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Partitioning Balls into Topologically Equivalent Pieces

Christian Richter

Christian Richter wurde 1969 in Jena geboren. Nach dem Abitur studierte er
Mathematik an der Friedrich-Schiller-Universität in Jena. Gegenwärtig ist er
wissenschaftlicher Assistent am dortigen mathematischen Institut und beschäftigt sich in
Vorbereitung auf eine Habilitation mit Zerlegungs- und Überdeckungsproblemen
metrischer Räume und mit approximationstheoretischen Anwendungen. In seiner Freizeit

unternimmt er gerne Wanderungen und findet Entspannung beim Musikhören.

1 Introduction
In 1949 B. L. van der Waerden asked for a proof for the non-existence of a disjoint
decomposition B A\ U A2 of a closed ball (circle) in the Euclidean plane E2 into
two congruent pieces A\ and A2 (cf. [Wae]). This problem found, beside its solution in
the same issue of "Elemente der Mathematik", many generalizations (cf. [Wal], [Wa2],
[He], [Edel], [Ede2], [E/J/T], [Ri]). We use the most general notation from [Wai]: Let
cê be a group acting on a set X. A subset YÇXis called n-divisible w.r.t. cê if Y may
be partitioned into n pieces which are pairwise congruent via cê.

Im Jahre 1949 veröffentlichten die lüemente der Mathematik eine Aufgabe von van
der Wacrdcn:

Ist es möglich, eine Kreisscheibe m zwei zueinander fremde kongruente Punktmengen zu

zerlegen? (Ob man den Randlcreis zur Kreisscheibe rechnet oder nicht, ist gleichgültig.
I his ciulinh.sic im. den lùindkivi.s tUizu zu iwlinau
In den vergangenen 50 Jahren wurden verschiedene Verallgemeinerungen dieses
Problems behandelt. Sie betreffen insbesondere den Fall höherer Dimensionen und den

Fall, wo statt kongruenter Teile topologisch äquivalente Teile betrachtet werden. -
Christian Richter beweist im vorliegenden Beitrag das folgende allgemeine Resultat:

Eine abgeschlossene Kugel B im d-dimensionalen euklidischen Raum lässt genau dann

eine Zerlegung in n topologisch äquivalente Teile zu, wenn das Paar (d,fl) vom Paar
'.1.2' \vr\ilnalcn i\i ii\l
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In the Euclidean space Ed it is the natural problem to discuss the «-divisibility of sets

w.r.t. the group Sßd of all isometries of Ed. In the paper [He] it is shown that every
closed, bounded and convex set in Ed is not 2-divisible w.r.t. (3hi. Moreover it is proved
that closed intervals are not n-divisible w.r.t. Sß1 for all n e {2,3,4,...}. E. Hertel asks

for the largest group of transformations of Ed for which these results can be generalized.

Of course, half-open intervals [a, b) ç E1 are n-divisible w.r.t. translations. Similarly,
the small manipulation of removing its center makes a circle in the Euclidean plane
n-divisible w.r.t. rotations. This shows that "small" topological changes can change the

property of n-divisibility of sets. On that account it becomes interesting to consider the

n-divisibility of bounded convex sets w.r.t. the group 2Td of all homeomorphisms of Ed

onto itself. It is obviously sufficient to restrict the considerations to balls, which represent
the topological type of bounded convex sets. We call a set B Ç Ed a (general) ball of
radius r > 0 centered in x0 e Ed if

{x G Ed : \\x - Xo|| < r} C B C {x e Ed : \\x - xo\\ < r}

2 Partitioning closed balls
Before we discuss the n-divisibility of closed balls in Ed, we ask for partitions into n

pairwise homeomorphic topological subspaces. This property of the partition sets is more
general than the pairwise congruence via 2Td, since a homeomorphic bijection between

two subsets of Ed can not be extended to a transformation from 2Td in general.

Theorem 1 Let B be a closed ball in Ed (d > 1) and let n > 2. Then there exists a

disjoint decomposition ofB into n pairwise homeomorphic topological subspaces of~Ed.

Proof. The cases (d,n) ^ 1,2) will be discussed in the proof of the following Theorem

2.

a,

-- n - - - i2 u 2 4 8 1

Fig. 1

If d 1 and n 2 we assume that B [—1,1] without loss of generality (cf. Fig. 1).

