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Wie der Beweis der Vermutung von Baudet
gefunden wurde

Bartel Leendert van der Waerden

Artin, Schreier und ich gingen im Jahr 1926 &fter im Curiohaus in Hamburg essen und
unterhielten uns dabei iiber mathematische und andere Fragen. Einmal erzéhlte ich ihnen
iber eine Vermutung des friih verstorbenen hollindischen Mathematikers Baudet. Sie
lautete:

Teilt man die Gesamtheit der natiirlichen Zahlen 1,23, .. . in zwei Klassen ein, so enthdlt
mindestens eine dieser Klassen eine arithmetische Progression von | Gliedern, wobei |
eine beliebig grosse vorgegebene Zahl ist.

Nach dem Essen gingen wir in Artins Zimmer im damaligen Mathematischen Institut an
der Rothenbaumchaussee und iiberlegten uns gemeinsam vor der Wandtafel an Hand von
kleinen Kreidezeichnungen wie man wohl die Vermutung beweisen kdnnte. Wir stellten
allerlei Uberlegungen an und hatten ein paar Einfille, die der Uberlegung eine neue
Richtung gaben und schliesslich zur Lésung fiihrten.

Die Psychologie des Findens in der Mathematik ist eine schwierige Sache. Die meisten
Mathematiker publizieren nur ihre Endergebnisse mit moglichst kurzen Beweisen, aber
sie verraten uns nicht, wie sie darauf gekommen sind. Auch erinnern sie sich nachtriglich

%) Als Vortrag gehalten in der Universitit Hamburg auf einer Gedenkfeier anlisslich des Todestages von
Emil Artin am 19. Dezember 1963.
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nicht an alles, was ihnen durch den Kopf gegangen ist. Es fallt uns schwer, die eigenen
vorbereitenden Uberlegungen so wiederzugeben, dass auch andere sic verstehen. Die
kurzen Andeutungen, in denen man mit sich selbst spricht, lassen sich ohne Prizisie-
rung und Erlduterung nicht mitteilen, und durch die Prizisierung werden die Gedanken
gedndert.

Im Fall unseres Gespriches iiber die Vermutung von Baudet liegen aber die Bedingungen
fiir die Wiedergabe viel giinstiger. Denn alle Gedanken, die sich bei uns bildeten, wurden
sofort ausgesprochen und durch Zeichnungen an der Tafel verdeutlicht. Wir veranschau-
lichten die Zahlen 1,2,3,... der beiden Klassen durch dquidistante Kreidestriche auf
zwei parallelen Geraden. Was ausgesprochen und gezeichnet wird, kann man viel besser
festhalten und reproduzieren als blosse Gedanken. Also ein idealer Fall, um den Prozess
des Findens zu analysieren, soweit er sich im bewussten Denken abspielt, und die be-
wussten Uberlegungen abzugrenzen gegen die mysteriosen “Einfille”, die uns manchmal
plétzlich ins Bewusstsein treten.

Wenn nur eine zweigliedrige Progression verlangt wird (I = 2), so braucht man nicht
alle Zahlen 1,2,... zu betrachten, sondern es geniigt, sich auf die Zahlen 1,2,3 zu
beschrinken. Wenn diese auf zwei Klassen verteilt werden, so miissen zwei zur gleichen
Klasse gehoren. Das ist klar.

Auch im Fall | = 3 braucht man nicht alle Zahlen zu betrachten, sondern man kann sich
auf die Zahlen von 1 bis 9 beschrinken. Teilt man diese in zwei Klassen ein, so liegt
in einer dieser Klassen stets eine dreigliedrige arithmetische Progression a,a+ b,a + 2b,
wie man durch Aufzihlen der moglichen Fille leicht zeigt. Die Zahlen von 1 bis 8 kann
man wohl in zwei Klassen teilen, ohne dass man eine dreigliedrige Progression erhilt,
z.B. so: 1,2, 5, 6 in der ersten, 3, 4, 7, 8 in der zweiten Klasse. Die Zahl 9 gerit dann
aber in eine Zwangslage. Steckt man sie in die erste Klasse, so hat man die Progression
159, andernfalls die Progression 789. Ahnlich in allen anderen Fillen. Das hatte ich mir
schon vor der Zusammenkunft mit Artin und Schreier iiberlegt.

