliessend, dass die in diesem Beispiel konstruierte Galois-Darstellung

pEß nicht irreduzibel ist.

3 Modulare Galois-Darstellungen
Einleitend bemerken wir, dass die in 2.2 gegebene Definition einer Galois-Darstellung in
Charakteristik t, bzw. einer ^-adischen Galois-Darstellung, dahingehend verallgemeinert
werden kann, indem der Körper F^ durch eine endliche Erweiterung k/¥(, bzw. der Ring
Z( durch eine endliche Erweiterung G/Ze, ersetzt wird. Von dieser Verallgemeinerung
werden wir in der folgenden Definition Gebrauch machen.



50 Elem. Math. 53 (1998)

3.1 Definition, (i) Eine Galois-Darstellung pt : G —> GL2(Â:/F^) in Charakteristik £

heisst modular zur Stufe N, falls 0 ^ / G S2(T0(N)), /(t) q + J2T=2 cnf, existiert,
so dass

tr^(Frobp) cp modi Vp ^ £,p\N,
det^(Frobp) p mod^ Vp ^£,p\N

gilt. Um die Abhängigkeit von der Spitzenform / hervorzuheben, schreiben wir p,e
anstelle von pf.

(ii) Eine ^-adische Galois-Darstellung pt : G —> GL2(0/Z^) heisst modular zur Stufe

N, falls 0 ^ / g S2(r0(N)), /(t) (j + ]T~2 c„<j", existiert, so dass

=p Vp ^
gilt. Um die Abhängigkeit von der Spitzenform / hervorzuheben, schreiben wir pf^
anstelle von pt.

3.2 Bemerkung. Um den Artikel möglichst einfach zu gestalten, werden wir im folgenden

immer annehmen, dass die zu betrachtenden Spitzenformen ganzzahlige Fourierko-
effizienten besitzen. Damit brauchen wir dann auch keine echten Erweiterungen k/Ft,
bzw. G/Zt, heranzuziehen. Wir betonen aber, dass man bei einer korrekten Behandlung
des Gegenstandes nicht um diese Verallgemeinerung herumkommt.

3.3 Bemerkung. Ist die Galois-Darstellung pf : G —> GL2(k/¥t) in Charakteristik
£ modular im Sinne der vorhergehenden Definition, so ist die Stufe N nicht eindeutig
bestimmt. In der Arbeit [17] hat J-P. Serre unter anderem eine Vorschrift zur Bestimmung
der minimal möglichen Stufe N(pe) vermutet. In der Folge sind viele Beiträge zu dieser

Problemstellung entstanden; der entscheidende Durchbruch, welcher zur Bestätigung der
Serre'schen Vermutungen führte, gelang K.A. Ribet mit der Arbeit [14].

3.4 Numerisches Beispiel. Wir bettachten die Galois-Darstellung pE3 : G —> GL2(F3)
aus Beispiel 2.5. Für die Spuren der Frobenius-Automorphismen Frobp hatten wir
gefunden

ti~pE 3(Frobp) 2 mod3, p 1 mod3,

tt/oEj3(Frobp) 0 mod 3, p 2 mod 3.

Andererseits berechnet man mit der in [7], Abschnitt 4, gegebenen Formel

dimcS2(ro(19)) 1.

Die dadurch eindeutig festgelegte Spitzenform 0 ^ / g S2(r0(19)), /(t) q +
Y^=2cnC\n> entnimmt man der Tabelle [20], S. 117; wir geben hier die Fourierkoef-
fizienten cp zu den Primzahlen p ^ 3,19, p < 97, wieder:

c2 0 c5 3 c7 -l C\\ 3 Ci3 —4 en —3

c23 =0 c29 6 C31 -4 C37 2 C41 -6 C43 -1
c47 -3 c53 12 c59 -6 c6\ -1 c67 -4 c7i 6

C73 — —7 C79 — 8 c§3 — 12 c§9 — 12 C97 — 8.

