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Mathematische Paradigmen in der Finanzwirtschaft

Hans Biihimann

Hans Bithlmann wurde 1930 in Chur geboren. Er studierte an der ETH in Zirich
und doktorierte dort 1959. Nach einigen Jahren als Mathematiker bei einer Versiche-
rungsgesellschaft wurde er 1966 als Professor fiir Mathematik an die ETH berufen,
wo er vor allem die Gebiete der Wahrscheinlichkeitsrechnung, der Statistik und der
Versicherungsmathematik betreute. Wihrend seiner Titigkeit in Ziirich versah er
mehrmals Gastprofessuren im Ausland, so u.a. in Berkeley, Ann Arbor, Tokio, Pisa
und Rom. Von 1987 bis 1990 war er Prasident der ETH Ziirich und Vizeprasident
des Schweizerischen Schulrates. Fiir seine wissenschaftliche Tatigkeit in der Versi-
cherungsmathematik erhielt Hans Biihlmann mehrere Auszeichnungen, darunter vier
Ehrendoktorate.

Ein Experiment

Wenn ich Thnen die Frage stelle: “Was ist das?” (siche Abb. 1), so werden Sie mit grosser
Wahrscheinlichkeit antworten: “die ETH” oder vielleicht “das Hauptgebiaude der ETH”.
Sie werden, obwohl Thnen der gedankliche Unterschied grundsitzlich sehr wohl vertraut
ist, nur selten die prizisere Antwort wihlen: “das ist ein Bild der ETH” oder “das
ist ein Bild des Hauptgebidudes der ETH”. Natiirlich reflektiert das Bild, so wie alle
Bilder, den Gegenstand, den es abbildet, nur mangelhaft. Schon die Anzahl Fenster des
Hauptgebaudes der ETH ist an dem gezeigten Bild nicht feststellbar, geschweige denn
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Abb. 1

die Materialbeschaffenheit oder die Farbe der Fassade, und schon gar nicht jegliche
Information iiber das Innere des Gebiudes.

Was ich Thnen mit diesem Experiment demonstrieren wollte, ist die Tatsache, dass wir
Menschen in der Kommunikation, wie im Denken, Bilder mit den von ihnen dargestell-
ten Gegenstinden immer wieder identifizieren. Wenn wir geniigend sorgféltig denken
und uns geniigend sorgfiltig ausdriicken, sind wir uns des Unterschiedes von Bild und
dargestelltem Objekt zwar sehr wohl bewusst; aber trotzdem ist die Identifikation von
Bild und Gegenstand fiir uns oft eine der fruchtbarsten Mdglichkeiten, um zu kommu-
nizieren und zu denken. Im Bereich der Ideen ist es vor allem die Wissenschaft, welche
solche Bilder liefert. Sie heissen dann Theorien oder eben Paradigmen.

Mathematische Paradigmen in der Finanzwirtschaft

Ich habe mir fiir heute vorgenommen, Thnen die Grundmuster zweier Paradigmen nach-
zuzeichnen, welche die Mathematik im Bereich der Finanzwirtschaft geschaffen hat.
Mathematische Paradigmen in der Finanzwirtschaft beniitzen vor allem die Sprache der
Wahrscheinlichkeitstheorie. Diese ist ein relativ junger Zweig der Mathematik. Sie hat
nichts mit den Babyloniern, Agyptern, Griechen und meines Wissens auch nichts mit
den Chinesen und Indern zu tun. Sie ist ein Kind des Abendlandes, zeitlich geboren in
der Renaissance.

Die erste schriftliche Spur eines Problems, das klar der Wahrscheinlichkeitstheorie zuzu-
ordnen ist, findet sich in der “Summa de arithmetica, geometria, proportioni et propor-
tionalita”, publiziert 1494 von Fra Luca Pacioli (siche Abb. 2). Es handelt sich bei der
“Summa” um das erste gedruckte Werk, welches den Versuch unternahm, das mathe-
matische und rechnerische Wissen des ausgehenden 15. Jahrhunderts in enzyklopédischer
Form darzustellen. Bemerkenswert an diesem Werk ist, dass es auch die erste historische
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Abb. 2 Fra Luca Pacioli 1445-1514 (circa), Franziskanermonch, geboren in Borgo (Toscana), unterrichtete
Mathematik in Perugia, Rom, Neapel, Pisa und Venedig, bevor er als Mathematikprofessor an den
Hof Ludovico Sforzas nach Mailand kam. Dort lernte er Leonardo da Vinci kennen. Leonardo und
Fra Luca verliessen beide Mailand, als Louis XII dort einzog. Seine letzten Jahre verbrachte Fra
Luca in Florenz.