Schreier stellte nun die Frage, ob dic Vermutung von Baudet ganz allgemein (wie in
den Fillen [ = 2 und [ = 3) sich dahin verschirfen liesse, dass immer nur ein endlicher
Abschnitt der Zahlenreihe in Betracht gezogen werden muss, mit anderen Worten, ob es
eine Schranke N = N(I) gibt, so dass bereits bei der Einteilung der Zahlen von 1 bis N in
zwei Klassen eine von diesen Klassen eine [-gliedrige Progression enthilt. Die Frage war
nicht schwer zu beantworten. Wenn die Vermutung von Baudet iiberhaupt richtig ist, so
iiberlegten wir uns, dann gibt es auch ein solches N. Eine bekannte mengentheoretische
Sohlussweise, das “Diagonalverfahren”, fithrt zu diesem Ergebnis. Man schliesst etwa
SO:

Gesetzt, es gibe kein solches N, dann wiirde es fiir jedes N eine Klasseneinteilung Ey
der Zahlen von 1 bis N geben, in der keine Klasse eine [-gliedrige Progression enthalt.
Es gibe also eine Folge E;, E,,... von solchen Klasseneinteilungen. Die Zahl 1 liegt
bei allen diesen Einteilungen in einer der beiden Klassen. Also muss sie unendlich oft in
der gleichen (ersten oder zweiten) Klasse liegen. Es gibt also eine unendliche Teilfolge
E{,Ej,.... von Klasseneinteilungen, bei denen die Zahl 1 immer in der gleichen, etwa
in der i;-ten Klasse liegt.
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In den Einteilungen ES, Ef, . .. hat auch die Zahl 2 ihren Platz in der ersten oder zweiten
Klasse. Also muss es eine unendliche Teilfolge EY, EY, ... geben, bei denen 2 immer in
der gleichen, etwa in der i,-ten Klasse liegt.

So weiter schliessend, findet man fiir jedes 7 eine Teilfolge E”, Efﬁl)j ... von Klas-

seneinteilungen, in denen die Zahlen 1,2,...,n alle in den gleichen Klassen liegen,
namlich 1 in der i;-ten, 2 in der i,-ten, ..., n in der i,-ten.

Nun bildet man eine “Diagonal-Klasseneinteilung” E der natiirlichen Zahlen 1,2, ...,
bei der 1 in der i;-ten, 2 in der i,-ten Klasse liegt, usw. Die Zahl #n liegt bei dieser
Klasseneinteilung in der gleichen Klasse wie in der Einteilung E,@. Daher der Name
Diagonalverfahren.

In der Einteilung E wiirde es unter den gemachten Annahmen keine /-gliedrige arithme-
tische Progression geben, deren Glieder alle derselben Klasse angehdren. Wenn es sie
gibe, wiirde nimlich eine der Einteilungen Efl’” bereits eine solche Progression enthalten,
entgegen der gemachten Annahme. So kommen wir zu einem Widerspruch, also muss
die gemachte Annahme falsch gewesen sein.

Auf Grund dieser Bemerkung von Schreier versuchten wir nun, den Satz in der ver-
schirften Form mit der Schranke N(I) zu beweisen. Da die Fille [ = 2 und [ = 3 schon
erledigt waren, so konnten wir versuchen, einen Schluss von [ — 1 auf [ durchzufiihren.
Artin bemerkte dazu, dass die finite Verschirfung fiir die vollstindige Induktion nur von
Vorteil sein kann. Wenn man fiir / — 1 die Existenz einer Schranke N (! — 1) voraussetzen
kann, so hat man mehr Moglichkeiten, fir [ etwas zu beweisen.

Artin machte sodann die Bemerkung, dass die Vermutung, wenn sie fiir zwei Klassen
allgemein richtig ist, auch fir k Klassen gelten muss. Es sei zum Beispicl k = 4. Dann
kann man die Klassen zunichst zu zwei und zwei zusammennehmen. So erhélt man eine
grobere Einteilung in nur zwei Klassen. In einer dieser beiden muss eine arithmetische
Progression von N (1) Gliedern liegen. Die Glieder dieser Progression kann man von [ bis
N(I) numerieren. Diese Nummern erscheinen nun wieder in zwei Klassen der feineren
Klasseneinteilung eingeteilt, und nach dem Satz, den wir fiir zwei Klassen als richtig
angenommen haben, muss in einer dieser Klassen eine Progression von I Gliedern liegen.