Ein Vergleich zeigt schliesslich, dass die Galois-Darstellung pE3 in Charakteristik 3

modular zur Stufe N 19 ist.
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3.5 Bemerkung, (a) Es sei E/Q eine elliptische Kurve mit geometrischem Führer Ne.
Falls die Kurve E/Q modular zur Stufe N NE ist (s. [7], Abschnitt 4.3), so folgt
unmittelbar, dass die in Beispiel 2.4 konstruierten Galois-Darstellungen pEe und pE,e für
jede Primzahl £ im Sinne der Definition 3.1 modular zur Stufe N sind. Umgekehrt geht
aus einem Satz von G. Faltings (s. [2]) hervor, dass die Modularität von pEie für eine
Primzahl £ die Modularität von E/Q zur Stufe N Ne zur Folge hat.

(b) Das eben erwähnte Resultat von G. Faltings liefert folgende Strategie zum Beweis
des Satzes von Wiles und Taylor: Für eine semistabile elliptische Kurve E/Q gilt es eine

Primzahl £ zu finden, für welche die ^-adische Galois-Darstellung pEie modular ist. Diese
Primzahl findet man, indem man zuerst eine Primzahl £ sucht, für welche die Galois-
Darstellung pEe in Charakteristik £ modular ist. Dies ist relativ einfach; wir werden
in Abschnitt 5 darauf zurückkommen. Weiter gilt es dann für sämtliche Hochhebungen
('Deformationen') dieser Galois-Darstellung pEf zu ^-adischen Galois-Darstellungen pi :

G —> GL2(Z^), für welche definitionsgemäss das kommutative Diagramm

G GL2(Z

mod

GL2(F

besteht, unter Verwendung der Modularität von ~pE t die Modularität von pt nachzuweisen.
Dies ist schwierig; wir werden in Abschnitt 4 darauf eingehen. Zusammengenommen
ergibt sich dann insbesondere die gewünschte Modularität von pE^ und damit der Beweis
des Satzes 2.1.

3.6 Hecke-Algebra. Auf S2(r0(N)) wirken gewisse Operatoren, die sogenannten Hecke-

Operatoren Tp (p\N) und Up (p\N). Ihre Wirkung auf eine Spitzenform /(t) q +
XX2 c"f ist wie folSt gegeben

n=\
oo

(Upf)(r)"P.
n=\

hierbei ist cn/p 0 zu setzen, falls n/p £ 7L gilt. Die Hecke-Operatoren erzeugen eine

kommutative Z-Algebra, die sogenannte Hecke-Algebra T(N). Es zeigt sich, dass die

Hecke-Operatoren Tp (p\N) bezüglich eines gewissen Skalarprodukts auf S2(r0(N)),
des sogenannten Petersson-Skalarprodukts, selbstadjungiert sind. Aufgrund der Kommu-
tativität von T(N) existiert somit eine Basis von S2(r0(N)), welche aus simultanen

Eigenfunktionen bezüglich der Hecke-Operatoren Tp (p \ N) besteht. Ist / eine solche

Eigenfunktion, welche zudem Eigenfunktion der Hecke-Operatoren Up (p\N) ist, so wird
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/ primitive Eigenform oder kurz Neuform genannt. Für eine Neuform / bestehen also
die Beziehungen

cp-f (p]N), Upf cp-f (p\N),

wobei cp gerade der p-te Fourierkoeffizient von / ist, und die Zuordnungen

Up^cp (p\N)

definieren einen Algebrenhomomorphismus Vy von T(N) nach (einer Erweiterung von)
Z(. Umgekehrt definiert ein Algebrenhomomorphismus tp von T(N) nach Z( eine

eindeutig bestimmte Neuform / G S2(r0(N)), /(t) =q + Y^=2 c«<f ' mit der Eigenschaft

cp iKTP) (p{N), cp ^Up) (p\N);

es sei darauf hingewiesen, dass die vorhergehende Aussage richtig bleibt, wenn ip nur
für fast alle Erzeugenden von T(N) erklärt ist.

3.7 Bemerkung. Spitzenformen zu modularen elliptischen Kurven der Stufe N bzw. zu
modularen Galois-Darstellungen der Stufe N sind Neuformen zur Hecke-Algebra T(N).
Ist umgekehrt/ G S2(r0(N)) eine Neuform zur Hecke-Algebra T(N), so lassen sich
mit Hilfe der Theorie von Eichler-Shimura (s. [18], Section 7.6) Galois-Darstellungen
pe, bzw. /^, konstruieren, welche modular zur Stufe N sind.

