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Die Anziehung einer Kugel nach Newton

Reinhard Lang

Reinhard Lang, geboren 1947, absolvierte das Altsprachliche Gymnasium in Neu-
stadt an der WeinstraBe und studierte Mathematik und Physik in Heidelberg und
Bielefeld. Er promovierte 1976 und habilitierte sich 1983 an der Universitat Heidel-
berg mit einer Arbeit iiber Stochastische Modelle von Vielteilchensystemen. Danach
war er Heisenbergstipendiat und lehrt und forscht seither am Institut fiir Angewandte
Mathematik der Universitit Heidelberg.

1 Einleitung

Im dreidimensionalen euklidischen Raum seien Punkte P und S, in denen Massen
und M konzentriert sind, gegeben. Dem Newtonschen Gravitationsgesetz zufolge ziehen
sich die beiden Massen an mit einer Kraft, welche die Richtung der Verbindungslinie
PS hat und deren Betrag F durch

mM
F:’Y'P—Sz (1)

gegeben ist. Dabei bezeichnet v die Gravitationskonstante und PS? das Quadrat der
Entfernung zwischen den Punkten P und S. Welches Anziehungsgesetz tritt an die Stelle
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von (1), wenn man anstelle von Punktmassen in P und S homogene Kugeln mit Mittel-
punkten P und S und Gesamtmassen 1 und M hat? Wenn die Kugelradien klein sind
gegeniiber dem Abstand PS — eine Annahme, die zum Beispiel im Fall von Erde und
Sonne zutrifft —, kann man die Kugeln approximativ durch Punktmassen ersetzen. Sofern
nur ihr Abstand grofl genug ist, ziehen sie sich daher niherungsweise ebenfalls mit der
durch (1) gegebenen Kraft an. Die Frage, ob im Fall von Kugeln das Gesetz (1) immer
noch gilt, und zwar nicht nur approximativ bei grofem Abstand, sondem exakt und fiir
alle Abstinde, hat Newton lange Zeit zu schaffen gemacht. In [5], Buch III, Proposition
VIII, heifit es:

“After I had found that the force of gravity towards a whole planet did arise from
and was compounded of the forces of gravity towards all its parts, and towards
every one part was the inverse proportion of the squares of the distances from
the part, I was yet in doubt whether that proportion inversely as the square of
the distance did accurately hold, or but nearly so, in the total force compounded
of so many partial ones; for it might be that the proportion which accurately
enough took place in greater distances should be wide of the truth near the
surface of the planet, where the distances of the particles are unequal, and their
situation dissimilar. But by the help of Prop. LXXV and LXXVI, Book 1, and their
Corollaries, I was at last satisfied of the truth of the Proposition, as it now lies
before us.”

Im Folgenden wird die fiir das Verstindnis des Problems entscheidende Frage nach
der Anziehungskraft einer Kugel auf einen auBerhalb von ihr gelegenen Massenpunkt
betrachtet. Gegeben seien also eine homogene Kugel mit Mittelpunkt in S und Gesamt-
masse M und auBerhalb der Kugel ein Punkt P der Masse m. Die Frage ist, ob die
Anziehungskraft exakt durch (1) gegeben ist.

-
w

Bild 1

Zunichst ist nicht zu “sehen”, welche Kraft aus der Summe der Kréfte zwischen P und
den einzelnen Masseteilchen Q innerhalb der Kugel resultiert. Die Losung dieses Pro-
blems war nicht nur hinsichtlich der mathematischen Schonheit der Gravitationstheorie
von Interesse, sondern auch im Hinblick auf die experimentelle Bestitigung der Theorie.
Will man nimlich die experimentell bekannte Erdbeschleunigung vergleichen mit dem
aus der Umlaufzeit des Mondes um die Erde und aus der Entfernung zwischen Erde und
Mond berechneten Wert (siche dazu zum Beispiel [7], p. 152-164), kommt es gerade
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darauf an zu wissen, ob eine Kugel (d.h. die Erde) einen nahe an ihrer Oberfliche be-
findlichen Massenpunkt (d.h. einen fallenden Koérper) nach dem Gravitationsgesetz (1)
anzieht.