Belegung der doppelten Buchhaltung enthilt, was Fra Luca Pacioli die Ehre eingetragen
hat, als Vater des modernen Rechnungswesens gefeiert zu werden.

Gioco di Balla

Doch nun zum wahrscheinlichkeitstheoretischen Problem, das sich in der “Summa” be-
findet: Fra Luca nennt es Gioco di Balla, spater heisst es auch Jeu des Pistolets (bei den
Franzosen) und Problem of Points (bei den Briten).

Die Personen A und B spielen e¢in faires Spiel mehrere Male: Wer als erster 6
Siege errungen hat, soll die eingesetzte Summe erhalten. Nun brechen sie ab bei
der Situation, wo A 5 Siege und B 3 Siege aufzuweisen hat. Wie soll die Summe
aufgeteilt werden?

Die Antwort von Pacioli lautet:
Die Aufteilung soll im Verhiltnis 5 : 3 erfolgen.

Aus der Sicht der Wahrscheinlichkeitsrechnung ist diese Antwort eindeutig falsch. Sie
ist nur erklirbar aus der Nichterkenntnis des wahrscheinlichkeitstheoretischen Charakters
der Problemstellung. Fra Luca war befangen im reinen Proportionalititsdenken, was ja
auch im Titel der Summa zum Ausdruck kommt.

Es dauerte 160 Jahre, bis das von Fra Luca publizierte Problem gelost wurde. Doku-
mentiert ist die Losung in einem berithmten Briefwechsel zwischen Fermat (siche Abb.
3) und Pascal (siche Abb. 4) im Jahre 1654.
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Abb. 3 Pierre de Fermat (1601-1665), geboren in Beaumont-de-Lomagne. Studierte Recht in Toulouse
und Orléans und Mathematik in Bordeaux. Mit 30 Jahren wurde er Conseiller de la Chambre des
Requétes du Parlement in Toulouse. Er lebte seit diesem Zeitpunkt in Toulouse. Seine richterlichen
Funktionen verboten ihm jede andere lukrative Tatigkeit. Deshalb widmete er sich als “Amateur”
den Sprachen, der Poesie und der Mathematik. In der Mathematik sind seine bekanntesten Arbeiten
der Algebra gewidmet. Er beschiftigte sich auch mit der Bestimmung des Gewichtes der Erde und
— was uns hier interessiert — mit der Wahrscheinlichkeitstheorie.

Fermats Losung. Nach spitestens 3 weiteren Spielen wiirde die ganze Summe einem
der Spieler zugesprochen. Fermat erstellte dann die Liste der Mdglichkeiten fiir die drei
fehlenden Spiele. In moderner Sprechart wiirden wir sagen, dass Fermat ein gedankliches
Modell konstruierte. Fiir die Darstellung verwenden wir das Symbol a, um auszudriicken,
dass A gewinnt.

Gewinnfolge Zusprache der Summe an

aaa A
aab
aba
abb
baa
bab
bba

bbb

7 Falle

SRS N S

} 1Fall
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Abb. 4  Blaise Pascal (1623-1662), geboren in Clermont-Ferrand. Pascal war ein Wunderkind und wurde
von seinem Vater schon mit 16 Jahren in den Gelehrtenkreis des Abbé Marin Mersenne in Pa-
ris (aus diesem Kreis entstand spiter die Académie Royale) eingefithrt. Er war sein Leben lang
hin- und hergerissen zwischen Mathematik und religiosem Eifer fir die Werte des Jansenismus.
In der Mathematik sind vor allem seine Beitrage zur projektiven Geometrie, Kombinatorik und
Infinitesimalrechnung bekannt. Er war aber auch an physikalischen Problemstellungen (Vakuum,
Kosmologie) sehr interessiert; zudem konstruierte er eine funktionsfahige Rechenmaschine.

Unter der Annahme, dass alle Gewinnfolgen gleiche Wahrscheinlichkeiten haben, ergibt
sich als Fermats Losung:

Die Aufteilung soll im Verhiltnis 7 : 1 erfolgen.
Diese Losung teilte Fermat in einem Brief an Blaise Pascal mit.

Pascals Losung. Pascal 16ste das Problem mit einer komplett verschiedenen Methode,
welche wir heute als rekursiv bezeichnen wiirden. Symbolisch lasst sich diec Methode
am besten anhand einer Baumstruktur nachvollziehen (siche Abb. 5). Wir gehen von der
Gewinnsituation 5 : 3, also 5 Siege fiir A und 3 Siege fiir B im Moment des Abbruchs
aus und zeichnen auf, wie die Gewinnsituation sich entwickeln konnte.