4 Deformationen von Galois-Darstellungen
4.1. In diesem Abschnitt fixieren wir eine endliche Menge E von Primzahlen mit IgS
und eine (absolut) irreduzible Galois-Darstellung ~p~g : G —> GL2(F^) in Charakteristik
£, welche für alle p £ S unverzweigt ist (s. Anhang 6.3) und für p e S ein gewisses
Verhalten hat, auf das wir hier nicht näher eingehen können. Unter Verwendung der von
B. Mazur entwickelten Methoden beweist man dann den folgenden Satz (s. [12], Section
1.2 und [23], Chapter I, Section 1).

4.2 Satz. Mit den vorhergehenden Bezeichnungen gilt: Es existiert eine lokale, vollständige

%f-Algebra 2/1 (mit maximalem Ideal m^ und Restklassenkörper Çk/mgi F&) und
eine universelle Galois-Darstellung pgi : G —> GL2 (2/1) mit den folgenden Eigenschaften:

(1) pan mod ma pt
(2) pan ist unverzweigt für alle p £ E.

(3) det/OöÄ(Frobp) p für alle p <£ E.

(4) pan hat ein gewisses Verhalten für die Primzahlen p G E, auf das hier nicht näher

eingegangen werden soll.

(5) Jede andere Galois-Darstellung pa '¦ G —> GL2(A) (hierbei bedeute A eine

lokale, vollständige Zg-Algebra mit maximalem Ideal irt/t und Restklassenkörper

¥fj mit den Eigenschaften (1)—(4) definiert einen eindeutig bestimmten
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Algebrenhomomorphismus ifa '¦ 2ft —*¦ A mit pa f>A° PaJil d.h. es besteht das

folgende, kommutative Diagramm:

G —?— GL2(A)

mod mA

GL2(F

4.3. Zur Formulierung des nächsten Satzes bezeichne M das Produkt aller Primzahlen

p G E mit gewissen nichtnegativen Exponenten, welche durch das Verhalten von pf an
den Stellen p G E bestimmt werden; wir können hier nicht näher darauf eingehen. Weiter
setzen wir voraus, dass die (absolut) irreduzible Galois-Darstellung ~ßf : G —> GL2(F^)
in Charakteristik £ modular zur Stufe M ist, d.h. es gilt pf pff, wobei/ G S2(r0(M)),
/(t) q + Yl^=2 cnqn, die entsprechende Neuform ist. Wir bemerken, dass das

Beispiel 3.4 in diesem Zusammenhang nicht herangezogen werden kann, da die Galois-

Darstellung von 3.4 nicht irreduzibel ist. Das zu formulierende, wichtige Ergebnis von
A. Wiles ist nun ein Analogon zu Satz 4.2, in dem diejenigen Hochhebungen der Galois-
Darstellung p~jt zu ^-adischen Galois-Darstellungen charakterisiert werden, welche
modular sind. Dazu wird mit Hilfe der Hecke-Algebra T(M) eine 'universelle' Hecke-

Algebra konstruiert, welche durch den nachfolgenden Satz beschrieben wird (s. [23],
Chapter 2, Section 3).

4.4 Satz. Mit den vorhergehenden Bezeichnungen gilt: Es existiert eine lokale, vollständige

Jjf-Algebra 2T (mit maximalem Ideal OTgr und Restklassenkörper ST/irtg- — F&) und
eine universelle Galois-Darstellung p<$ : G —> GL2(2T) mit den folgenden Eigenschaften:

(1) Es existiert ein maximales Ideal m C T(M) derart, dass 2T die Vervollständigung
der Lokalisierung T(M)m von T(M) an m ist.

(2) ps mod mg- Pfi(.

(3) paj ist unverzweigt für alle p <£ E, und es gilt tr/Og-(Frobp) Tp für alle p <£ S

(hierbei wurde für das natürliche Bild von Tp G T(M) in 2T wieder Tp geschrieben).

(4) det/Og-(Frobp) p ßr alle p £ E.