Vom Standpunkt der heutigen Infinitesimalrechnung aus handelt es sich bei Newtons
Frage um die einfache Aufgabe der Berechnung eines mehrfachen Integrals. Da das
Problem der Anziehungskraft einer Kugel von groBer Bedeutung in der Geschichte der
Mathematik und Physik war, ist es jedoch der Miihe wert, die urspriingliche Losung
aus Newtons Werk selbst heraus zu verstehen zu versuchen. Dies soll im Folgenden
geschehen. Newtons Beweis ist elementargeometrisch und umfafit nur wenige Zeilen,
“which must have left its readers in helpless wonder”, wie Littlewood in [4], p. 97
schreibt. Littlewood versucht, den Gedankengang von Newtons Beweis zu erklaren als
die nachtriigliche Ubersetzung eines zuerst analytisch gefundenen Beweises in eine geo-
metrische Sprache, eine Erklirung, die den Verfasser des vorliegenden Aufsatzes nicht
iiberzeugt. Im Folgenden wird im Gegenteil der Versuch gemacht zu zeigen, da sich
Newtons Beweis fast wie von selbst ergibt, alleine aus der Weise, wie er diec Frage ge-
stellt hat: Sein wesentlicher Einfall ist die Formulierung des Problems als eine Suche
nach Ahnlichkeiten in gewissen Vergleichsfiguren. Wenn man das Problem einmal so
gesehen hat, dann sind die zu seiner Lésung anzustellenden Ahnlichkeitsiiberlegungen
fast zwangslaufig.

Auch in dem jiingst erschienenen Buch [2] von Chandrasekhar wird Littlewoods Ansicht
nicht geteilt. Chandrasekhar erliutert aber den Gang von Newtons Beweis nicht im ein-
zelnen, 148t ihn vielmehr fiir sich selbst sprechen. Es erscheint daher nicht iiberfliissig, die
folgende genaue Analyse des Beweises mitzuteilen. Diese ist gedacht als eine Fallstudie
zum Thema “Einfall und Uberlegung in der Mathematik™ (vgl. [8]); gleichzeitig konnte
sie vielleicht auch dazu dienen, anhand eines speziellen, aber zentralen Problems in das
umfassende Werk [2] einzufithren. In [2] werden noch viele weitere schone Gedanken aus
den Principia Mathematica, die im Grenzbereich zwischen Elementargeometrie, Mecha-
nik und Infinitesimalrechnung liegen, behandelt, und das gesamte Werk [2] diirfte daher
nicht nur fiir Historiker, sondern insbesondere auch fiir Lehrer von grofem Interesse
sein.

Im nichsten Abschnitt wird erklart, in welcher Weise Newton das Anziehungsproblem
formuliert hat. Daran anschlieBend wird der sich aus dieser Sicht ergebende Beweisgang
heuristisch entwickelt. In Abschnitt 4 folgt dann Newtons Beweis selbst. Ein Vergleich
dieses Beweises mit der mechanischen Methode, aufgrund deren Archimedes zum Bei-
spiel das Volumen einer Kugel gefunden hat (vgl. etwa [6], p. 233-238), zeigt erstaun-
liche Gemeinsamkeiten. Dies wird in Abschnitt 5 dargelegt. Nach diesem Riickblick
auf die griechische Mathematik wird im letzten Abschnitt noch ein Ausblick darauf
gegeben, welche Bedeutung Newtons Resultat fiir die weitere Entwicklung der Poten-
tialtheorie hatte, und zwar anhand der von Gauss entdeckten Mittelwerteigenschaft von
Potentialen.

2 Newtons Formulierung der Fragestellung

Man kann sich die in Bild 1 gezeichnete Vollkugel zerlegt denken in konzentrische
Sphéiren von infinitesimaler Dicke. Die von den einzelnen Sphéren auf den Massenpunkt
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P ausgetibten Krifte addieren sich. Es geniigt daher, anstelle einer Vollkugel eine Sphire
7u betrachten. Sie habe die Massendichte 1 und ihr Radius sei a. Zu zeigen ist, dab
die von der Sphire auf einen aufierhalb von ihr liegenden Massenpunkt P ausgeiibte
Anziehungskraft dem Betrag nach durch

drg?

e @)

Fp=+

gegeben ist. Zur Bestimmung von Fp zerlegt man zweckméiBigerweise die Sphire in
sphirische Zonen von infinitesimaler Breite (vgl. Bild 2).

Bild 2

Die Kraft, die von der z7um Inkrement 6 gehorigen sphérischen Zone auf den Punkt
P ausgeiibt wird, hat aus Symmetriegriinden die Richtung PS und ist dem Betrag nach
gegeben durch

1 . 1
6Fp = <ﬁ cos \I/) - (Flache der Zone) = <ﬁ cos \I/) -(2xIQ-HI). (3)

Um die Beziehung (2) mit Hilfe von (3) abzuleiten, kénnte man zum Beispiel so vor-
gehen: Man fithre QS = x als Integrationsvariable ein, driicke die auf der rechten Seite
von (3) vorkommenden GroBen mit Hilfe des Satzes von Pythagoras durch x, dx und
PS aus und integriere nach x (—a < x < +a). Das Integral wire dann mit Hilfe geeig-
neter Variablensubstitutionen zu berechnen. In dieser Weise konnte man (2) auf einem
rechnerischen Weg, den man aber kaum als geometrisch durchsichtig bezeichnen konnte,
beweisen.