In den Endpunkten links erhilt A die ganze Summe. Im Endpunkt rechts erhilt B die
ganze Summe. Nehmen wir an, die ganze Summe sei 8 und zeichnen wir den Gewinn
fiir A in den Endpunkten ein. Der Gewinn fiir B ist an jeder Stelle das Komplement zu 8.
Gehen wir nun riicckwérts durch den Baum durch “Mittelung der moglichen Gewinne”,
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Annahme: Summe = §

Abb. 5 Pascalsches Schema.

so erhalten wir

bei 5:5 4= 5F9
2
bei 5:4 6= 5%
2
846
bei 5:3 7:%

Damit fand auch Pascal, dass die Summe im Verhéltnis
7 (Gewinn von A) : 1 (Gewinn von B)

aufzuteilen sei.

Der Brief, in welchem Pascal seine Losung an Fermat mitteilte, ist erhalten geblieben. Er
tragt das Datum vom 29. Juli 1654 und enthilt den berithmten freudvollen Satz: “Je vois
bien que la vérité est la méme a Toulouse et a Paris”. Die Wahrscheinlichkeitstheorie
war geboren!

Die drei Grundideen, welche der Wahrscheinlichkeitstheorie
zugrunde liegen
In der Korrespondenz zwischen Fermat und Pascal sind die drei Grundideen der Wahr-

scheinlichkeitstheorie sichtbar, dic auch heute noch einen wesentlichen Teil des Funda-
ments dieser mathematischen Disziplin darstellen:

— Fermats Liste: Sie ist das, was wir heute das Modell méglicher Szenarien nennen
wiirden. Mathematisch wird sie dargestellt durch den Wahrscheinlichkeitsraum mit
seinen moglichen Elementar- und zusammengesetzten Ercignissen.

— Pascals rekursive Methode: Die geniale Idee Pascals bestand in seiner Entdeckung,
dass man statt der vollen Aufzihlung aller moglichen Szenarien (globales Modell)
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auch oft nur lokal richtig evaluieren muss, um die im globalen Modell definierten
Wahrscheinlichkeiten zu finden. Der Vorteil dieser Methode ist vor allem ihre Prak-
tikabilitit, weshalb man sie z.B. in der heutigen Optimierungstheorie immer wieder
antrifft (Backward Induction, Roll Back Analysis).

— Fairness des Spiels: In allen unseren Uberlegungen haben wir unterstellt, dass alle
Moglichkeiten gleiches Gewicht oder eben gleiche Wahrscheinlichkeit haben. In ei-
nem Fall waren es die Elemente von Fermats Liste, im anderen dic alternativen Ver-
zweigungsiste im Pascalschen Schema. In der modernen Wahrscheinlichkeitstheorie
ist aus diesem Grundgedanken die Martingaltheorie entstanden, welche in Theorie
und Praxis eine bedeutende Rolle spielt.

Lassen Sie mich nun illustrieren, wie diese Grundideen der Wahrscheinlichkeitstheorie in
die zwei mathematischen Paradigmen der Finanzwirtschaft einfliessen, welche insbeson-
dere die bedeutenden Zweige der Versicherung und der Derivativen Finanzinstrumente
pragen.

Paradigma der Versicherungsmathematik: Gambler’s Ruin

Die wahrscheinlichkeitstheoretische Bemessung des Ruins im Rahmen der Gliicksspiele
gehort historisch zu den éltesten Problemen der Wahrscheinlichkeitstheorie. Ich verwende
fiir die Bezeichnung dieses Problems den weltweit iiblichen englischen Namen: “Gam-
bler’s Ruin”. Es taucht erstmals auf als “Fiinftes Problem” in dem Buch “De Ratiocinis
in Ludo Aleae” (erschienen 1657) von Christiaan Huygens (siche Abb. 6). Gestatten Sie
mir die Problemstellung in heutiger Sprechweise wiederzugeben:

“Ich spicle mit eigenem Vermogen a gegen einen Gegner mit Vermogen b, bis
einer von uns beiden ruiniert ist. Wie gross ist die Wahrscheinlichkeit, dass ich
ruiniert werde?”

