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Die Anziehung einer Kugel nach Newton

Reinhard Lang

Reinhard Lang, geboren 1947, absolvierte das Altsprachliche Gymnasium in Neustadt

an der Weinstraße und studierte Mathematik und Physik in Heidelberg und
Bielefeld. Er promovierte 1976 und habilitierte sich 1983 an der Universität Heidelberg

mit einer Arbeit über Stochastische Modelle von Vielteilchensystemen. Danach

war er Heisenbergstipendiat und lehrt und forscht seither am Institut für Angewandte
Mathematik der Universität Heidelberg.

1 Einleitung
Im dreidimensionalen euklidischen Raum seien Punkte P und S, in denen Massen m
und M konzentriert sind, gegeben. Dem Newtonschen Gravitationsgesetz zufolge ziehen
sich die beiden Massen an mit einer Kraft, welche die Richtung der Verbindungslinie
PS hat und deren Betrag F durch

mM
F (1)

gegeben ist. Dabei bezeichnet 7 die Gravitationskonstante und PS2 das Quadrat der

Entfernung zwischen den Punkten P und S. Welches Anziehungsgesetz tritt an die Stelle

Zwischen zu ci punklformigen Massen wirkt eine Gravitationskraft, die laut Newton
dem Quadrat ihres Abslandcs umgekehrt proportional ist. 1st der Absland zweier
ausgedehnter Massen verglichen mit ihrer Ausdehnung gross, wie dies bei Sonne und
Planeten der Fall ist so ist das Gesetz ganz offensichtlich annäherungsweise erfüllt.
Schon Newton stellte sich aber die Frage nach der genauen Formel für die Gravitationskraft

einer ausgedehnten Kugel. Seine Theorie sollte ja auch Gravitationscrschcinungcn
in der Sähe der Himmelskörper erklären können, wie etwa Ebbe und Flut. Der
rechnerische Nachweis, da:;:; die Gravitationskraft einer homogenen Kugel mit derjenigen
einer punklformigen Masse derselben Grosse übereinstimmt, ist heutzutage eine einfache

Übungsaufgabe zum Thema mehrfache Integrale. In seinem Hauptwerk Principia
Mathematica bewies Newton diese Tatsache aber mit Hilfe einer geometrischen
Überlegung, die allerdings wegen ihrer Kürze nur schwer verständlich ist. - Reinhard Lang
rekonstruiert in seinem Beitrag Newtons Beweis und stellt Gemeinsamkeiten fest mit
Ideen, die Archimedes zu Volumcnbcrcchnungcn verwendet hat. usi
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von (1), wenn man anstelle von Punktmassen in P und S homogene Kugeln mit
Mittelpunkten P und S und Gesamtmassen m und M hat? Wenn die Kugelradien klein sind

gegenüber dem Abstand PS - eine Annahme, die zum Beispiel im Fall von Erde und
Sonne zutrifft -, kann man die Kugeln approximativ durch Punktmassen ersetzen. Sofern

nur ihr Abstand groß genug ist, ziehen sie sich daher näherungsweise ebenfalls mit der
durch (1) gegebenen Kraft an. Die Frage, ob im Fall von Kugeln das Gesetz (1) immer
noch gilt, und zwar nicht nur approximativ bei großem Abstand, sondern exakt und für
alle Abstände, hat Newton lange Zeit zu schaffen gemacht. In [5], Buch III, Proposition
VIII, heißt es:

"After I hadfound that the force ofgravity towards a whole planet did arise from
and was compounded of the forces ofgravity towards all its parts, and towards

every one part was the inverse proportion of the squares of the distances from
the part, I was yet in doubt whether that proportion inversely as the square of
the distance did accurately hold, or but nearly so, in the total force compounded

of so many partial ones; for it might be that the proportion which accurately
enough took place in greater distances should be wide of the truth near the

surface of the planet, where the distances of the particles are unequal, and their
situation dissimilar. But by the help ofProp. LXXV and LXXVI, Book 1, and their
Corollaries, I was at last satisfied of the truth of the Proposition, as it now lies
before us. "

Im Folgenden wird die für das Verständnis des Problems entscheidende Frage nach
der Anziehungskraft einer Kugel auf einen außerhalb von ihr gelegenen Massenpunkt
betrachtet. Gegeben seien also eine homogene Kugel mit Mittelpunkt in S und Gesamtmasse

M und außerhalb der Kugel ein Punkt P der Masse m. Die Frage ist, ob die

Anziehungskraft exakt durch (1) gegeben ist.