Tatsachlich ist Newton ganz anders vorgegangen. Um seinen Gedankengang zu verste-
hen, betrachten wir zunichst die einfachere Frage, wie man aufgrund von Ahnlichkeits-
betrachtungen zeigen kann, dah die von der Sphére auf einen Punkt P in ihrem Inneren
ausgeiibte Kraft gleich Null ist. Newton folgend kann man das so sehen wie in Bild 3
gezeigt.

Gegeben P teile man die Sphére in Paare von gegeniiberliegenden quadratischen Flachen
8% und &% ein, indem man Sehnen durch den Punkt P zieht, wie in Bild 3 gezeichnet.
Die Flichen seien so klein, dab man §3 durch HI? bzw. 6%/ durch KL? approximieren
kann. Die von 63 und §%’ auf P ausgeiibten Kriifte sind dann einander entgegengesetzt
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Bild 3

und heben sich gerade auf, denn die Ahnlichkeit der Dreiecke PHI und PKL (die Winkel
bei H und bei K sind gleich als Winkel iiber der gemeinsamen Sehne /L) impliziert

&% HIP <H1>2

) HI KL\®> KL> &%
Pl PI*?  \PI

pL) “ P L )
Dieser Beweis beruht auf zwei Uberlegungen:

(a) Aufteilung der Sphire in geeignete Flichenpaare, mit dem Ziel, eine resultierende
Kraft Null zu bekommen.

(b) Eine Ahnlichkeitsbetrachtung, die zeigt, dah sich die von gegeniiberliegenden Flichen
auf P ausgeiibten Krifte tatsdchlich aufheben.

Kann man das Problem der Anziehung eines Punktes im AuBeren der Sphire verstehen
aufgrund von Uberlegungen, welche analog zu (a) und (b) sind? An die Stelle des Ziels,
eine resultierende Kraft Null zu erhalten, tritt jetzt das Ziel, fiir alle P auBerhalb der
Sphire die Vermutung (2) zu beweisen. Wenn man sich an (a) orientiert, hat man sich
zuerst die Frage zu stellen, welche Kréfte man zu diesem Zweck miteinander vergleichen
soll. An dieser Stelle kommt Newtons entscheidender Einfall: Er betrachtet zwei Punkte
P und p auBerhalb der Sphire und versucht, die von verschiedenen sphérischen Zonen
auf P bzw. auf'p ausgeiibten Krdfie 6Fp bzw. 0F, miteinander zu vergleichen.

-

Bild 4a Bild 4b
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Die Punkte in der Vergleichsfigur (Bild 4b) sind — und werden es auch im Folgenden
— mit entsprechenden kleinen Buchstaben bezeichnet. Was die “richtige” Vergleichszone
(in Bild 4b schraffiert gezeichnet) ist, die zu einer gegebenen Zone (in Bild 4a schraffiert
gezeichnet) pafit, sicht man zunichst nicht. Die gesuchte Zuordnung soll so vorgenom-
men werden, daf

6F, PS?

3 Pt )

gilt, wobei man, analog zur obigen Uberlegung (b), den Nachweis von (5) auf Ahnlich-
keitsiiberlegungen stiitzen mochte. Im folgenden Abschnitt wird versucht zu zeigen, wie
man, das Ziel (5) vor Augen, auf die “richtige” Zuordnung von Vergleichszonen kommt.

Wenn es gelungen ist, bei gegebenen Punkten P und p die Sphire (Bild 4a) aufzuteilen
in disjunkte Zonen § 2};’) (1 <i < n) und die Sphére in Bild 4b in entsprechende Zonen
5% so dab fiir die von 535 bzw. 6525 auf P bzw. auf p ausgeiibten Krifte 5F5 bzw.
SFS” gilt
SE)  ps?
SEY)  ps*
folgt daraus die Behauptung (2) unmittelbar. Denn (6) zieht

1<i<nm, (6)

F fzn:(SF@ s zn:(ﬂf(“ — (PS? Fp) (7)
P P ps? 4 P = p ps?
i=1 i=1

nach sich. Bei gegebenem p gilt (7) fiir alle Punkte P auBerhalb der Sphéire. Man kann
daher in Formel (7) den Punkt P gegen unendlich streben lassen. Fiir alle Punkte Q auf
der Sphire 146t sich der Abstand PQ aber abschitzen durch

PS—a<PQ<PS+a,

so daB wegen (1)

d7a?