Wir bezeichnen in der Folge die Wahrscheinlichkeit fiir meinen Ruin mit P[Ruin|. Dem
Problem sei eine (beliebig fortsetzbare) Folge von fairen Spielpartien mit Einsatz 1
zugrunde gelegt, was die graphische Darstellung in Abb. 7 zum Ausdruck bringt.

Falls der Austritt unten stattfindet, bin ich ruiniert, bei Austritt oben ist mein Gegner
ruiniert. Zur gedanklichen Losung von “Gambler’s Ruin” wire es ndtig, eine Liste mit
samtlichen moglichen Kurven (S, ),>o (Szenarien) zu erstellen. Wie Sie leicht sehen, gibt
es allerdings eine unendliche Anzahl solcher Kurven, denn die Spieldauer kann ja beliebig
gross sein. Damit ist das “Abzédhlen der Szenarien” im elementaren Sinne nicht mehr
moéglich. Die Mathematiker haben aber die notwendigen Instrumentarien entwickelt, um
auch in solchen Situationen Wahrscheinlichkeitsraume und Wahrscheinlichkeiten exakt
zu definieren. Es wiirde allerdings weit iiber den Rahmen dieses Vortrages hinausgehen,
Thnen dies heute erkldren zu wollen. Umso erstaunlicher ist dafiir die Tatsache, dass sich
auch ohne dieses Verstindnis meine Ruinwahrscheinlichkeit berechnen lésst.

Dazu benétigen wir lediglich die Fairnessbedingung, die besagt, dass mein erwarteter
Gewinn in jedem Zeitpunkt gleich gross ist wie mein Gewinn zu Beginn des Spiceles,
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Abb. 6

Abb. 7

Christiaan Huygens (1629-1695). Christiaan Huygens wurde in Den Haag geboren. Zuerst von
seinem Vater in Mathematik und klassischen Sprachen unterrichtet, studierte er dann in Leiden und
Breda Recht und Mathematik. Er besuchte ofters Paris und London und war Mitglied der Royal
Society wie der Académie Royale des Sciences. Der erste Besuch Huygens in Paris fand im Jahre
1655 statt. Er vernahm dabei von der Korrespondenz zwischen Fermat und Pascal, traf aber mit
keinem der beiden zusammen. Da ihm zudem niemand die Ansétze von Fermat und Pascal erklaren
konnte, begann er nach seiner Riickkehr nach Holland selbstindig mit der Bearbeitung der Losungen
der ihm mitgeteilten Probleme. Daraus entstand 1656 ein hollandisches Manuskript und 1657 “De
Ratiocinis”. Dieses letztere Werk kann man als das historisch erste Textbuch der Wahrscheinlich-
keitstheorie bezeichnen. Erst zu Beginn des 18. Jahrhundert entstand die nachste Generation von
Textbiichern (Montmort, de Moivre, Jakob Bernoulli).

+b

l—:/ﬁ\\ Kurve der (Sp)az0

mein Ruin

—a

Irrfahrt der aufsummierten Gewinne. Folge von fairen Spielen mit +1 und —1 als mégliche Resul-
tate. Es bezeichnet S, meinen aufsummierten Gewinn nach 7 Spielen, und T bedeutet die Zeit des
Austritts aus (—a, b) (stochastische Zeit).
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also Null; es gilt also fiir alle n:

E[S,] = i k-PlS, =kl =0.

k=—n
T T
Definition Fairness-
des bedingung
Erwartungswertes

Die Fairnessbedingung gilt auch zur stochastischen Zeit T. (Das scheint intuitiv ein-
leuchtend, ist aber im Kern die Aussage eines sehr tiefliegenden mathematischen Satzes
(Stoppsatz der Martingaltheorie), dessen Richtigkeit unter sehr allgemeinen Bedingungen
bewiesen werden kann.) Es gilt also

E[Sr] =0
oder, anders ausgedriickt
—a - P{mein Ruin] + b - P[Gegners Ruin] =0 .

Zusitzlich gilt
P[mein Ruin] + P[Gegners Ruin] =1 .

Die letzte Gleichung bedeutet, dass bei beliebig langer Spieldauer mit Sicherheit einer
von beiden ruiniert sein wird. Aus den zwei letzten Gleichungen folgt unmittelbar

. . b
Plmein Ruin] = ——
a+b
Eine direkte Konsequenz aus dieser Formel ist die Tatsache, dass P[mein Ruin] gegen 1

strebt, wenn b gegen oo strebt, d.h. wenn b sehr gross wird. In Worten heisst dies:

Ein faires Spiel gegen einen sehr reichen Gegner kann man auf die Dauer nicht
durchhalten; man verliert gegen ihn mit Sicherheit jeden Einsatz.