We consider the decomposition B S U T where

,ool f \-l + 2-(k+l\-l+2-k) iffc is even,
S {-1}U [ \Sk with Sk I lr ' .'H \ l-2-*,l-2-(*+1)) if k is oddk=0

and

l

T {1}U I IT* with Tk
ifk is even,

iffcisodd.
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A homeomorphism ip from S onto T can be obtained as follows: We define the restriction
cp\sk of ip to the interval Sk, k G {0,1,2,...}, to be the translation of Sk onto 7\ and,

of course, <£>( —1) 1. The continuity of ^ in a point x0 G S \ {-1}, say x0 G Sk0,

is implied by the existence of a neighbourhood U(x0) in the topological space S such
that il(xo) Ç Sfc0- Hence <p\u(x0) is a restriction of a translation and, consequently, ^ is

continuous in x0. If x0 -1 we observe, that all points x G S with ||x - x01| < 2~2î, i.e.

xg {-1}UUS2;, are mapped into {l}ujjT2;, i.e. ||^(x)-^(xo)|| ||^(x)-l|| < 2~2î.
1=1

The continuity of y"1 can analogously be checked. This completes the proof. D

The investigation of the n-divisibility w.r.t. 2Td requires several steps. The first proposition
shows that this n-divisibility is strictly harder than the partition property considered in
Theorem 1. (Proposition 1 is proved in a more general context in [Ri]. In the present

paper we give an elementary proof.)

Proposition 1 Closed balls o/E1 are not 2-divisible w.r.t. 2T1.

Proof. Without loss of generality we consider the ball B [0,1]. We assume the contrary,
i.e. there exist two disjoint sets S and T and a homeomorphism t g 2T1 such that

[0,1] SUT, t(S) T and OgS. (1)

Fact 1: t has no fixed point Xo t(xo) in [0,1].
Such a point would belong to both the sets S and T, since t(S) T, in contradiction
to the disjointness of S and T.

Fact 2: t is either strictly increasing or strictly decreasing.
This is simply implied by the injectivity of r and Cauchy's intermediate value theorem.

Case 1: t is strictly increasing.
We prove the following statement by induction w.r.t. i:

Fact 3: Let i G {0,1,2,...}. Then

(«0 T2î(0) <T2î + 1(0) <T2î+2(0)

(A) [t2î+2(0), i] (S n [t2î+2(0), i]) u (tn [r2î+2(o), i])
(7î) r (S n [r2î+2(0), 1]) T n [r2î+2(0), 1] and

(S,) r2î+2(0)GSn[r2î+2(0),l]

We start with i 0. The first inequality from (a0) is easily seen, since

t!(0) Gt(S) T= [0,l]\S Ç (0,1]

and thus t°(0) 0 < t^O). Application of t to this inequality yields t!(0) < t2(0),
which completes the verification of (a0). Equation (ß0) is trivial in accordance with (1).
Moreover we have

min(T) min(r(S)) r(min(S)) t(0)
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hence

[O,t(O))ÇS
and, by application of t,

[r(0),r2(0))CT.
These inclusions imply that

Sn[0,r2(0)) [0,r(0)) and T n [0,r2(0)) [r(0),r2(0)) (2)

We obtain (70) by

r(Sn[r2(0),l])=r(S\[0,r2(0)))
r(S\[0,r(0))) (by (2))

T\[t(0),t2(0))
T\[0,r2(0)) (by (2))

Tn[r2(0),l]
Finally, we have t2(0) g [0,1], since t2(0) belongs to the closure of T in accordance

with the second part of (2). If t2(0) would belong to T we would obtain

r(0)=r-1(r2(0))Gr-1(T) S

in contradiction to (2). This shows the inclusion t2 (0) G S and completes the verification
of (So).

The step from i — \ to f, i > 1, can similarly be done. We presuppose (/3f-i), (7f-i),
and (^-_i) instead of (1), i.e. we replace [0,1] by [t2î(0), l], S by S n [t2î(0), l], T by
T n [t2î(0), 1], and 0 by t2î(0). Then we infer (a,), (#•), (7,), and (<5,) by the same

arguments as above. This completes the proof of Fact 3.

[—-—i T I s iTI g iT)[ xx xx-—]
r°(0)=0 t!(0) t2(0) t3(0) r4(0) rs(0) T6(0) lim t*(0) 1

Fig. 2

According to Fact 3 we have an increasing sequence (t!(0))°^0 in [0,1] (cf. Fig. 2). The

limit x0 G [0,1] of this sequence is a fixed point of t, since

t(x0) t (.lim t!(0)) lim tî+1(0) x0

Hence we obtained a contradiction to Fact 1. This closes the considerations of the first
case.

Case 2: t is strictly decreasing.
We have t(0) g t(S) Ç [0,1]. According to Fact 1 we obtain 0 < t(0) < 1. Moreover
we have t(1) < t(0) < 1. Consequently, t(0) - id(0) > 0 and t(1) - id(l) < 0. Hence
there exists an x0 G (0,1) with t(x0) - x0 0 in contradiction to Fact 1. This completes
the proof of Proposition 1. D
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Proposition 2 Every closed ball in E1 is n-divisible w.r.t. 2T1 for all integers n G

{3,4,5,...}.