47 5 2 2
< § < [V —
5 PS Fp PS ’y(PS Dl)2

5 a
P vt a
folgt. Wenn P gegen unendlich strebt, strebt PS? - Fp daher gegen « - 4ma?. Eingesetzt
in (7) ergibt das gerade die Behauptung (2).

Der springende Punkt des Beweises ist also der Jergleichsansatz (5). Wie ist Newton
darauf gekommen? Chandrasekhar ([2], p. 273-275) vermutet, daB es moglicherweise
folgendes Problem war, das Newton zum entscheidenden Gedanken gefiihrt hat: Gegeben
seien zwei zueinander dhnliche Korper C;,C; und in dhnlicher Lage dazu jeweils ein
Punkt P; auBerhalb des Korpers C; (i = 1,2). In welchem Verhiltnis stehen die vom
Kérper C; bzw. C; auf den Punkt P, bzw. P, ausgeiibten Krifte F; bzw. F, zueinander?
Dieses Problem hat Newton mit dem folgenden Ahnlichkeitsargument geldst ([5], Prop.
LXXII einschlieBlich Cor. IIT). Zur Vereinfachung der Notation werde angenommen, C;
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Bild 5a Bild 5b

sei eine Kugel mit Mittelpunkt S; und Radius R; (i = 1,2). Nach Voraussetzung gilt fiir
die Punkte P; die Proportion P; Sy : P,S, = R; : R,.

Die Wahl von passenden “Vergleichsvolumina” liegt in diesem Fall auf der Hand: Zu
gegebenem Punkt Q7 in der Kugel C; wihle man Q, so, dab die Dreiecke S;P,(Q
und S;P,Q, zueinander dhnlich sind; als infinitesimale Volumenelemente 6V, (i = 1,2)
wihle man Wiirfel mit den Mittelpunkten Q; und Seitenldngen, die sich wie R; : R,
zueinander verhalten. Wenn dann 6F; die von 6V; auf P; ausgeiibte Kraft ist, folgt wegen

P1Q1:P2Q2:P151 szsZZR]IRz llIld 6‘/]6‘/2:R:1,’R§,
dab sich 6F; und 6F, zueinander verhalten wie
8F1 &V Q3 & PQ3 B R} R3 R

6F, PQ; oV 6V PQT R R Ry’

Damit ist gezeigt, daB sich die Krifte F; zueinander verhalten wie die Radien R;.
Wiihrend die Ahnlichkeit zwischen Bild 5a und Bild 5b von vorneherein gegeben ist,
scheinen Bild 4a und Bild 4b durchaus “dissimilar” zu sein. Die in Bild 4a/b verborgenen
Ahnlichkeiten werden im nichsten Abschnitt ans Licht kommen.

3 Wie hat man die Vergleichszonen zu wihlen?

In diesem Abschnitt werden heuristische Uberlegungen angestellt, um dic passenden
Vergleichszonen aufzufinden. Gegeben seien also Punkte P und p wie in Bild 4a und
in Bild 4b. Wenn man sich die eingezeichneten sphérischen Zonen parametrisiert denkt
durch den Winkel ¥ (vgl. Bild 6), st6Bt man auf eine erste Schwierigkeit: Der Definiti-
onsbereich von ¥ hingt von der Lage des Punktes P ab.

Bild 6
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Es ist daher giinstiger, die sphérische Zone IH vom festen Punkt S aus zu betrachten
und beispielsweise mit dem Winkel © als Parameter zu arbeiten (vgl. rechtes Bild 6).

Um die richtige Zuordnung zu finden, beginnt man am besten mit der (von der Achse
PS aus gezihlt) ersten Zone, also einer Kugelkappe (in Bild 7b schraffiert gezeichnet).

Bild 7a Bild 7b

Sei I gegeben wie in Bild 7a; der dazu zu findende Vergleichspunkt auf der Vergleichs-
sphére sei i1 (Bild 7b). Die von der Kugelkappe zum Radius I; Q; bzw. zum Radius i,
auf den Punkt P bzw. p ausgeiibte Kraft sei 6FS" bzw. 6F".