Bild 1

Zunächst ist nicht zu "sehen", welche Kraft aus der Summe der Kräfte zwischen P und
den einzelnen Masseteilchen Q innerhalb der Kugel resultiert. Die Lösung dieses
Problems war nicht nur hinsichtlich der mathematischen Schönheit der Gravitationstheorie

von Interesse, sondern auch im Hinblick auf die experimentelle Bestätigung der Theorie.

Will man nämlich die experimentell bekannte Erdbeschleunigung vergleichen mit dem
aus der Umlaufzeit des Mondes um die Erde und aus der Entfernung zwischen Erde und
Mond berechneten Wert (siehe dazu zum Beispiel [7], p. 152-164), kommt es gerade
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darauf an zu wissen, ob eine Kugel (d.h. die Erde) einen nahe an ihrer Oberfläche
befindlichen Massenpunkt (d.h. einen fallenden Körper) nach dem Gravitationsgesetz (1)
anzieht.

Vom Standpunkt der heutigen Infinitesimalrechnung aus handelt es sich bei Newtons
Frage um die einfache Aufgabe der Berechnung eines mehrfachen Integrals. Da das

Problem der Anziehungskraft einer Kugel von großer Bedeutung in der Geschichte der
Mathematik und Physik war, ist es jedoch der Mühe wert, die ursprüngliche Lösung
aus Newtons Werk selbst heraus zu verstehen zu versuchen. Dies soll im Folgenden
geschehen. Newtons Beweis ist elementargeometrisch und umfaßt nur wenige Zeilen,
"which must have left its readers in helpless wonder", wie Littlewood in [4], p. 97

schreibt. Littlewood versucht, den Gedankengang von Newtons Beweis zu erklären als

die nachträgliche Übersetzung eines zuerst analytisch gefundenen Beweises in eine
geometrische Sprache, eine Erklärung, die den Verfasser des vorliegenden Aufsatzes nicht
überzeugt. Im Folgenden wird im Gegenteil der Versuch gemacht zu zeigen, daß sich
Newtons Beweis fast wie von selbst ergibt, alleine aus der Weise, wie er die Frage
gestellt hat: Sein wesentlicher Einfall ist die Formulierung des Problems als eine Suche

nach Ähnlichkeiten in gewissen Vergleichsfiguren. Wenn man das Problem einmal so

gesehen hat, dann sind die zu seiner Lösung anzustellenden Ähnlichkeitsüberlegungen
fast zwangsläufig.

Auch in dem jüngst erschienenen Buch [2] von Chandrasekhar wird Littlewoods Ansicht
nicht geteilt. Chandrasekhar erläutert aber den Gang von Newtons Beweis nicht im
einzelnen, läßt ihn vielmehr für sich selbst sprechen. Es erscheint daher nicht überflüssig, die

folgende genaue Analyse des Beweises mitzuteilen. Diese ist gedacht als eine Fallstudie
zum Thema "Einfall und Überlegung in der Mathematik" (vgl. [8]); gleichzeitig könnte
sie vielleicht auch dazu dienen, anhand eines speziellen, aber zentralen Problems in das

umfassende Werk [2] einzuführen. In [2] werden noch viele weitere schöne Gedanken aus

den Principia Mathematica, die im Grenzbereich zwischen Elementargeometrie, Mechanik

und Infinitesimalrechnung liegen, behandelt, und das gesamte Werk [2] dürfte daher

nicht nur für Historiker, sondern insbesondere auch für Lehrer von großem Interesse
sein.

Im nächsten Abschnitt wird erklärt, in welcher Weise Newton das Anziehungsproblem
formuliert hat. Daran anschließend wird der sich aus dieser Sicht ergebende Beweisgang
heuristisch entwickelt. In Abschnitt 4 folgt dann Newtons Beweis selbst. Ein Vergleich
dieses Beweises mit der mechanischen Methode, aufgrund deren Archimedes zum
Beispiel das Volumen einer Kugel gefunden hat (vgl. etwa [6], p. 233-238), zeigt erstaunliche

Gemeinsamkeiten. Dies wird in Abschnitt 5 dargelegt. Nach diesem Rückblick
auf die griechische Mathematik wird im letzten Abschnitt noch ein Ausblick darauf
gegeben, welche Bedeutung Newtons Resultat für die weitere Entwicklung der
Potentialtheorie hatte, und zwar anhand der von Gauss entdeckten Mittelwerteigenschaft von
Potentialen.