Konkrete Beispiele fiir diese Situation sind die folgenden Fille:

— Individueller Spieler gegen Spielkasino (hier hat zudem das Spielkasino noch den
Vorteil, dass das Spiel zu seinen Gunsten unfair ist)

und
— Versicherungsgesellschaft gegen Versicherungsmarkt.

Dieses letzte Beispiel unterstellt, dass der gesamte Versicherungsmarkt gegeniiber der
einzelnen Versicherungsgesellschaft “sehr reich” ist. In dieser Situation ergibt sich die
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+b

—a

Abb. 8 Irrfahrt der aufsummierten Gewinne.

praktische Konsequenz, dass die Versicherungspramien zur fairen Primie einen Sicher-
heitszuschlag bendtigen. Auch dieser Fall 1asst sich mathematisch in den Griff kriegen.

Studieren wir zu diesem Zweck nochmals die Irrfahrt der aufsummierten Gewinne, d.h.
die Kurven (S, ).>o (siche Abb. 8).

Der einzige Unterschied zur fritheren Situation ist der, dass der Schritt +1 mit Wahr-
scheinlichkeit p erfolgt und der Schritt —1 mit Wahrscheinlichkeit g = 1 —p. Dabei gelte
p > q. Die Fairnessbedingung p = 1/2 ist damit fallengelassen. Wir haben jetzt

P ite,
q

wobei © der Sicherheitszuschlag ist. Auch in diesem Fall der (nichtsymmetrischen)
Irrfahrt ist die Formel fiir die Ruinwahrscheinlichkeit schon lange bekannt. Sie steht —
als Ubungsaufgabe — in der 1713 publizierten “Ars Conjectandi” von Jakob Bernoulli

(siche Abb. 9): ,
P[ mein Ruin | = (ﬂ>ai%)u+b .
P ()

Basierend auf dem Gambler’s Ruin Paradigma im Falle der nichtsymmetrischen Irrfahrt
hat der Schwede Filip Lundberg (siche Abb. 10) im Jahre 1903 die Kollektive Risi-
kotheorie fir das Versicherungsgeschehen entwickelt. Sie setzt sich zum Ziel, dieses
Versicherungsgeschehen als eine zufillige Entwicklung in der Zeit zu modellieren. Die
Kontrolle iiber das Versicherungsgeschehen wird dabei mittels der Ruinwahrscheinlich-
keit gesteuert, d.h. man definiert als zuldssige Versicherungsoperationen solche, die ein
vorgegebenes Niveau fiir die Ruinwahrscheinlichkeit nicht iiberschreiten.

Die Bernoullische Formel liefert uns bereits den Schliissel zur Kontrolle mittels der
Ruinwahrscheinlichkeit. Etwas anders geschrieben (in Analogie zur Notation in der Ri-
sikotheorie) lautet sie:

P[Ruin| = e ® . Cy .
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JAC. BERNOULLI, MATH.PP

Abb. 9 Jakob Bernoulli (1654-1705). Die Familie Bernoulli kam anfangs des 16. Jahrhunderts aus Antwer-
pen uiber Frankfurt am Main nach Basel. Niklaus Bernoulli war wihrend einiger Jahre Biirgermeister
der Stadt Basel. Sein altester Sohn Jakob studierte zunidchst Theologie in Basel, interessierte sich
aber immer mehr fiir Mathematik. In dieser Disziplin entstand zwischen ihm und seinem jiingeren
Bruder Johann eine eigentliche Familienfehde, wer der bessere Mathematiker sei. Dies erklart auch
die erst postume Verdffentlichung der “Ars Conjectandi” (1713). Dieses Werk fasst viele der bisheri-
gen Ergebnisse der Wahrscheinlichkeitstheorie zusammen und erweitert die Problemstellungen. Mit
dem “Gesetz der grossen Zahlen” wird in der “Ars Conjectandi” erstmals die theoretische Briicke
zwischen Wahrscheinlichkeitstheorie und Statistik geschlagen.

Dabei gilt 0 < Cp, < 1 und Cyp — 1 fiir b — oo, sowie R = In(1 + ©). Das Versiche-
rungsgeschehen wird also durch die Parameter 4 und R kontrolliert, wo a4 die Kapitalisie-
rung bezeichnet und R durch den Sicherheitszuschlag © und durch die Portefeuillestruk-
tur kontrolliert wird. Die Portefeuillestruktur geht in die Bernoullische Formel iiber den
Kurventypus der Irrfahrt ein. Unterstellt man dem Risikoprozess andere Kurventypen,
verdndert sich der Wert von R (siche Abb. 11, 12).