Bild 8

Bis auf einen vernachlissigbaren Fehler ist die Fliche der Kugelkappe gleich der Fliche
einer Kreisscheibe mit Radius I; @, bzw. i;¢;. Daraus ergibt sich

1 .
§F,§>:P1§.ﬁ. @)
sElV  hQF pit

Wegen
PL PS

Qi SE
ist das Verhiiltnis (8) genau dann gleich PS*/ps, wenn

s€| = SEl 5 (10)

was dquivalent ist zu
1‘151 :[1L1 % (11)
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Bild 9

Folglich hat man den Vergleichspunkt i; so festzulegen, dab die Sehnen i1 und L,
gleich lang sind.

Die an die Kugelkappe anschliefende nédchste Zone sei durch I, I, gegeben (Bild 9 links).
Wie ist der zu I, gehorige Vergleichspunkt i, (Bild 9 rechts) zu wihlen? Man versucht,
die Wahl analog zur Wahl von i; zu treffen, namlich so, daB fiir die zweite Zone die
(10) bzw. (11) entsprechende Beziehung zutrifft, das heiBit also so, daf

Sé; — SEZ (12)

und
irly = LL, (13)

gilt. Diese Wahl von i, erscheint auch unter dem Gesichtspunkt zweckmabig, dal dann
fiir die untere Sekante PL, der anschlieBenden dritten Zone ebenfalls eine Proportion
analog zu (9) besteht:

Pl PS

LQs " SE,

In dieser Weise legt man die Zuordnung auch der weiteren Zonen fest.

mit SEZ = S€;. (14)

Die so gefundene Zerlegung der beiden Sphiren in paarweise einander zugeordnete
Zonen kann man auch folgendermalien beschreiben: Man zeichne in kleinen Abstanden
voneinander konzentrische Kreise um den Mittelpunkt S bzw. um den Mittelpunkt s,
wobei die Radien paarweise gleich sind (genau diese Gleichheit ist es, auf der der
Beweis von (5) im niachsten Abschnitt aufbauen wird). Dann lege man von den Punkten
P bzw. p aus Tangenten an diese Kreise. Die Schnittpunkte mit jeder der beiden Sphéren
markieren die einander entsprechenden Zonen (Bild 10).

P = =

Bild 10
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Hat man die vorangegangene Uberlegung mit der Kugelkappe nicht angestellt, erscheint
dieser Ansatz verbliiffend, vor allem wohl deshalb, weil man sonst nicht so leicht dar-
auf verfillt, die Einteilung der Zonen vom Standpunkt des Sphirenmittelpunktes S aus
mittels Tangenten an konzentrische Kreise vorzunehmen. Die Uberraschung wird noch
grofBer, wenn man in Bild 10 die konzentrischen Kreise weglaft.

Im folgenden Abschnitt wird ein Paar der so einander zugeordneten Zonen betrachtet
(und zwar solcher Zonen, die auf derjenigen Seite der Sphire liegen, welche dem Punkt
P bzw. p zugewandt ist; fiir Zonen auf der abgewandten Seite 1aBt sich der Beweis
entsprechend fiithren), und es wird gezeigt, daB die entsprechenden Krifte dann auch
tatsichlich im Verhiltnis (5) zueinander stehen.

4 Newtons Beweis (“as it now lies before us”)

In Bild 11 sei
se =SE (15)

und
sd = SD. (16)

Die von den Zonen HI bzw. hi auf P bzw. auf p ausgeiibten Krafte seien 6Fp bzw. 6F, .

Bild 11

Da der Kosinus des Winkels ¥ bis auf einen vernachlissigbaren Fehler gegeben ist durch
cosV = PE/PS = PF/PS, berechnet sich das Verhiltnis der Krafte 6Fp und 6F, nach
(3) zu

6F, PI* PS-pf hi-ig

(17)

Die Berechnung der rechten Seite von (17) beruht auf zwei Proportionen. Die erste ist
Proportion (9) bzw. (14):
PP
IQ SE
woraus mit (15) folgt
PI i PS
il . P (19)
IQ pi  ps
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Die zweite Proportion ergibt sich aus der folgenden Uberlegung. In Bild 11 bezeichne
R den Fubpunkt des Lotes von I auf die Sekante PK. Aus der Ahnlichkeit der Dreiecke
PRI und PDF folgt
PI RI
PF  DF’
Dem Vorbild (18), (19) folgend mochte man auch diese Proportion mit der entsprechen-
den fiir pi/pf verbinden. Analog zu (15) kann man jetzt

(20)

DF = df (21)

benutzen, wobei die Gleichheit approximativ in dem Sinne gilt, dab DF /df gegen 1
strebt, wenn die Winkel DPF und dpf gemeinsam gegen Null streben. Zur Begriindung
von (21) benutze man (15) und (16) und approximiere