So kommt man von zwei auf vier Klassen, genau so von vier auf acht Klassen usw. Die
Klassenzahl kann also beliebig gross sein.

Wir versuchten nun, den Satz durch vollstindige Induktion nach [ zu beweisen. Fiir [ = 2
hat man das sogenannte “Schubfachprinzip”: Wenn k + 1 Dinge auf k Schubficher
verteilt werden, so muss eines der Facher mindestens zwei Dinge enthalten. Ein sehr
niitzliches Prinzip, das Dirichlet in der Zahlentheorie mit Erfolg angewandt hat.

Artin erwartete — und der Erfolg hat ihm recht gegeben —, dass die Verallgemeinerung
von zwei auf k Klassen fiir die Induktion von Vorteil sein wiirde. Man kann namlich,
so meinte er, nun versuchen, die Vermutung fiir ein beliebiges k und fiir dic Lange [ zu
beweisen, unter der Induktionsvoraussetzung, dass sie fiir alle k und fiir die Lange [ — 1
schon bewiesen sei.

Diese zunichst etwas unbestimmte Uberlegung wurde im weiteren Verlauf der Dis-
kussion, in der Hauptsache durch Artin, folgendermassen verschirft. Es soll etwa die
Vermutung fiir zwei Klassen und fiir Progressionen der Linge [ bewiesen werden. Sind
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alle ganzen Zahlen in zwei Klassen eingeteilt, so sind zum Beispiel die Tripel aufein-
anderfolgender Zahlen automatisch in acht Klassen eingeteilt, denn die drei Zahlen des
Tripels kénnen unabhéingig voneinander in Klasse 1 oder 2 liegen, und das gibt 2° = 8
Maglichkeiten. Man kann nun diese Zahlentripel durchnumerieren, etwa indem man je-
weils die Anfangszahl des Tripels als Nummer nimmt, so dass Tripel Nummer 7 aus den
Zahlen n, n + 1 und 7 -+ 2 besteht. Die Nummern erscheinen dann in acht Klassen ein-
geteilt, und auf diese acht Klassen kann man unbedenklich die Induktionsvoraussetzung
anwenden.

Dasselbe gilt, wenn man “Blocke” von mehr als drei aufeinanderfolgenden Zahlen be-
trachtet. Nach der Induktionsvoraussetzung gibt es unter geniigend vielen aufeinander-
folgenden Blocken eine (I — 1)-gliedrige arithmetische Progression von Blocken. Das
“Muster” der Verteilung der Zahlen auf die Klassen, das wir in einem dieser Blocke
vorfinden, wiederholt sich genau so in allen [ — 1 Blocken der Progression. Vielleicht, so
meinte Artin, geben diese sich wiederholenden Muster uns die Mittel zur Konstruktion
einer [-gliedrigen Folge. Ausserdem enthalten die Blocke selbst, wenn sie geniigend lang
sind, (I — 1)-gliedrige arithmetische Progressionen von Zahlen einer Klasse. Auch diese
konnen zur Konstruktion benutzt werden.

Wir versuchten nun, da im Fall [ = 2 der Satz sicher richtig ist, von [ =2 auf [ = 3 zu
schliessen, und zwar nahmen wir zuniichst zwei Klassen an (ohne Riicksicht darauf, dass
dieser Fall schon vorher durch direkte Aufzahlung aller Fille erledigt war). Wir zeichne-
ten die Zahlen als kleine Querstriche im waagrechten Abstand 1 auf zwei waagrechten
Linien, die die beiden Klassen darstellen sollten.

Unter je drei aufeinanderfolgenden Zahlen muss es nach der Induktionsvoraussetzung,
das heisst in diesem Fall nach dem Schubfachprinzip zwei geben, die derselben Klasse
angehoren, etwa der ersten. Setzen wir nun die arithmetische Progression, die mit diesen
beiden Strichen anfiangt, fort, so kdnnen wir annchmen, dass der dritte Strich nicht mehr
der ersten Klasse angehort (sonst wiren wir ja schon fertig), sondern der zweiten. Somit
ergibt sich das Bild der Figur 1. Soweit wurden alle Uberlegungen von uns gemeinsam
angestellt. Ich iiberlegte mir nun weiter folgendes.