Die kollektive Risikotheorie verbindet also Kapitalisierung, Tarifierung und Risikopo-
litik eines Versicherungsunternehmens und leitet daraus einen Sicherheitsindex, eben
die Ruinwahrscheinlichkeit ab. Der Versicherungspraktiker erkennt an dieser Stelle un-
mittelbar, dass damit ein theoretisches Instrumentarium zur Verfiigung steht, um unter
Einhaltung eines vorgegebenen Sicherheitsniveaus strategische Unternehmensentscheide
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Abb. 10  Filip Lundberg (1876-1965). Geboren in Stockholm, studierte Mathematik und schrieb seine Dis-
sertation in Stockholm. In dieser Dissertation wurde erstmals das Versicherungsgeschehen als sto-
chastischer Prozess interpretiert. Dies, obwohl das mathematische Instrumentarium zur Behandlung
stochastischer Prozesse noch nicht geschaffen war. Es blieb Harald Cramer vorbehalten, die Lund-
bergschen Ideen im streng mathematischen Sinn zu kléren.

V
Abb. 11 Kurventyp: Irrfahrt. Abb. 12 Kurventyp: Verlauf Uberschuss Primien
minus Schiden

betreffend Solvabilititsmarge, Risikokapital, Tarifierungspolitik und Selbstbehaltspolitik
aufeinander abzustimmen.

Grundhaltung, die aus dem Paradigma Gambler’s Ruin resultiert. Das Gambler’s
Ruin Paradigma ist selbstverstindlich ein mathematisches Denkschema, welches das Ver-
sicherungsgeschehen nur unvollkommen reflektiert. Die Tatsache, dass das Denkschema
gewisse Grundhaltungen in der Versicherungsbranche geprigt hat, ist aber evident. Es
sind dies:
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— Die langfristige Betrachtungsweise, d.h. diec Modellierung des Risikoverlaufes fiir
typischerweise langjahrige Versicherungsbeziehungen steht im Vordergrund.

— Die Kontrolle des Risikos findet iiber die Anfangsbedingungen des Risikoprozesses
statt. Nachher iiberlasst man das Risiko weitgehend den Gesetzen der Wahrschein-
lichkeitstheorie.

Diese Haltung ist vor allem in der Lebensversicherungsbranche besonders deutlich er-
kennbar. Andere Versicherungsbranchen weichen gelegentlich durch zusitzliche Kon-
trollmechanismen, z.B. mittels variabler Pramien, Bonus/Malus, von dieser Langfristig-
keit etwas ab.

Paradigma der Finanzmathematik

(Bewertung von derivativen Finanzinstrumenten, Hedging)

Die Grundidee des Hedging findet sich ebenfalls im Werk von Christiaan Huygens “De
Ratiocinis in Ludo Aleae”. Ich erklare sie aber direkt im modernen Zusammenhang der
Optionsbewertung. Mit ihrer Arbeit “The Pricing of Options and Corporate Liabilities”,
Journal of Political Economy (1973), haben Fischer Black (siche Abb. 13) und Myron

Abb. 13 Fischer Black (1938-1995). Studierte Physik und doktorierte in mathematischer Logik an der
Harvard University. Als beweglicher Geist wechselte er dann in eine Unternehmensberaterfirma, wo
sein Interesse fur Finanzokonomie geweckt wurde. Er stieg im Umfeld der University of Chicago
wieder in den Kreis der akademischer Okonomen ein, wechselte dann an das MIT, um schliesslich
bei Goldman Sachs letztlich doch wieder seine Laufbahn an der Front der Finanzpraxis einmiinden
zu lassen. Auch in dieser Stellung publizierte er aber laufend seine Ideen und Anregungen in den
fuhrenden dkonomischen Zeitschriften. Bei der Verleihung des Nobelpreises an Robert Merton und
Myron Scholes (sieche Abb. 14) wurde er offiziell postum in die Ehrung eingeschlossen.
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Abb. 14 Myron S. Scholes Geboren 1941, Professor der Stanford University, Nobelpreis fiir Okonomie
1997.

Scholes (siche Abb. 14) die eigentliche Grundlage fiir den Optionenmarkt und damit fiir
die Bewertung von derivativen Finanzinstrumenten schlechthin geschaffen.