DF = SD — SF = SD — SE =sd —se = sd —sf = df . (22)

Dabei ist zu beachten, daB die bei dieser Naherung gemachten Fehler wie das Quadrat des
Winkels DPF bzw. dpf verschwinden (der Beweis dafiir wird am Ende dieses Abschnitts
nachgetragen), so daB sie bei der Berechnung des Quotienten DF/df vernachléssigt
werden konnen. Aus (20) und (21) bekommt man

PI pf RI HI
R W 20
PF pi  ri  hi’ (23)

wobei man die letzte Gleichheit so einsehen kann: Bis auf einen vernachlassigbaren
Fehler 1aBt sich die Gerade durch H und I ersetzen durch die Tangente im Punkt H.
Nach Voraussetzung (16) ist aber der Winkel zwischen dieser Tangente und der Sekante
PK gleich dem Winkel zwischen der Tangente im Punkt /2 und der Sekante pk. Daraus
folgt die Ahnlichkeit der Dreiecke RHI und /i und damit die letzte Proportion in (23).

Jetzt braucht man nur noch die beiden Proportionen (19) und (23) miteinander zu mul-
tiplizieren und das Produkt mit (17) zu vergleichen, um das gewiinschte Ergebnis

o, 1S
6Fp  ps?

zu erhalten.

Es bleibt noch nachzutragen, weshalb die in (22) gemachten Fehler SF — SE bzw. sf —se
nur von zweiter Ordnung sind. Zum Beweis wendet man den Satz des Pythagoras im
Dreieck ESF an und bekommt

SF* =SE*+ EF*,  SF —SE = EF?*/(SF + SE),

d.h. SF — SE ist von der GroBenordnung EF2. Wegen <CESF = <DPF folgt daraus
die Behauptung. Damit ist der Beweis von Proportion (5) vollstindig.
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5 Vergleich mit der mechanischen Methode des Archimedes

Archimedes hat das Volumen einer Kugel mit Hilfe der folgenden heuristischen Me-
thode gefunden (vgl. [1]: [6], p. 233-238; [9], p. 354-357; [8]). Man wihlt geeignete
Vergleichskorper, deren Volumina bekannt sind, nidmlich einen passenden Kegel und ei-
nen passenden Zylinder, und héingt Kugel, Kegel und Zylinder an Hebelarmen so auf,
dabB Gleichgewicht herrscht. Mit Hilfe des Hebelgesetzes 14Bt sich dann daraus das unbe-
kannte Volumen der Kugel bestimmen. Ahnlich wie bei Newton besteht der wesentliche
Einfall darin, passende Jergleichsobjekte zu finden, bei Archimedes im Hinblick auf
das Ziel, Gleichgewicht an einem Hebel herzustellen, bei Newton im Hinblick auf das
Ziel, das Potenzgesetz (5) zu beweisen. Beide Male kommt es darauf an, Proportionen
aufgrund von Ahnlichkeiten zu finden, welche ihrerseits den Weg zum Auffinden der
richtigen Vergleichsobjekte gewiesen haben. Sowohl Newton als auch Archimedes sind
zu ihrem Vorgehen vermutlich inspiriert worden durch analoge einfachere Probleme, die
sie vorher gelost hatten. Im Fall von Archimedes war es die Aufgabe, die Fliche eines
Parabelsegmentes (vgl. Bild 12) zu bestimmen. Im Folgenden soll seine Methode anhand
dieses Beispiels demonstriert werden, und zwar so, dal der Leser ihre Ahnlichkeit mit
der Vorgehensweise von Newton leicht erkennen kann.

a

Bild 12

Zur Vereinfachung der Darstellung betrachten wir nur Segmente wie in Bild 12 (Archi-
medes betrachtet allgemeiner schiefe Segmente) und verwenden kartesische Koordinaten.
Archimedes wahlt als Vergleichsfigur dasjenige Dreieck, das von den beiden Koordina-
tenachsen und der Tangente an die Parabel im Punkt (a,0) begrenzt wird (Bild 13).

a

X

4 v

y y
Bild 13
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Mit Hilfe der Hebelmethode soll eine Bezichung zwischen der Flache F des Parabelseg-
mentes und der Flache f des Dreiecks gefunden werden.

Weshalb hat Archimedes gerade dieses Dreieck als Vergleichsfigur gewihlt? Der Grund
liegt darin, daB zwischen den Ordinaten-Abschnitten von Parabel und Tangente eine
einfache Proportion besteht.