2 Newtons Formulierung der Fragestellung
Man kann sich die in Bild 1 gezeichnete Vollkugel zerlegt denken in konzentrische

Sphären von infinitesimaler Dicke. Die von den einzelnen Sphären auf den Massenpunkt
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P ausgeübten Kräfte addieren sich. Es genügt daher, anstelle einer Vollkugel eine Sphäre

zu betrachten. Sie habe die Massendichte 1 und ihr Radius sei a. Zu zeigen ist, daß

die von der Sphäre auf einen außerhalb von ihr liegenden Massenpunkt P ausgeübte

Anziehungskraft dem Betrag nach durch

gegeben ist. Zur Bestimmung von Fp zerlegt man zweckmäßigerweise die Sphäre in
sphärische Zonen von infinitesimaler Breite (vgl. Bild 2).

Bild 2

Die Kraft, die von der zum Inkrement 6^ gehörigen sphärischen Zone auf den Punkt
P ausgeübt wird, hat aus Symmetriegründen die Richtung PS und ist dem Betrag nach

gegeben durch

6FP= (-^ cos * J • (Fläche der Zone) (-^ cos * J • (2ttIQ • HI). (3)

Um die Beziehung (2) mit Hilfe von (3) abzuleiten, könnte man zum Beispiel so

vorgehen: Man führe QS x als Integrationsvariable ein, drücke die auf der rechten Seite

von (3) vorkommenden Größen mit Hilfe des Satzes von Pythagoras durch x, dx und
PS aus und integriere nach x (—a < x < +a). Das Integral wäre dann mit Hilfe geeigneter

Variablensubstitutionen zu berechnen. In dieser Weise könnte man (2) auf einem
rechnerischen Weg, den man aber kaum als geometrisch durchsichtig bezeichnen könnte,
beweisen.

Tatsächlich ist Newton ganz anders vorgegangen. Um seinen Gedankengang zu verstehen,

betrachten wir zunächst die einfachere Frage, wie man aufgrund von
Ähnlichkeitsbetrachtungen zeigen kann, daß die von der Sphäre auf einen Punkt P in ihrem Inneren

ausgeübte Kraft gleich Null ist. Newton folgend kann man das so sehen wie in Bild 3

gezeigt.

Gegeben P teile man die Sphäre in Paare von gegenüberliegenden quadratischen Flächen
öY> und <*>£' ein, indem man Sehnen durch den Punkt P zieht, wie in Bild 3 gezeichnet.
Die Flächen seien so klein, daß man <*>£ durch HI2 bzw. <*>£' durch KL2 approximieren
kann. Die von <5£ und <*>£' auf P ausgeübten Kräfte sind dann einander entgegengesetzt
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Bild 3

und heben sich gerade auf, denn die Ähnlichkeit der Dreiecke PHI und PKL (die Winkel
bei H und bei K sind gleich als Winkel über der gemeinsamen Sehne IL) impliziert

HI2 HI
PI

KL
RL

KL2
_

6V
RL2 ~ RL2

' (4)

Dieser Beweis beruht auf zwei Überlegungen:

(a) Aufteilung der Sphäre in geeignete Flächenpaare, mit dem Ziel, eine resultierende
Kraft Null zu bekommen.

(b) Eine Ähnlichkeitsbetrachtung, die zeigt, daß sich die von gegenüberliegenden Flächen
auf P ausgeübten Kräfte tatsächlich aufheben.

Kann man das Problem der Anziehung eines Punktes im Äußeren der Sphäre verstehen

aufgrund von Überlegungen, welche analog zu (a) und (b) sind? An die Stelle des Ziels,
eine resultierende Kraft Null zu erhalten, tritt jetzt das Ziel, für alle P außerhalb der
Sphäre die Vermutung (2) zu beweisen. Wenn man sich an (a) orientiert, hat man sich

zuerst die Frage zu stellen, welche Kräfte man zu diesem Zweck miteinander vergleichen
soll. An dieser Stelle kommt Newtons entscheidender Einfall: Er betrachtet zwei Punkte
P und p außerhalb der Sphäre und versucht, die von verschiedenen sphärischen Zonen

aufP bzw. aufp ausgeübten Kräfte SFp bzw. 8Fp miteinander zu vergleichen.

Bild 4a Bild 4b
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Die Punkte in der Vergleichsfigur (Bild 4b) sind - und werden es auch im Folgenden

- mit entsprechenden kleinen Buchstaben bezeichnet. Was die "richtige" Vergleichszone
(in Bild 4b schraffiert gezeichnet) ist, die zu einer gegebenen Zone (in Bild 4a schraffiert

gezeichnet) paßt, sieht man zunächst nicht. Die gesuchte Zuordnung soll so vorgenommen

werden, daß

6FP ~
ps2

[ '

gilt, wobei man, analog zur obigen Überlegung (b), den Nachweis von (5) auf
Ähnlichkeitsüberlegungen stützen möchte. Im folgenden Abschnitt wird versucht zu zeigen, wie

man, das Ziel (5) vor Augen, auf die "richtige" Zuordnung von Vergleichszonen kommt.