(5) Jede andere modulare Galois-Darstellung pa '¦ G —> GL2(A) (hierbei bedeute

A eine lokale, vollständige Zg-Algebra mit maximalem Ideal ma und
Restklassenkörper A/irt/t We) mit den Eigenschaften (2)—(4) definiert einen eindeutig
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bestimmten Algebrenhomomorphismus i/ja '¦ 2T —> A mit
besteht das folgende, kommutative Diagramm:

GL2(9")

Vm ° PaJ', d.h. es

GL2(A)

mod mA

GL2(F

4.5 Bemerkung, (a) Eine Analyse der Konstruktion der Algebra 2T, insbesondere Satz

4.4 (1), zeigt, dass die (natürlichen Bilder der) Hecke-Operatoren Tp, p £ E, die Algebra
2T erzeugen.

(b) Aufgrund von Satz 4.2 (5) (mit A ÏÏ) existiert ein eindeutig bestimmter
Algebrenhomomorphismus tpQ- : 2/1 —> 2T mit der Eigenschaft p$ ip& o p^. Zusammen mit der

Eigenschaft (3) von pa- führt dies für alle p £ S zu der Beziehung

<p?r(ti p®.(Frobp)) tt/o2r(Frobp) Tp.

Da nun die Hecke-Operatoren Tp, p <£ E, nach (a) die Algebra 2T erzeugen, ergibt sich
sofort die Surjektivität von cpg-.

(c) Wir zeigen nun unter der Annahme der Injektivität von (fg-, d.h. der Isomorphie von
^gr, wiederum unter Verwendung der Sätze 4.2 und 4.4, dass jede ^-adische Galois-

Darstellung pi : G —> GL2(Z^) mit der Eigenschaft pemod(l) ptf modular zur
Stufe M ist: Zunächst beachten wir dazu das kommutative Diagramm

GL2(9")

G GL2(Z

mod

GL2(F

Nach der Bemerkung am Ende des Abschnitts 3.6 existiert dann zum
Algebrenhomomorphismus ipze : 2T —> Z( eine eindeutig bestimmte Neuform g e S2(r0(M)),
g(r) q + J2^2 &n(\n, so dass für alle Primzahlen p <£ E die Gleichung
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gilt. Mit Hilfe des vorhergehenden Diagramm berechnet man schliesslich für diese
Primzahlen p

o pak)(Frobp))

(tr^1 opg-)(Frobp)))

4>ze{Tv) dp.

Daraus folgt, wie behauptet, dass die ^-adische Galois-Darstellung pi : G —> GL2(Z^)
modular zur Stufe M ist. Es ist zu beachten, dass die beiden Neuformen f,g im allgemeinen

verschieden sind, deren Fourierkoeffizienten aber für alle p £ S den Kongruenzen
cp dp mod £ genügen.

4.6 Hauptsatz. Mit den Bezeichnungen von Satz 4.2 und den Voraussetzungen von Satz

4.4 folgt, dass der surjektive Algebrenhomomorphismus yg- : 2/1 —> 2T injektiv, d.h. ein

Isomorphismus ist.

Der Beweis soll in fünf Schritten kurz skizziert werden; bei jedem Schritt verweisen wir
den interessierten Leser für weitere Einzelheiten auf die entsprechenden Seiten in [23]
und [21]:

Schritt 1. Die Zuordnung Tp h^ cp (hierbei ist cp der p-te Fourierkoeffizient von /)
definiert einen Algebrenhomomorphismus tt : 2T —> 7Lt. Damit setze man pg- := kervr und

pa := ker(Tro^g-) ^g-^pg-). Aus einem Resultat von B.Mazur(s. [11], Sections II.15-
11.17) folgt weiter, dass 2T eine Gorenstein-Algebra ist, d.h. es gilt Hom^ST, TLi) 2T.

Es bezeichne dann tt' g 2T das Bild von tt g Homz^ST, Z^) unter diesem Isomorphismus,

und man setze r\ := ti^tt') g 7Li. Mit diesen Bezeichnungen beweist man die

Ungleichungen

Dies ist relativ einfach und findet sich in [23], S. 515.