—_—

p(X)

Bild 14

Wenn némlich P(x) bzw. p(x) die Ordinate der Parabel bzw. der Tangente zur Abszisse
xist (0 < x <a), so gilt
Px):p(x)=x:a, (24)

wie unmittelbar aus den Gleichungen
P(x) =x(a—x), p(x) =ala —x)

abgelesen werden kann (die Tangentengleichung folgt aus p(a) = P(a) = 0 und p(x) >
P(x) fiir alle x wegen 0 < (@ — x)?> = a(a — x) — x(a — x)). Aufgrund der Proportion
(24) kann man das Parabelsegment und das Dreieck folgendermafien an Hebelarmen so
aufhingen, daB Gleichgewicht herrscht: Zunéchst denkt man sich beide Figuren zerlegt
in infinitesimale Streifen der Hohen P (x) bzw. p(x), 0 < x < 4, und hingt diese Streifen
an Hebelarme wie in Bild 15.

Da sich die Gesamtfiguren aus den einzelnen Streifen zusammensetzen, bleibt das Gleich-
gewicht bestehen, wenn man Parabelsegment und Dreieck aufhingt wie in Bild 16.

Man kann sich die Masse des Dreiecks in seinem Schwerpunkt konzentriert denken.
Dieser hat die Abszisse 1a (die durch den Punkt (£,0) gehende Seitenhalbierende wird
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a X—
A

P()

Bild 15

Bild 16

durch den Schwerpunkt im Verhltnis 2:1 geteilt; dessen Abszisse ist also 2 - ). Aus

dem Hebelgesetz folgt daher
1
F:f= 3014,

und die gesuchte Bezichung zwischen den beiden Fldchen F und f ist gefunden.

Sowohl bei Archimedes als auch bei Newton werden das Ausgangsobjekt und das Ver-
gleichsobjekt so in infinitesimale Teile zerlegt, dah Proportionen zwischen diesen Teilen
bestehen, die im Fall der Parabelquadratur im Hinblick auf das Hebelgesetz angewandt
werden, im Fall des Anzichungsproblems im Hinblick auf das zu beweisende Potenzge-
setz. Bei Archimedes handelt es sich um ein heuristisches Verfahren zur Auffindung einer
unbekannten Flidche oder eines unbekannten Volumens; die Auswahl der Vergleichsfigur
ist weitgehend der Phantasie iiberlassen. Bei Newton ist dic Auswahl im wesentlichen
schon festgelegt durch die zu beweisende Aussage selbst, welche zuvor vermutet wor-
den war aufgrund der Gravitationstheorie. Im Fall der Hebelmethode kénnte man von
einem Beispiel physikalischer Mathematik (vgl. [6], Kapitel IX), im Fall von Newtons
Ahnlichkeitsbeweis von einem Beispiel mathematischer Physik sprechen.

6 Newtons Resultat und die Mittelwerteigenschaft

Wie in [2], p. 10-14 dargelegt, hat Newtons Satz von der Anzichungskraft einer Kugel
einen bedeutenden Stellenwert innerhalb des in den Principia Mathematica entwickelten
mathematischen Gebaudes. Newtons Beweis ist jedoch auf den Fall der Kugel beschrinkt.
Die Beweisfiithrung, so einfallsreich und scharfsinnig sie ist, ist von genau jener Weise,
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welche Lagrange bestrebt war, durch allgemeine, auf das gesamte Gebiet der Mechanik
anwendbare Methoden zu ersetzen. Im Vorwort zu seiner Analytischen Mechanik (1788)
heifit es:

“Les méthodes que j'y expose ne demandent ni constructions, ni raisonnements
géometriques ou méchaniques, mais seulement des opérations algébriques, assu-
Jetties a une marche réguliere et uniforme.”

Eine andere Entwicklungslinie, die ebenfalls von Newtons Gravitationstheorie ihren Aus-
gang genommen hat, ist aus dem Problem entstanden, die Anziehungskraft von allge-
meineren Kdrpern als der Kugel zu bestimmen. Zu diesem Zweck hat es sich als giinstig
erwiesen, nicht mit der von einer Massenverteilung 1« ausgeiibten Gravitationskraft selbst,
sondern mit dem zugehdrigen Potential U, also einer skalaren Funktion, zu arbeiten. Zur
Erlauterung formulieren wir zunachst einmal Newtons Resultat von der Anziehungskraft
einer Kugel um in Termen von Potentialen. Wenn p eine Punktmasse in einem Punkt
y € R? ist (d.h. im Fall eines Dirac-Mabes dy), ist das zugehorige Potential gegeben
durch ;
3