Wenn es gelungen ist, bei gegebenen Punkten P und p die Sphäre (Bild 4a) aufzuteilen

in disjunkte Zonen 6T,p1' (1 < i < n) und die Sphäre in Bild 4b in entsprechende Zonen

<5£p so daß für die von 6T,P1' bzw. <5£p auf P bzw. auf p ausgeübten Kräfte SFp bzw.

SFJ}] gilt

folgt daraus die Behauptung (2) unmittelbar. Denn (6) zieht

i=i i=i "

nach sich. Bei gegebenem p gilt (7) für alle Punkte P außerhalb der Sphäre. Man kann
daher in Formel (7) den Punkt P gegen unendlich streben lassen. Für alle Punkte Q auf
der Sphäre läßt sich der Abstand PQ aber abschätzen durch

PS -a<PQ<PS+a

so daß wegen (1)

PS2 -,
W < ps2 ¦ Fp < PS2 ¦ -,b 7(PS+fl)2- P- '< ps Fp < PS

(PS+fl)2- P- '(PS-a)2

folgt. Wenn P gegen unendlich strebt, strebt PS2 ¦ Fp daher gegen 7 • Ana2. Eingesetzt
in (7) ergibt das gerade die Behauptung (2).

Der springende Punkt des Beweises ist also der Vergleichsansatz (5). Wie ist Newton
darauf gekommen? Chandrasekhar ([2], p. 273-275) vermutet, daß es möglicherweise
folgendes Problem war, das Newton zum entscheidenden Gedanken geführt hat: Gegeben
seien zwei zueinander ähnliche Körper Q, C2 und in ähnlicher Lage dazu jeweils ein
Punkt Pj außerhalb des Körpers C, (i 1,2). In welchem Verhältnis stehen die vom
Körper Q bzw. C2 auf den Punkt P\ bzw. P2 ausgeübten Kräfte F\ bzw. F2 zueinander?
Dieses Problem hat Newton mit dem folgenden Ahnlichkeitsargument gelöst ([5], Prop.
LXXII einschließlich Cor. III). Zur Vereinfachung der Notation werde angenommen, C,
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Bild 5a Bild 5b

sei eine Kugel mit Mittelpunkt S, und Radius Rr (i 1,2). Nach Voraussetzung gilt für
die Punkte P, die Proportion P^Si : P2S2 Ri : R2.

Die Wahl von passenden "Vergleichsvolumina" liegt in diesem Fall auf der Hand: Zu
gegebenem Punkt Q\ in der Kugel Q wähle man Q2 so, daß die Dreiecke S1P1Q1

und S2P2Q2 zueinander ähnlich sind; als infinitesimale Volumenelemente SVr (i =1,2)
wähle man Würfel mit den Mittelpunkten Q, und Seitenlängen, die sich wie R\ : R2

zueinander verhalten. Wenn dann <5F, die von 6V1 auf P, ausgeübte Kraft ist, folgt wegen

P\Q\ : P2S2 Ri :R2 und : SV2 R3 : R3,

daß sich <5Fi und SF7 zueinander verhalten wie

SF2

P2QI

6V2 SV2

P2QI
_

R]

R? R2

Damit ist gezeigt, daß sich die Kräfte F, zueinander verhalten wie die Radien R,.

Während die Ähnlichkeit zwischen Bild 5a und Bild 5b von vorneherein gegeben ist,
scheinen Bild 4a und Bild 4b durchaus "dissimilar" zu sein. Die in Bild 4a/b verborgenen
Ähnlichkeiten werden im nächsten Abschnitt ans Licht kommen.

3 Wie hat man die Vergleichszonen zu wählen?

In diesem Abschnitt werden heuristische Überlegungen angestellt, um die passenden
Vergleichszonen aufzufinden. Gegeben seien also Punkte P und p wie in Bild 4a und
in Bild 4b. Wenn man sich die eingezeichneten sphärischen Zonen parametrisiert denkt
durch den Winkel ^ (vgl. Bild 6), stößt man auf eine erste Schwierigkeit: Der
Definitionsbereich von * hängt von der Lage des Punktes P ab.

Bild 6
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Es ist daher günstiger, die sphärische Zone IH vom festen Punkt S aus zu betrachten
und beispielsweise mit dem Winkel 0 als Parameter zu arbeiten (vgl. rechtes Bild 6).