Schritt 2. Die Komposition der Galois-Darstellung pjt : G —> GL2(F^) mit der adjun-
gierten Darstellung Ad : GL2(F^) —> Aut(M2(F^)) induziert die Darstellung

: G —> Aut(Ve)

mit Vf> :=M2(F^). Damit stellt man fest, dass der Tangentialraum Hom(mgÄ/(m|l,^),F^)
von Spec 2ft/(£), d.h. der speziellen Faser von Spec2/1 über Spec Z^, der Bijektion

genügt, wo Hgel(G,Ve) eine gewisse Untergruppe der Galois-Kohomologiegruppe
Hl{G,Vt) ist, welche durch lokale Bedingungen an den Primstellen p G S erklärt ist
(s. [23], S. 460f.); H\d{G, Vc) heisst Selmer-Gruppe. Allgemeiner lassen sich für jedes
v 1,2,3,... Sehner-GruppenH\el(G, Vt) definieren, wo Vt := M2(Z/^Z) ist; damit
setzt man
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Die obige Bijektion führt dann zu der Gleichheit

Die Einzelheiten hierzu finden sich in [23], Proposition 1.2, S. 464f.

Schritt 3. Die lokale, vollständige ZrAlgebra 2T lässt sich in der Form

°r Ze[[Xu...,XT]]/I

darstellen, wobei Xu... ,Xr Unbestimmte und I ein Ideal des Potenzreihenrings
Z4[Xi, • • • ,Xr]] ist. Man beweist nun, dass das Ideal I durch (r - dimST) Elemente

erzeugt wird, d.h. dass die Algebra 2T ein vollständiger Durchschnitt ist. Man erhält
dieses wichtige Ergebnis, indem man anstelle der 'universellen' Hecke-Algebra 2T zur
Stufe M eine unendliche Folge von analog konstruierten 'universellen' Hecke-Algebren
2T„ (n 1,2,3,...), im wesentlichen zu den Stufen M • q\ ¦ ¦ qr, betrachtet, wobei

qi,... ,qr Primzahlen sind, welche q} 1 mod^" erfüllen und weiteren technischen
Bedingungen genügen. Für n » 0 ergibt sich dann, dass die Algebra 2T„ ein vollständiger
Durchschnitt ist, und mit dem Kriterium von E. Kunz (s. [8], Section 2) folgt damit, dass
2T ein vollständiger Durchschnitt ist. Die Einzelheiten hierzu finden sich in der Arbeit
[21].

Schritt 4. Die vollständige Durchschnitt-Eigenschaft der Algebra 2T führt mit etwas Kom-
mutativer Algebra unmittelbar zur Gleichung

Dies findet sich in [23], Appendix, Proposition 2. Eine weitere Konsequenz der vollständigen

Durchschnitt-Eigenschaft der Algebra 2T ist die Ungleichung

Dies ist der Inhalt von [23], Chapter 3.

Schritt 5. Fasst man jetzt die Resultate der Schritte 1, 2 und 4 zusammen, so hat man
die Gleichheiten

#HlSd{G, V) #pgi/pi #p°r/pl #Ze/(v).

Die mittlere Gleichheit und die vollständige Durchschnitt-Eigenschaft der Algebra 2T

führen schliesslich zur behaupteten Isomorphie 2/1 2T. Dies findet sich in [23], Appendix,

Proposition 1. D
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5 Das Ende des Beweises

5.1. In diesem Abschnitt soll der Beweis des Satzes 2.1 abgeschlossen werden. Es sei

also E/Q eine semistabile elliptische Kurve mit geometrischem Führer Ne. Wir haben

zu zeigen, dass E modular zur Stufe N Ne ist. Dazu betrachten wir die Galois-
Darstellung pE3 in Charakteristik 3, wählen S als die Menge aller Primteiler von Ne
zusammen mit £ 3 und definieren M wie in Abschnitt 4.3. Es werden nun drei Fälle
unterschieden. Den interessierten Leser verweisen wir für weitere Einzelheiten auf die
Seiten 541-544 in [23].