Stellen wir uns also die Aufgabe, folgenden Option zu bewerten:

Call Option  europdisch
Ausiibungszeitpunkt T
Ausiibungspreis 1000

Die Option sei bezogen auf einen Basiswert (z.B. Aktie), der im heutigen (Bewertungs-)
Zeitpunkt ebenfalls den Wert 1000 hat.

Wenden wir zunichst einmal etwas mechanistisch das Schema von Pascal an (siche Abb.
15). Im Ausiibungszeitpunkt sind dic Werte 30, 10, 0, 0 die durch das Optionsrecht re-
sultierenden Werte. Die Werte in den fritheren Zeitpunkten erhalten wir durch Backward
Induction.

Das Pascal-Schema liefert 7.5 als den heute zu verlangenden Preis. Wie lasst sich dieser
Preis also rechtfertigen? Fiir diese Rechtfertigung verwenden wir das Hedging Argument
(siche Abb. 16).

Beachte, dass im Schema (siche Abb. 16) die Bewertungsdifferenzen 10, 7.5, 5, 2.5
dem Betrage nach an jedem Knoten die gleichen sind und somit die Optionsbewertung
die Bewertungsdifferenzen des Basiswertes proportional nachvollzieht. Allerdings ist der
Proportionalititsfaktor je nach Verlauf des Basiswertes verschieden.
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30

970

Heute

Abb. 15

Das Schema von Pascal.

Ausiibungszeitpunkt T

1030 30
10
20
1020 -
75
12,5 10
1010 : 10
5 5
5
1000 ¢ :
5 5
990 : 0
2,5
2,5
980 :
b\A
970 0
f
Heute Ausiibungszeitpunkt T

Abb. 16 Hedging Argument.



174 Elem. Math. 53 (1998)

Bewertungsdifferenz 10 1  Aktie
7.5 3/4 Aktic

5 1/2  Aktie

2.5 1/4 Aktie

Wir zichen daraus das folgende Fazit: Wenn ich mit 7.5 starte (Preis, den ich als Emit-
tent der Option erhalte), in jedem Knoten die (gebrochene) Anzahl Aktien kaufe, welche
gemiss obiger Tabelle der Bewertungsdifferenz entspricht, und diesen Kauf im nichsten
Knoten glattstelle, dann habe ich mit Sicherheit im Ausiibungszeitpunkt T den Geldbe-
trag, der dem Optionsrecht entspricht.

Wer dieses Argument zum ersten Mal hort, ist perplex. Unabhingig vom Verlauf des
Basiswertes ist am Schluss der exakt benétigte Geldbetrag vorhanden!

Und eine weitere Feststellung ist fast noch verbliiffender:

Nehmen wir an, das Gitter unserer Irrfahrt sei so, dass wir mit irgend einer von 1/2
verschiedenen Wahrscheinlichkeit nach oben gehen. Das eben durchexerzierte Hedging
Argument dndert sich deswegen iiberhaupt nicht. Also spielt es gar keine Rolle, mit
welcher Wahrscheinlichkeit p der Basiswert steigt (bzw. mit welcher Wahrscheinlichkeit
1 — p er fillt). Das Pascal-Schema, welches der Preisbewegung die Fairness unterstellt
(d.h. p = 1/2), liefert auch in diesem Falle die richtige Antwort!

Haben wir das perfekte Paradigma gefunden? Fast scheint es so, denn

— wir haben kein Risiko.

— wir miissen nicht einmal dic Wahrscheinlichkeit p kennen. Die “kiinstliche” Wahr-
scheinlichkeit p* = 1/2, welche den Preisprozess zum fairen Spiel macht, liefert
immer dic richtige Antwort.

Der eben beschriebene Sachverhalt lasst sich auf recht allgemeine Preisprozesse (die
Klasse der Diffusionsprozesse) verallgemeinern. Ebenso wichtig ist es aber, auf die Gren-
zen der angestellten Uberlegungen hinzuweisen. Schon fiir eine Irrfahrt, bei welcher Sie
in jedem Knoten drei Moglichkeiten haben, versagt das Hedging Argument!

Grundhaltung, die sich aus dem Hedging Paradigma ergibt. Selbstverstindlich wissen
Theoretiker und Praktiker um die Grenzen des Hedging Arguments, und je besser sie ihr
Metier beherrschen, umso geschickter kénnen sie mit diesen Grenzen umgehen. Trotzdem
wird auch durch dieses Paradigma eine Grundhaltung geprigt.

— Die kurzfristige Sicht steht im Vordergrund, geht es doch in erster Linie darum, das
Hedging stindig neu anzupassen.