Us, (x) y =y’ xeR’ . (25)
Die bei gegebener Masse &, auf einen Massenpunkt an der Stelle x ausgeiibte Gravita-
tionskraft F(x) erhilt man aus Us, durch Differenzieren nach x:

- X —
Flx) = - grad U (x) = =y =V (26)
x =yl
insbesondere ist also der Betrag von F(x) gegeben durch
" 1
F X ‘ == 'y g ————x
i x —yP?

in Ubereinstimmung mit der eingangs in (1) gegebenen Formulierung des Gravitati-
onsgesetzes. Um Newtons Satz mit Hilfe von Potentialen auszudriicken, betrachten wir
eine homogen mit Masse belegte Sphiire S, (x) mit Mittelpunkt in x € R3 und Radius
> 0. Bei dieser Massenbelegung herrscht an einem Punkt iy € R* auBerhalb der Sphéire
dasselbe Potential, als wiite die Gesamtmasse 47+> im Mittelpunkt x konzentriert:

[ ot @) = smr U, y-x > (27)
S0
wobei o das Oberflaichenmal auf S, (x) bezeichnet.

Us,» 4mr*Us,m 4mr® 8y

d .

y y X

Bild 17
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So speziell dieses Resultat erscheint, ist es doch von allgemeiner Bedeutung in der
Potentialtheorie geworden, wie wir gleich sehen werden.

Wenn 4 eine allgemeine Massenverteilung ist, ist das zugehorige Potential U, definiert
durch Uberlagerung der Potentiale Us,, also durch

U= [uyutay) == [H xew. o
Wie in (26) ergibt sich die Anziehungskraft einer Massenverteilung ¢« aus dem Potential
U, durch Gradientenbildung; zur Bestimmung der Gravitationskraft kommt es also darauf
an, U, zu berechnen. Uber die Behandlung von Spezialfillen hinaus gelangte man erst
im 19. Jahrhundert zu einer allgemeinen Theorie solcher Potentialfunktionen. Gauss
entdeckte (vgl. [3], p. 30/31), dab diese Funktionen im massefreien Teil des Raumes
die Mittelwerteigenschaft besitzen. Wenn . ein endliches positives Mah auf R? ist, etwa
mit kompaktem Trager supp p, bezeichne man den massefreien Teil des Raumes mit
D = R3\ supp p. Der Satz von Gauss besagt dann, dab fiir alle x € D und fiir alle ¥ > 0
mit {z € R?: |z —x| <7} C D gilt

Uix) = gz [ o) (29)

Sr(x)

Im massefreien Teil des Raumes ist also der Wert von U, an einer Stelle x gleich dem
Mittelwert von U, genommen iiber die Sphére S, (x).

Diese Eigenschaft von Potentialfunktionen ist dquivalent zu Newtons Resultat fiir die
Kugel. Um das zu sehen, geniigt es, (29) zu spezialisieren auf p = 4, (aus diesem
Spezialfall kann man (29) wieder zuriickgewinnen, indem man nach dem Mah (dy)
integriert), also

- 1
4

U, (x) / od2)Us,(z), -yl >, (30)

S, (x)

zu betrachten. In welcher Beziechung stehen die Formeln (30) und (27) zueinander? Sie
gehen auseinander hervor, wenn man eine Vertauschung der Variablen gemifh

Lléa(b) - Lléb(a) ’ ﬂ7b = R’ ; (31)

vormimmt (aufgrund von (25) ist die Giiltigkeit von (31) klar). Hinter der formalen
Vertauschbarkeitsbeziehung (31) steckt ein allgemeines Symmetrieprinzip, demzufolge
Ursache (Punktmasse) und Wirkung (Probepunkt) miteinander vertauschbar sind. An-
schaulich heifit das, dab man die Mittelwerteigenschaft des Potentials Us, “sehen” kann,
indem man in Bild 17 eine Umdeutung vornimmt und den Probepunkt y als diejenige
Punktmasse betrachtet, um deren Potential es geht.

Die tatsichliche Tragweite der Mittelwerteigenschaft ist erst zu Beginn unseres Jahrhun-
derts klar geworden, als Koebe gezeigt hat, daB diese Eigenschaft charakteristisch ist fiir
harmonische Funktionen.
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Bemerkung. Der Verfasser bedankt sich bei Felix Friedrich fiir die Anfertigung der
Zeichnungen und bei R. Reibold und der Redaktion der Elemente der Mathematik fiir
wertvolle Hinweise, die zu einer Verbesserung des Manuskripts beigetragen haben.
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