5.2. Zuerst nehmen wir an, dass die Galois-Darstellung pE2 irreduzibel ist. Aufgrund
dieser Annahme, der Wahl von S und der Semistabilität von E zeigt sich, dass die

Voraussetzungen 4.1 von Satz 4.2 erfüllt sind. Weiter zeigt man mit Hilfe eines Resultats

von R.P Langlands (s. [10]) und einer Ergänzung dazu von J. Tunnell (s. [22]), dass

pE,3 modular zur Stufe M ist. Somit gilt pE,3 Pfß ™it einer Neuform/ e S2(r0(M)).
Damit sind jetzt auch die Voraussetzungen 4.3 von Satz 4.4 erfüllt. Eine Anwendung
des Hauptsatzes 4.6 zusammen mit der Bemerkung 4.5(c) beweist dann die Modularität
der 3-adischen Galois-Darstellung pE>3 und somit die Modularität von E zur Stufe M;
daraus ergibt sich schliesslich auch die Modularität von E zur Stufe N Ne

5.3. Als nächstes nehmen wir an, dass die Galois-Darstellung pE2 reduzibel, aber pE5
irreduzibel ist. Unter dieser Voraussetzung konstruiert man eine semistabile elliptische
Kurve E'/Q, welche die beiden folgenden Eigenschaften hat:

(i) Die Galois-Darstellung pE,3 ist irreduzibel.

(ii) Es besteht ein G-äquivarianter Isomorphismus E'[5] E[5], d.h. die Galois-Dar-
stellungen pE>5 und ~pE5 sind isomorph.

Wegen (i) lassen sich die in 5.2 durchgeführten Überlegungen auf die elliptische Kurve
E'/Q anwenden. Damit ergibt sich die Modularität der 3-adischen Galois-Darstellung
PE',3, also mit dem Satz von Faltings auch die Modularität der 5-adischen Galois-

Darstellung pe',5, insbesondere also auch die Modularität von pE>5. Aufgrund der Iso-

morphie (ii) folgt dann die Modularität der Galois-Darstellung pE5. Nun folgert man wie
in 5.2 die Modularität der 5-adischen Galois-Darstellung pEj5 und somit die Modularität
von E zur Stufe N Ne.

5.4. Es bleibt schliesslich der Fall, dass sowohl pE2 als auch pE5 reduzibel sind. Unter
dieser Voraussetzung überlegt man sich, dass dann die Semistabilität von E/Q verletzt
ist, d.h. dieser Fall braucht nicht behandelt zu werden. Trotzdem bemerken wir, dass sich
in diesem Fall die elliptische Kurve ebenfalls als modular zur Stufe N Ne herausstellt.

D

Anhang
6.1 ^-adische Zahlen. Es sei £ eine Primzahl. Für jedes v 1,2,3,... betrachte man
die Restklassenringe Z/£VZ; mit Hilfe der Zuordnung

a mod £v i—> a mod £'n>-\
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erhält man Ringhomomorphismen

—>Z/t~lZ.

Die ganzen l-adischen Zahlen 7Li sind nun definiert als die Menge aller Tupel {..., av,

ai) mit av e 1/ti (v 1,2,3,...) und yv{av) av^ für alle v 2,3,4,...
Man sagt, Z( sei der inverse Limes des (projektiven) Systems {Z/VZ}~ u und schreibt

Ze= lim Z/tZ.

Es zeigt sich, dass Zi ein Integritätsbereich ist und dass die Isomorphie Zt/t Zi F^
besteht. Indem man einer ganzen Zahl a e Z das Tupel (...,« mod^,... ,a modf)
zuordnet, erhält man eine Einbettung der ganzen Zahlen Z in die ganzen ^-adischen
Zahlen Z(. Der Quotientenkörper von Z( ist der Körper der l-adischen Zahlen Q^,
welcher folgende weitere Charakterisierung hat: Ist a G Q, so können wir mit eindeutig
bestimmtem a e Z, a £a ¦ a! schreiben, wobei a! eine rationale Zahl ist, deren Zähler
und Nenner nicht durch t teilbar sind. Die l-adische Norm \\a\\i von a ist dann gegeben
durch

Man beweist, dass der Körper Q^ die Vervollständigung von Q bezüglich der ^-adischen
Norm ist.

Eine ausgezeichnete und ausführlichere Behandlung der ^-adischen Zahlen findet sich in
[16], Chapter II.