Um die richtige Zuordnung zu finden, beginnt man am besten mit der (von der Achse
PS aus gezählt) ersten Zone, also einer Kugelkappe (in Bild 7b schraffiert gezeichnet).

Bild 7a Bild 7b

Sei Ii gegeben wie in Bild 7a; der dazu zu findende Vergleichspunkt auf der Vergleichssphäre

sei ii (Bild 7b). Die von der Kugelkappe zum Radius I\Q\ bzw. zum Radius i\q\

f'auf den Punkt P bzw. p ausgeübte Kraft sei 6Ff' bzw. SFf\

Bild 8

Bis auf einen vernachlässigbaren Fehler ist die Fläche der Kugelkappe gleich der Fläche
einer Kreisscheibe mit Radius IiQi bzw. i\q\. Daraus ergibt sich

Wegen
PS

SE,

ist das Verhältnis (8) genau dann gleich PS2/ps2, wenn

sei SEi

was äquivalent ist zu

(8)

(9)

(10)

(H)
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e '•g
2 ^=>

Bild 9

Folglich hat man den Vergleichspunkt i\ so festzulegen, daß die Sehnen i\i\ und I\L\
gleich lang sind.

Die an die Kugelkappe anschließende nächste Zone sei durch I\ I2 gegeben (Bild 9 links).
Wie ist der zu I2 gehörige Vergleichspunkt i2 (Bild 9 rechts) zu wählen? Man versucht,
die Wahl analog zur Wahl von U zu treffen, nämlich so, daß für die zweite Zone die

(10) bzw. (11) entsprechende Beziehung zutrifft, das heißt also so, daß

und

se2 SE2

i2£2 I2L2

(12)

(13)

gilt. Diese Wahl von i2 erscheint auch unter dem Gesichtspunkt zweckmäßig, daß dann

für die untere Sekante PL2 der anschließenden dritten Zone ebenfalls eine Proportion
analog zu (9) besteht:

-r-pf ^f- mit SE2 se2. (14)

In dieser Weise legt man die Zuordnung auch der weiteren Zonen fest.

Die so gefundene Zerlegung der beiden Sphären in paarweise einander zugeordnete
Zonen kann man auch folgendermaßen beschreiben: Man zeichne in kleinen Abständen
voneinander konzentrische Kreise um den Mittelpunkt S bzw. um den Mittelpunkt s,
wobei die Radien paarweise gleich sind (genau diese Gleichheit ist es, auf der der
Beweis von (5) im nächsten Abschnitt aufbauen wird). Dann lege man von den Punkten
P bzw. p aus Tangenten an diese Kreise. Die Schnittpunkte mit jeder der beiden Sphären
markieren die einander entsprechenden Zonen (Bild 10).

Bild 10
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Hat man die vorangegangene Überlegung mit der Kugelkappe nicht angestellt, erscheint
dieser Ansatz verblüffend, vor allem wohl deshalb, weil man sonst nicht so leicht darauf

verfallt, die Einteilung der Zonen vom Standpunkt des Sphärenmittelpunktes S aus

mittels Tangenten an konzentrische Kreise vorzunehmen. Die Überraschung wird noch

größer, wenn man in Bild 10 die konzentrischen Kreise wegläßt.

Im folgenden Abschnitt wird ein Paar der so einander zugeordneten Zonen betrachtet

(und zwar solcher Zonen, die auf derjenigen Seite der Sphäre liegen, welche dem Punkt
P bzw. p zugewandt ist; für Zonen auf der abgewandten Seite läßt sich der Beweis

entsprechend führen), und es wird gezeigt, daß die entsprechenden Kräfte dann auch

tatsächlich im Verhältnis (5) zueinander stehen.

4 Newtons Beweis ("as it now lies before us")
In Bild 11 sei

se SE

und

(15)

sd SD. (16)

Die von den Zonen HI bzw. hi auf P bzw. auf p ausgeübten Kräfte seien SFp bzw. SFp

Bild 11

Da der Kosinus des Winkels * bis auf einen vernachlässigbaren Fehler gegeben ist durch
cos* PE/PS PF /PS, berechnet sich das Verhältnis der Kräfte SFp und 6Fp nach

(3) zu
SF„ PI2 PS ¦ pf hi ¦ iq

SFP pi2 PF -ps HI-IQ ' (17)

Die Berechnung der rechten Seite von (17) beruht auf zwei Proportionen. Die erste ist

Proportion (9) bzw. (14):
PI PS

woraus mit (15) folgt
PI_ iq_

IQ pi

PS_

ps
(19)
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Die zweite Proportion ergibt sich aus der folgenden Überlegung. In Bild 11 bezeichne
R den Fußpunkt des Lotes von I auf die Sekante PK. Aus der Ähnlichkeit der Dreiecke
PRI und PDF folgt