Fig. 1

In jedem Block von fiinf aufeinanderfolgenden Zahlen muss ein Muster von der Art der
Figur 1 vorkommen, denn unter den ersten drei Zahlen des Blockes muss es schon zwei
geben, die derselben Klasse angehéren und diese zweigliedrige Progression kann dann
innerhalb des Blockes zu einer dreigliedrigen Progression fortgesetzt werden.
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Solche Muster wicderholen sich. Denn die Blocke von fiinf Zahlen sind ja in 2° = 32
Klassen eingeteilt, und unter 33 aufeinanderfolgenden Blocken) muss es nach dem
Schubfachprinzip mindestens zwei gleiche geben. So ergibt sich das Bild der Figur 2,
wobei der waagrechte Abstand zwischen dem Anfang des ersten und des zweiten Blockes
hochstens 32 betragt.

Fig. 2

Das gibt aber immer noch keine dreigliedrige Progression. Um eine solche zu erhalten,
habe ich den zweiten Block von fiinf Zahlen noch einmal um dieselbe Strecke verschoben
und die dreigliedrige Progression betrachtet, die aus den angestrichenen Zahlen durch
diese Verschicbung entsteht.

Die dritte Zahl dieser verschobenen Progression hat nun keinen Ausweg mehr. Entweder
sie gehort in die erste Klasse: dann gibt es dort die arithmetische Progression 4, a, 4,
oder sie gehort in dic zweite Klasse: dann gibt es die Progression b, b, b in der zweiten
Klasse (Fig. 3).

Fig. 3

Dieser Beweis galt zunichst nur fiir den bereits frither erledigten Fall k = 2, [ = 3.
Trotzdem hatte ich, als ich ihn vorbrachte, das sichere Gefiihl, nun den allgemeinen
Beweis in Hinden zu haben.

Artin und Schreier glaubten es noch nicht. Da fiihrte ich ihnen den analogen Beweis fiir
den niichst hoheren Fall k = 3, [ = 3 vor.

In diesem Fall kann man zunichst genau dieselbe Uberlegung anstellen (mit Blocken zu
sieben statt zu fiinf und mit Abstand 37 statt 2°), aber nun hat die dritte Zahl im dritten
Block wohl einen Ausweg. Sie kann in die dritte Klasse hinein, und man erhilt das in
Figur 4 dargestellte Muster.

In jedem grossen Block von 37 + 37 + 7 = h aufeinanderfolgenden Zahlen gibt es
ein solches Muster. Nun zerfallen die grossen Blocke in 3" Klassen. Unter je 3k + 1

1) “Aufeinanderfolgend” soll heissen: jeweils um Eins verschoben.



144 Elem. Math. 53 (1998)

Fig. 4

Fig. 5

aufeinanderfolgenden grossen Blocken gibt es nach dem Schubfachprinzip zwei gleiche.
In diese zeichne man die kleinen Blocke hinein, und man erhilt das Bild der Figur 5.

Jetzt verschiebe man den grossen Block, und man erhilt dann an der Stelle der verscho-
benen Zahl ¢ entweder eine Progression a, a, a in der ersten Klasse oder eine Progression
b, b, b in der zweiten oder ¢, ¢, ¢ in der dritten (Figur 6).

o

Fig. 6

Jetzt war es allen Beteiligten Klar, dass fiir [ = 3 das Beweisverfahren sich auf belicbige
k ubertragen lisst. Aber Artin und Schreier wollten nun noch den Fall [ = 4 sehen.

Ich nahm zunichst wieder zwei Klassen an. Nach dem bereits Bewiesenen gibt es unter
geniigend vielen, sagen wir n aufeinanderfolgenden Zahlen eine dreigliedrige Progres-
sion, deren Terme alle einer Klasse angehdren. Setzt man die Progression fort, so wird
der vierte Term der anderen Klasse angehdren (sonst wiren wir ja schon fertig). Alle
vier Zahlen gehoren einem Block von ¢ aufeinanderfolgenden Zahlen an, wobei ¢ das
grosste Ganze aus

n—1

n+ > (1)

ist. In jedem solchen Block kommt also das in Figur 7 abgebildete Muster vor.
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Fig. 7

Fig. 8

Die Blocke von der Lange g sind in 28 Klassen eingeteilt. Unter geniigend vielen, sagen
wir 7n(3,28) aufeinanderfolgenden Blocken gibt es also drei Blocke in arithmetischer
Progression, die derselben Klasse angehoren. Das Muster im ersten Block wiederholt
sich genau so im zweiten und dritten (Figur 8).