Proof. We consider the ball B [0,n], which can be decomposed into the n intervals
[0, l),[l,2),...,[n-2,n- l),[n-l,n] (cf. Fig. 3). The half-open intervals \j -l,j),
1 < j < n - 1, possess a partition

[;- 1,;) S;UTj with

s, {}- \)u U (0-1) + (-i)k -[2-^,2-1)
k=\

oo

T; [j ({j - l2} + (-i)k+1 ¦ (2-k-\2-k))
it=i

The remaining interval [n - 1, n] can be decomposed into

[n-l,n] S„UT„ with

" 5} + [-2-2*+\ -2-2*] U [2-2fc,2-2^])
OO

it=i

T« Ü ((" - 5} + (-2-2fc,-2-2fc-1) U (2-2fc-1,2-2fc))
it=i

We consider the following partition:

B Al UA2U ...UAn with

SjUT]+l if 1 < ; < n - 1

Sn U Tj if ; n

All the sets A\, A2, An-\ and the reflection —An of An have the following topo-
logical structure:

A Qq) U {C} U

The subsets C, form an increasing sequence of closed and bounded intervals of positive
length which tends to a point c G A. (Q)^ is a decreasing sequence of closed and
bounded intervals of positive length tending to c from above. Similarly, the sets Ô, are

open and bounded intervals of positive length which accumulate in 0 ^ A from below.
The sequence (Ö, )°2i consists of open and bounded intervals of positive length and tends

to 0 from above. All the intervals Q, Q, Ô;, and Ö; are pairwise separated by intervals
of positive length. Moreover the closed set consisting of {c} and the closed intervals is

separated by an interval from the open set formed by the open intervals, too.
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S2 T2 S2 T2 Sn Tn Tn Snï[i i i i 2 2 2 2 n n n n
[ XXX-XX ï ]()[](•)[]( ï—[ ]()[](•)[]()[ ]

0 I 1 | 2 rc-1 n-| n

Fie. 3

For any two given sets A and A' of that type there exists a strictly increasing homeo-

morphism t g 2T1 such that t(A) A'. One can define t piecewise linearly where Q
is mapped onto C{, C2 onto C2, c onto c', C2 onto Cj, Q onto C{, Ôi onto Ô{,
Ô2 onto 0'2, ¦ ¦ -, 0 onto o', O2 onto Öj, and Oi onto O[. This shows, that the sets

A,, 1 < i < n, are pairwise congruent via 2T1, and completes the proof of Proposition 2.

D

Let us remark that the above construction does not apply to the case n 2, since the two
sets S2 and T\ would not be separated by an interval. This would change the topological
structure of A2 S2 U T\.

Proposition 3 Every closed ball in E2 is 2-divisible w.r.t. 2T2.

Proof. We consider the rhomb B {(x,y) G E2 : \x\ < 1, \y\ < \(l - \x\)} instead of
a ball (cf. Fig. 4). B admits the decomposition B S U T where

S {(-1,0)} U US* and r {(l,0)}u(jTifc with
k=0 k=0

j {(x,y) eB :xe [-1 + 2-(-k+l\ -1 + 2-fc)} if A: is even,

t"|{(i,i/)eß:ie[l-2-t1l-2-(l+1')} if A: is odd,

j {(x,y) eB :xe [l -2~k, 1 -2-(fc+1>)} if A: is even,
* ^ \{(x,y)eB :xg [-1 + 2-{k+l\ -1 + 2"*)} if fc is odd.

(This partition is closely related to that given in the proof of Theorem 1.)

We define a homeomorphism t G 2T2 as a product t 95 o a where a is the reflection
on the vertical axis, i.e. <r(x,y) (—x,y). The structure of ip is more difficult: For all
the sets aiS^), which are of the form alS^) {(x,y) G B : x G (fljt,bjt]}, we consider

a covering square Rfc [a* - ^, &fc + ^] x [-^*f^, ^^)]. The closed

squares i?jt are mutually separated. The restriction cp\nk to Rt is a homeomorphism of
Rk onto itserf which leaves the boundary bd(i?jt) pointwise fixed and maps a(Sk) onto

00
Tfc. Besides that, we demand the remaining points (x,y) £ [j Rk to be fixed under (p. It

k=0
is easily seen that the piecewise definitions of <p fit together and form a homeomorphism
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S

a

a(S)

i a(5i)

Ri

T
Fig. 4

Ro

Ro

o
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Consequently, we obtain r ip o a g ST2 such that

t(S) ^oa( {(-1,0)} u{JSk
V k=0

oo

T

This completes the verification of Proposition 3. D

Proposition 4 Let d G {2,3,4,...} and n G {2,3,4,...} such that a closed ball in
~Kd~l is n-divisible w.r.t. 3'ä~1. Then every closed ball in Ed is n-divisible w.r.t. 2Td.