Dem Vorbild (18), (19) folgend möchte man auch diese Proportion mit der entsprechenden

für pi/pf verbinden. Analog zu (15) kann man jetzt

DF df (21)

benutzen, wobei die Gleichheit approximativ in dem Sinne gilt, daß DF /df gegen 1

strebt, wenn die Winkel DPF und dpf gemeinsam gegen Null streben. Zur Begründung
von (21) benutze man (15) und (16) und approximiere

DF SD - SF « SD - SE sd - se « sd - sf df (22)

Dabei ist zu beachten, daß die bei dieser Näherung gemachten Fehler wie das Quadrat des

Winkels DPF bzw. dpf verschwinden (der Beweis dafür wird am Ende dieses Abschnitts

nachgetragen), so daß sie bei der Berechnung des Quotienten DF /df vernachlässigt
werden können. Aus (20) und (21) bekommt man

PLpl RL m
PF pi ri hi ' l '

wobei man die letzte Gleichheit so einsehen kann: Bis auf einen vernachlässigbaren
Fehler läßt sich die Gerade durch H und I ersetzen durch die Tangente im Punkt H.
Nach Voraussetzung (16) ist aber der Winkel zwischen dieser Tangente und der Sekante

PK gleich dem Winkel zwischen der Tangente im Punkt h und der Sekante pk. Daraus

folgt die Ähnlichkeit der Dreiecke RHI und rhi und damit die letzte Proportion in (23).

Jetzt braucht man nur noch die beiden Proportionen (19) und (23) miteinander zu
multiplizieren und das Produkt mit (17) zu vergleichen, um das gewünschte Ergebnis

6Fp _
PS2

zu erhalten.

Es bleibt noch nachzutragen, weshalb die in (22) gemachten Fehler SF - SE bzw. sf -se
nur von zweiter Ordnung sind. Zum Beweis wendet man den Satz des Pythagoras im
Dreieck ESF an und bekommt

SF2 SE2 + EF2, SF -SE =EF2/(SF + SE),

d.h. SF - SE ist von der Größenordnung EF2. Wegen <£ESF <£DPF folgt daraus
die Behauptung. Damit ist der Beweis von Proportion (5) vollständig.
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5 Vergleich mit der mechanischen Methode des Archimedes
Archimedes hat das Volumen einer Kugel mit Hilfe der folgenden heuristischen
Methode gefunden (vgl. [1]; [6], p. 233-238; [9], p. 354-357; [8]). Man wählt geeignete
Vergleichskörper, deren Volumina bekannt sind, nämlich einen passenden Kegel und
einen passenden Zylinder, und hängt Kugel, Kegel und Zylinder an Hebelarmen so auf,
daß Gleichgewicht herrscht. Mit Hilfe des Hebelgesetzes läßt sich dann daraus das

unbekannte Volumen der Kugel bestimmen. Ähnlich wie bei Newton besteht der wesentliche
Einfall darin, passende Vergleichsobjekte zu finden, bei Archimedes im Hinblick auf
das Ziel, Gleichgewicht an einem Hebel herzustellen, bei Newton im Hinblick auf das

Ziel, das Potenzgesetz (5) zu beweisen. Beide Male kommt es darauf an, Proportionen
aufgrund von Ähnlichkeiten zu finden, welche ihrerseits den Weg zum Auffinden der

richtigen Vergleichsobjekte gewiesen haben. Sowohl Newton als auch Archimedes sind

zu ihrem Vorgehen vermutlich inspiriert worden durch analoge einfachere Probleme, die
sie vorher gelöst hatten. Im Fall von Archimedes war es die Aufgabe, die Fläche eines

Parabelsegmentes (vgl. Bild 12) zu bestimmen. Im Folgenden soll seine Methode anhand
dieses Beispiels demonstriert werden, und zwar so, daß der Leser ihre Ähnlichkeit mit
der Vorgehensweise von Newton leicht erkennen kann.

Bild 12

Zur Vereinfachung der Darstellung betrachten wir nur Segmente wie in Bild 12 (Archimedes

betrachtet allgemeiner schiefe Segmente) und verwenden kartesische Koordinaten.
Archimedes wählt als Vergleichsfigur dasjenige Dreieck, das von den beiden Koordinatenachsen

und der Tangente an die Parabel im Punkt (fl,0) begrenzt wird (Bild 13).