6.2 Die Gruppenstruktur einer elliptischen Kurve. Eine elliptische Kurve E/Q sei

vorgelegt (s. [7], Abschnitt 3); der Einfachheit halber sei hier angenommen, dass E durch
eine Gleichung der Form

E : Y2 X3 + ö2X2 + a4X + a6

mit a2,a4,a6 e Q gegeben ist. Sind P, Q zwei Punkte auf E, so kann diesen wie folgt
ein dritter Punkt R e E zugeordnet werden: Man legt zunächst die Verbindungsgerade
L durch P, Q; ist P Q, so wählt man für L die Tangente an P. Da die Kurve E vom
Grad 3 ist, schneidet L die Kurve E in genau einem weiteren Punkt R' G E; indem
man R' an der X-Achse spiegelt, erhält man den gewünschten Punkt R G E. Man setzt

nun P + Q := R und überzeugt sich, dass damit E zu einer kommutativen Gruppe wird.
Der unendlich ferne Punkt Oe G E übernimmt dabei die Rolle des neutralen Elements.
Ist P (xp,yp),Q (xo,yo) und Xj> ^ xq, so sind die Koordinaten (xr,\/r) von R

gegeben durch die Formeln

-xP-xQ-a2,

5fXq-Xp
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Im Fall Xp Xo hat man P =fQ; im ersteren Fall ergibt sich R P — P Oe', im
letzteren folgt R P + P mit den Koordinaten

Xp — 2d4Xp — QttßXp -\- fl4 — 4d2Uß
Xr —j

_ Xp - 3xpXR - 2a2XpXR - a4{xp + Xr) - 2a6

2yp

Ist n G Z, so bezeichne man mit [n] : E —> E den Morphismus 'Multiplikation mit n';
dieser ist also gegeben durch

[n](P) P + ---+P (n-mal).

Im Spezialfall n 2 erhält man die Koordinaten von [2] (P) =P +P gerade mit Hilfe der

vorhergehenden Formeln. Im allgemeinen beweist man, dass E[n] := ker[n] als Z-Modul
isomorph zu (Z/nZ)2 ist.

Wie bereits in [7] seien zu diesem Themenkomplex wieder die Lehrbücher [5], [6] und

[19] empfohlen.

6.3 Der Frobenius-Automorphismus. Es sei K/Q eine endliche Galois-Erweiterung
und Ox C K der Ring der ganzen Zahlen von K. Ist dann p eine Primzahl, so ist das

Ideal p • Ox im allgemeinen kein Primideal, aber es lässt sich (bis auf die Reihenfolge)
in eindeutiger Weise als Potenzprodukt von r Primidealen p\,... ,pr schreiben, nämlich

Die natürliche Zahl e heisst der Verzweigungsindex von p; die Primzahl p heisst
unverzweigt in Ük, falls e 1 ist, andernfalls heisst p verzweigt in Ük- Die Galois-Gruppen

Dj := Gal(Ox/p; /Fp) der endlichen Galois-Erweiterungen €k/P} von Fp haben
unabhängig von j alle dieselbe Ordnung /, der Restklassengrad von p; mit diesen Bezeichnungen

besteht übrigens die Formel

e-f-r=[K:®].
Die Galois-Gruppen Dj sind zyklisch und werden durch die Substitutionen aHrf
(a G Gk/Pj) erzeugt, welche durch FrobP; (;' 1,... ,r) bezeichnet und Frobenius-
Automorphismen genannt werden. Im unverzweigten Fall lassen sich die Galois-Gruppen

Dj in die absolute Galois-Gruppe G einbetten; sie werden dann Zerlegungsgruppen von
pj genannt. Mit FrobP/ (;' 1,..., r) erhält man somit r ausgezeichnete Elemente von
G, welche sich sämtlich als zueinander konjugiert herausstellen.

Es sei schliesslich p : G —> GL2(R) (R F^,Z^) eine Galois-Darstellung, d.h. ein
in der Krull-Topologie stetiger Gruppenhomomorphismus. Dann betrachten wir speziell
den (galoisschen) Fixpunktkörper K/Q zum Kern kerp von p, d.h.

K Qkev {a G Q | cr(a) a Ver G kerp},

mit dem Ring der ganzen Zahlen Ox. Die Galois-Darstellung p heisst dann unverzweigt
(resp. verzweigt) für die Primzahl p, falls p unverzweigt (resp. verzweigt) in Ox ist.

Weitere Einzelheiten zu diesem Themenkomplex sind in den Lehrbüchern [4], I. Teil,
und [9], Chapter I, zu finden.
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