— Der Zufallsprozess wird weniger durch die Anfangsbedingungen als durch dieses
stindige Anpassen kontrolliert.

— Die Preise sind die dominanten Grossen, in dem Sinne, als oft nach der Maxime
gehandelt wird, man hitte lediglich dafiir zu sorgen, dass die Preise stimmen.

Die Problematik der Grundhaltung wird in der Praxis insbesondere im Bereich des Ri-
sikomananagements sichtbar. Wie ist das Risiko zu kontrollieren, welches im zugrunde
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liegenden Paradigma gar nicht vorhanden ist? So ist es denn gerade diese Frage, welche
die Praktiker zunehmend auch im Finanzbereich eher mit Anséitzen aus der Versiche-
rungswelt angehen.

Das Zusammentreffen der zwei Paradigmen

In der modernen Finanzwelt wachsen Bankenwelt und Versicherungswelt immer mehr
zusammen. Damit treffen sich aber auch zwei verschiedene Denkweisen, wie ich Thnen
das in Abb. 17 nochmals zusammengestellt habe. Dieses Aufeinandertreffen beinhaltet
auch rein gedanklich viel Ziindstoff. Letztlich kann aus dem Treffen der beiden Paradig-
men aber auch eine fruchtbare Interaktion entstehen. Dieser Prozess liuft gegenwirtig
vor allem im Bereich der Versicherungsderivate (Versicherungsdeckungen in Form von
Finanzprodukten). Diese hatten einen sehr mithsamen Start, weil sie eben nur dann sinn-
voll sein konnen, wenn beide Seiten mit ihren verschiedenen Denkweisen ihre Expertise
voll einbringen.

Gambler’s Ruin Hedging

— langfristig — kurzfristig

— risikoorientiert — preisorientiert
— globales Modell — lokale Losung

Versicherungswelt Derivative Welt

600

500

400 \

26.12.86 26287 26487 26687 26887 261087 26.12.87 26288

Time

Abb. 17 Das Zusammentreffen der zwei Paradigmen.

Gerade jetzt tauchen aber die ersten Beispiele auf, die diesem Postulat zu geniigen ver-
mogen.

Ja, jetzt sollte ich Thnen wohl nochmals das Bild des Hauptgebdudes der ETH zeigen.
Zu Beginn meiner Vorlesung habe ich damit auf den Unterschied zwischen Bild und
abgebildetem Gegenstand hingewiesen.

Und so ist es natiirlich noch umso mehr mit den zwei Paradigmen, die ich Thnen vorge-
fiihrt habe:

— Gambler’s Ruin ist nicht die Versicherungswelt.
— Hedging ist nicht die Derivative Welt.
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Aber so absolut ist das auch nicht. Gerade die beiden geschilderten Paradigmen haben das
Denken in ihren Bereichen verdndert. Ja, es ist meine personliche Feststellung, dass in der
Finanzwelt die Vorstellungen, welche die Verantwortlichen haben, meist entscheidender
sind als die zugrundeliegenden 6konomischen Fakfen. Mathematische Methoden nehmen
bei diesen Vorstellungen oft eine besondere Stellung ein. In einer typischen Schwarz-
Weiss-Haltung werden sie in der Praxis oft entweder gar nicht zur Kenntnis genommen
oder dann in fast bedingungsloser Glaubigkeit akzeptiert. Damit werden die Paradigmen
von Bildern der Welt zu Machern der Welt.

Mir personlich kommen unsere mathematischen Paradigmen deshalb gelegentlich wie
eine Art Zauberlehrlinge vor, die wir spielerisch in die Welt gesetzt und die sich dann
verselbstandigt haben. Viele von uns haben auch schon praktische Erfahrungen gemacht,
bei denen siec am liebsten gerufen hétten: “In die Ecke, Besen, der Du gewesen!” Aber
leider geht das nicht, und es wdre auch nicht sinnvoll. Wir haben eine Mitverantwortung
zu tragen, und die besteht darin, unsere Ansitze stindig und immer wieder so zu kommu-
nizieren, dass sie wirklich verstanden werden. Ein wirklich guter Mathematiker mochte
Thnen, meine Damen und Herren, seine Formeln (moderner: seine Computerprogramme)
nicht einfach verkaufen. Er ist viel mehr daran interessiert, dass Sie seine Uberlegungen
verstehen. Wenn das gelingt, sind die Zauberlehrlinge gezihmt, und dann kénnen sie
auch hervorragende Dienste leisten.

Hans Bithlmann
Mathematik
ETH-Zentrum
CH-8092 Zirich
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