-»¦x

y

Bild 13
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Mit Hilfe der Hebelmethode soll eine Beziehung zwischen der Fläche F des Parabelsegmentes

und der Fläche / des Dreiecks gefunden werden.

Weshalb hat Archimedes gerade dieses Dreieck als Vergleichsfigur gewählt? Der Grund

liegt darin, daß zwischen den Ordinaten-Abschnitten von Parabel und Tangente eine
einfache Proportion besteht.

Bild 14

Wenn nämlich P(x) bzw. p(x) die Ordinate der Parabel bzw. der Tangente zur Abszisse

x ist (0 < x < a), so gilt
P(x) : p{x) x : a (24)

wie unmittelbar aus den Gleichungen

x(ö-x), p(x)=a(a-x)

abgelesen werden kann (die Tangentengleichung folgt aus p(a) P(a) 0 und p(x) >
P(x) für alle x wegen 0 < (a - x)2 a(a - x) - x(a - x)). Aufgrund der Proportion
(24) kann man das Parabelsegment und das Dreieck folgendermaßen an Hebelarmen so

aufhängen, daß Gleichgewicht herrscht: Zunächst denkt man sich beide Figuren zerlegt
in infinitesimale Streifen der Höhen P(x) bzw. p(x), 0 < x < a, und hängt diese Streifen
an Hebelarme wie in Bild 15.

Da sich die Gesamtfiguren aus den einzelnen Streifen zusammensetzen, bleibt das

Gleichgewicht bestehen, wenn man Parabelsegment und Dreieck aufhängt wie in Bild 16.

Man kann sich die Masse des Dreiecks in seinem Schwerpunkt konzentriert denken.

Dieser hat die Abszisse \a (die durch den Punkt (§, 0) gehende Seitenhalbierende wird
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P(X)

P(x)

Bild 15

Bild 16

durch den Schwerpunkt im Verhältnis 2:1 geteilt; dessen Abszisse ist also § • §). Aus
dem Hebelgesetz folgt daher

F :/= -a: a

und die gesuchte Beziehung zwischen den beiden Flächen F und / ist gefunden.

Sowohl bei Archimedes als auch bei Newton werden das Ausgangsobjekt und das

Vergleichsobjekt so in infinitesimale Teile zerlegt, daß Proportionen zwischen diesen Teilen
bestehen, die im Fall der Parabelquadratur im Hinblick auf das Hebelgesetz angewandt
werden, im Fall des Anziehungsproblems im Hinblick auf das zu beweisende Potenzgesetz.

Bei Archimedes handelt es sich um ein heuristisches Verfahren zur Auffindung einer
unbekannten Fläche oder eines unbekannten Volumens; die Auswahl der Vergleichsfigur
ist weitgehend der Phantasie überlassen. Bei Newton ist die Auswahl im wesentlichen
schon festgelegt durch die zu beweisende Aussage selbst, welche zuvor vermutet worden

war aufgrund der Gravitationstheorie. Im Fall der Hebelmethode könnte man von
einem Beispiel physikalischer Mathematik (vgl. [6], Kapitel IX), im Fall von Newtons
Ähnlichkeitsbeweis von einem Beispiel mathematischer Physik sprechen.

6 Newtons Resultat und die Mittelwerteigenschaft
Wie in [2], p. 10-14 dargelegt, hat Newtons Satz von der Anziehungskraft einer Kugel
einen bedeutenden Stellenwert innerhalb des in den Principia Mathematica entwickelten
mathematischen Gebäudes. Newtons Beweis ist jedoch auf den Fall der Kugel beschränkt.
Die Beweisführung, so einfallsreich und scharfsinnig sie ist, ist von genau jener Weise,
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welche Lagrange bestrebt war, durch allgemeine, auf das gesamte Gebiet der Mechanik
anwendbare Methoden zu ersetzen. Im Vorwort zu seiner Analytischen Mechanik (1788)
heißt es:

"Les méthodes que j'y expose ne demandent ni constructions, ni raisonnements

géométriques ou méchaniques, mais seulement des opérations algébriques,
assujetties à une marche régulière et uniforme."