Proof. According to the assumption there exist a closed ball Bd~l G ~Ed~l, a decomposition

Bd-1 Sd~l U S^1 U U S^1 of Bd~\ and mappings t^^1 from ST«'-1 such

that t^^1 (Sf-1) Sf~\ 1 < i < n. Let Bd be a closed ball in Ed. We assume that
Bd Bd~l x [0,1] without loss of generality. Of course, Bd admits the decomposition
Bd (Sf-1 x [0,1]) U (S^1 x [0,1]) U U (Sdn-1 x [0,1]). Moreover, if the identity

on E1 is denoted by l, then the mappings t( t( l x i : Ed —>¦ Ed, 1 < i < n, belong
to 2Td and fulfil t? (Sf^1 x [0,1]) Sf~l x [0,1]. This shows the n-divisibility of Bd

w.r.t. 2Td. D

Propositions 1-4 amount to the following theorem:

Theorem 2 Let d G {1,2,3,...}, n G {2,3,4,...}, and let B be a closed ball in Ed.

Then B is n-divisible w.r.t. STd ifand only if (d, n) ^ (1,2). D

3 Partitioning non-closed balls

Proposition 5 Let S be a subset of~Ed, x0 G bd(S) \S a point such that S U {x0} fa

star-shaped w.r.t. Xo, n G {2, 3,4,...}, and S the dilatation with center Xo and factor
C > 1. Then there exists a decomposition

S Si U S2 U U Sn

of S such that

S^S1-1^) for i=l,2,...,n.
Proof. It is sufficient to show the assertion for all intersections

of S with open hairlines H starting in x0, since 6 maps H onto itself. We assume that
SH Ç E1, Xo 0, and H (0, oo) without loss of generality. SH is a bounded or an
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unbounded interval, i.e. SH 0, SH (0,b), SH (0,b], or SH (0,oo). If SH is

empty then there is nothing to show. Otherwise we consider the decomposition

with

U [b ¦ cnk+'-\b ¦ cnk+1) ifSH (O,fr),
— OO

SH J (fc • C"k+i-1, & • cnk+l] if SH (0, b]
—OO

U (c"^1'"1, cnk+l] if SH (0, oo)
—oo

A simple calculation shows that

cH _ f-1 cH «-I ("rfJ1!
J^ — t- j_> 2 — ^ \ 1 /

for i 1,2,..., n and completes the proof. D

Of course, for every strictly convex set S Ç Ed, which is not closed, there exists a point
Xo G bd(S) \ S as assumed in Proposition 5. Hence we obtain:

Corollary Every non-closed strictly convex set in Ed is n-divisible w.r.t. the group Xd

of all similarities ofEd for n 2,3,4,.... D

In the context of the present paper we formulate the following more special implication
concerning the divisibility of non-closed balls w.r.t. 2Td:

Theorem 3 Let d G {1,2,3,...}, n G {2,3,4,...}, and let B be a non-closed ball in
Ed. Then B is n-divisible w.r.t. ÏÏd. D

Let us close this paper with a remark on the structure of the decompositions of closed or
open balls in E1 considered in the proofs of Proposition 2 and Proposition 5. The balls

are partitioned into subsets mutually congruent via 2T1, any of the subsets consisting of
countably many connected components. The partitions given in this paper are optimal
in the following sense:

Proposition 6 Let B S\ U S2 U U Sn be a decomposition of a closed or open ball
B G E1 into n > 2 subsets which are pairwise congruent via 2T1. Then all the sets S,

consist of infinitely many connected components.

Proof. We assume the contrary, i.e. the boundaries bd(S,) of the subsets S, w.r.t. the

topology of E1 are finite. Then the interiors of the sets S, consist of k open intervals,
where k > 1 does not depend on i according to the congruence of the sets S, via 2T1.

Hence the ball B is decomposed into nk open intervals - the components of int(Sf),
1 < i < n, - and those points of the boundaries of the sets S, which belong to B. The

nk intervals are separated by nk - 1 inner points of B. Consequently,

j mi <i Atr \ ^ r,\ l nk + 1 if B is a closed interval, ,„,card (bd(Sj) nß < ,,,-„• • (3)
\ <-J v v ' ') I nk - 1 if B is an open interval. v '
v=i / v
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On the other hand we have

n n

U(bd(Sî)nB) U(bd(Sî)nSî)

where the right union is disjoint. All the sets bd(S,) n S,, 1 < i < n, are of the same

cardinality /, since the sets S, are congruent via 2T1. Thus we obtain

card(|J(bd(S!)nB) j =nl
\i=i J

This contradiction to formula (3) proves Proposition 6. D

The author thanks E. Hertel for confronting him with the problem and for encouraging
him to write this paper.
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