Fiigt man nun noch einen vierten Block hinzu, so erhilt man wieder zwangsliufig eine
arithmetische Progression 4, a, a, a oder b, b, b, b.

Nachdem ich das ausgefiihrt hatte, war es uns allen dreien klar, dass es genau so weiter-
geht, dass man auch fiir beliebige [ nacheinander alle Félle k = 2,3, ... erledigen und
so den Schluss von [ — 1 auf [ allgemein vollzichen kann.

Der Beweis, den ich im “Nieuw Archief voor Wiskunde” 15, 212 (1927) dargestellt
habe, ist die genaue Ausfithrung des hier anschaulich erlauterten Gedankenganges. Dem
vorhin gebildeten Ausdruck (1), der allgemein so lautet:

n-—1
n-+ [—l — 2} (2)
entspricht im “Nieuw Archief” beim Schluss von [ — 1 auf / der Ausdruck
1 _
e  k 5

Der Beweis, den Chintschin in seinem sehr schonen Biichlein? bringt, ist nicht wesent-
lich von meinem Beweis verschieden; nur nimmt Chintchin statt (2) einfach 2n. Weiter
betrachtet er statt aufeinanderfolgender Blocke solche, die nebeneinanderstehen und sich

2) A.J. Chintchin: Drei Perlen der Zahlentheorie (Russisch 1947, Deutsch 1951, Akademie-Verlag, Berlin;
Englisch 1952). Einen kiirzeren Beweis eines allgemeineren Satzes gab E. Witt in: Mathematische Nach-
richten 6, S. 201 (1952).
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beriihren, wie (a,...,a+b—1) und (a+0b,...,a+2b— 1), wodurch die Abschitzungen
etwas grober werden.

Ich will nun versuchen, die von Artin, Schreier und mir angestellten Uberlegungen etwas
I}éiher zu analysieren und zu untersuchen, an welchen Stellen neue Einfille den bewussten
Uberlegungen eine neue Richtung gaben.

Am Anfang stand ein Einfall von Schreier. Er fragte: Wire es nicht méglich, der Vermu-
tung von Baudet ¢ine finite Verschiarfung zu geben, indem man sich auf einen endlichen
Abschnitt der Zahlenreihe beschrinkt? Die Frage lag auf der Hand, denn in den Beispie-
len ! =2 und [ = 3 war die finite Verschiarfung schon gegeben. Der Beweis auf Grund
des Diagonalverfahrens, der oben wiedergegeben wurde, war fiir jeden von uns dreien
eine reine Routine-Angelegenheit, da wir alle drei mit diesem Verfahren vertraut waren.
Aber der Einfall von Schreier bestimmte die Richtung, die unsere Uberlegungen jetzt
nahmen.

Dass wir eine Induktion nach [ versuchen wollten, war nur natiirlich. Dass die finite
Verschirfung die Induktion erleichtern wiirde, war zu erwarten.

Der nichste wesentliche Schritt wurde von Artin gemacht. Er hatte den Einfall, den Satz
von 2 auf k Klassen zu verallgemeinern. Veranlasst wurde dieser Einfall wahrscheinlich
durch die Uberlegung, dass im Fall einer zweigliedrigen Progression die Verallgemeine-
rung auf k Klassen evident richtig ist (Schubfachprinzip).

Der oben dargestellte Beweis, dass die Vermutung von Baudet, wenn sie fiir zwei Klassen
richtig ist, auch fir k Klassen richtig sein muss, stammt von Artin. In diesem Beweis
steckt eine Idee, die nachher in meinem Beweis der verscharften Vermutung von Baudet
eine zentrale Rolle spielen sollte, nimlich: Wenn die Vermutung fiir den Abschnitt von
1 bis N richtig ist, so ist sie auch fiir jede N-gliedrige arithmetische Progression richtig,
da man die Glieder dieser Progression ja von 1 bis N numerieren kann.