Eine andere Entwicklungslinie, die ebenfalls von Newtons Gravitationstheorie ihren
Ausgang genommen hat, ist aus dem Problem entstanden, die Anziehungskraft von
allgemeineren Körpern als der Kugel zu bestimmen. Zu diesem Zweck hat es sich als günstig
erwiesen, nicht mit der von einer Massenverteilung /x ausgeübten Gravitationskraft selbst,
sondern mit dem zugehörigen Potential Uß, also einer skalaren Funktion, zu arbeiten. Zur
Erläuterung formulieren wir zunächst einmal Newtons Resultat von der Anziehungskraft
einer Kugel um in Termen von Potentialen. Wenn /x eine Punktmasse in einem Punkt

y e K3 ist (d.h. im Fall eines Dirac-Maßes 6y), ist das zugehörige Potential gegeben
durch

Usy(x) -7¦ (25)

Die bei gegebener Masse 6y auf einen Massenpunkt an der Stelle x ausgeübte
Gravitationskraft f(x) erhält man aus Us durch Differenzieren nach x:

^; (26)

insbesondere ist also der Betrag von P(x) gegeben durch

in Übereinstimmung mit der eingangs in (1) gegebenen Formulierung des

Gravitationsgesetzes. Um Newtons Satz mit Hilfe von Potentialen auszudrücken, betrachten wir
eine homogen mit Masse belegte Sphäre Sr(x) mit Mittelpunkt inieM3 und Radius

r > 0. Bei dieser Massenbelegung herrscht an einem Punkt y G K3 außerhalb der Sphäre
dasselbe Potential, als wäre die Gesamtmasse 4irr2 im Mittelpunkt x konzentriert:

(27)a(dz)Usz(y) 47rr2 • I4(y), \y-x\>r,
Sr(x)

wobei a das Oberflächenmaß auf Sr(x) bezeichnet.

Us(y) 47tr2-Ug (y) 47t r2-

Bild 17
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So speziell dieses Resultat erscheint, ist es doch von allgemeiner Bedeutung in der
Potentialtheorie geworden, wie wir gleich sehen werden.

Wenn /x eine allgemeine Massenverteilung ist, ist das zugehörige Potential Uß definiert
durch Überlagerung der Potentiale Usr also durch

Uß(x) J Usv(x)^dy) -7 • J |^|, x e K3 (28)

Wie in (26) ergibt sich die Anziehungskraft einer Massenverteilung /x aus dem Potential

UM durch Gradientenbildung; zur Bestimmung der Gravitationskraft kommt es also darauf

an, Uß zu berechnen. Über die Behandlung von Spezialfällen hinaus gelangte man erst
im 19. Jahrhundert zu einer allgemeinen Theorie solcher Potentialfunktionen. Gauss

entdeckte (vgl. [3], p. 30/31), daß diese Funktionen im massefreien Teil des Raumes
die Mittelwerteigenschaft besitzen. Wenn /x ein endliches positives Maß auf K3 ist, etwa
mit kompaktem Träger supp/x, bezeichne man den massefreien Teil des Raumes mit
D K3\ supp/x. Der Satz von Gauss besagt dann, daß für alle x e D und für alle r > 0

mit {z e K3 : \z - x\ < r} c D gilt

1 ,,,„,, ^
Sr(x)

Im massefreien Teil des Raumes ist also der Wert von Uß an einer Stelle x gleich dem
Mittelwert von Uß, genommen über die Sphäre Sr(x).

Diese Eigenschaft von Potentiarfunktionen ist äquivalent zu Newtons Resultat für die

Kugel. Um das zu sehen, genügt es, (29) zu spezialisieren auf /x 8y (aus diesem

Spezialfall kann man (29) wieder zurückgewinnen, indem man nach dem Maß n(dy)
integriert), also

*(dz)Usv(z), \x-y\> r, (30)

Sr(x)

zu betrachten. In welcher Beziehung stehen die Formeln (30) und (27) zueinander? Sie

gehen auseinander hervor, wenn man eine Vertauschung der Variablen gemäß

Usa(b) UsM, a,beR3, (31)

vornimmt (aufgrund von (25) ist die Gültigkeit von (31) klar). Hinter der formalen
Vertauschbarkeitsbeziehung (31) steckt ein allgemeines Symmetrieprinzip, demzufolge
Ursache (Punktmasse) und Wirkung (Probepunkt) miteinander vertauschbar sind.
Anschaulich heißt das, daß man die Mittelwerteigenschaft des Potentials Usy "sehen" kann,
indem man in Bild 17 eine Umdeutung vornimmt und den Probepunkt y als diejenige
Punktmasse betrachtet, um deren Potential es geht.

Die tatsächliche Tragweite der Mittelwerteigenschaft ist erst zu Beginn unseres Jahrhunderts

klar geworden, als Koebe gezeigt hat, daß diese Eigenschaft charakteristisch ist für
harmonische Funktionen.
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Bemerkung. Der Verfasser bedankt sich bei Felix Friedrich für die Anfertigung der

Zeichnungen und bei R. Reibold und der Redaktion der Elemente der Mathematik für
wertvolle Hinweise, die zu einer Verbesserung des Manuskripts beigetragen haben.
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