Bei einem Schluss von [ — 1 auf [ ist es immer vorteilhaft, wenn man fiir [ — 1 moglichst
viel voraussetzen kann und fir [ moglichst wenig zu beweisen sich vornimmt. Im Sinne
dieser Uberlegung nahmen wir fiir [ — 1 die Richtigkeit der Vermutung, also die Existenz
von N(I — 1, k) fiir alle k an und versuchten zunéchst fiir den nichsthoheren Wert |
und fiir ein einziges k, zB. fiur k = 2, die Existenz von N(I, k) zu beweisen. Um die
Gedanken zu bestimmen, nahmen wir zunichst [ = 3 an, weil hier der genaue Wert

N(I-1k)=N@2,k)=k+1

nach dem Schubfachprinzip bekannt war. Damit war der Plan des Beweises vorgezeich-
net.

Wir betrachteten also zunichst den Fall k = 2, [ = 3. Durch direkte Aufzihlung aller
Moglichkeiten war dieser Fall zwar frither schon erledigt, aber wir suchten einen Be-
weisgedanken, der sich vielleicht auf hohere Fille tibertragen lassen wiirde. “Immer mit
den ganz einfachen Beispielen anfangen”, pflegte Hilbert zu sagen.

Der nichste entscheidende Einfall stammte von Artin. Wir kdnnen die Induktionsvoraus-
setzung, so sagte Artin, nicht nur auf Zahlen, sondern auch auf Blocke von aufeinander-
folgenden Zahlen anwenden; denn auch diese sind in Klassen eingeteilt. Die Anzahl der



Elem. Math. 53 (1998) 147

Klassen ist zwar grosser (k™ fiir Blocke von 7 aufeinanderfolgenden Zahlen), aber das
schadet nichts, da wir die Induktionsvoraussetzung ja fiir alle k zur Verfiigung haben.

Durch den Einfall von Artin war die Wiederholbarkeit eines ganzen Blockmusters gesi-
chert und wir konnten die Figur 2 zeichnen, die im ersten Block zwei Zahlen der ersten
und eine der zweiten Klasse in arithmetischer Progression zeigt, im zweiten Block die
entsprechenden Zahlen in denselben Klassen.

Die Figur 2 zeigt immer noch keine dreigliedrige Progression in einer Klasse. Wie konnte
man sie erhalten? Wir schauten die Striche auf der Tafel einige Zeit schweigend an. Auf
einmal hatte ich einen Einfall, begleitet von dem sicheren Gefiihl: Das ist die Losung. Ich
verschob den zweiten Block der Fig. 2 noch einmal um dieselbe Strecke und erhielt so
die Figur 3, in der die dritte Zahl des dritten Blockes in eine Zwangslage gerit, dhnlich
wie die Zahl 9 in der fritheren Uberlegung in eine Zwangslage geraten war.

Der Einfall lag eigentlich ganz nahe. Die einzige Zahl in Fig. 3, die sowohl mit zwei
Zahlen a, a der ersten Klasse als mit zwei Zahlen b, b der zweiten Klasse je eine
arithmetische Progression a, 4, a oder b, b, b bildet, ist dic dort angekreuzte dritte Zahl
des dritten Blockes.

Das Bemerkenswerteste an diesem FEinfall war das Gefiihl der vollkommenen Sicher-
heit, das ihn begleitete. Das gleiche Gefiihl der Sicherheit hatte auch Poincaré als ihm
beim Einsteigen in einen Omnibus plétzlich eine mathematische Idee einfiel, “ohne dass
irgend etwas in seinen fritheren Gedanken diese Idee vorbereitet hatte™). Ich glaube,
viele Mathematiker haben dhnliche Erinnerungen an plétzliche Einfalle, deren Herkunft
sie nicht bestimmen konnen. Oft sind diese Einfélle von einem Gefiihl der Sicherheit
begleitet, das allerdings auch triigen kann.

Ich hatte also in diesem Fall die intuitive Uberzeugung, dass genau dieselbe Beweisme-
thode, die ich im Fall k = 2, [ = 3 an der Tafel vorfiihrte, auch in allen hoheren Fillen
zum Ziel fithren wiirde.

Wie diese Uberzeugung sich im Unbewussten bilden konnte, das weiss ich nicht. Ich
glaube aber, erkldren zu kdnnen, warum Artin und Schreier nicht so sicher waren, auch
nachdem ich ihnen den Fall k = 2, [ = 3 erklart hatte. Sic sahen nur das Ergebnis: das
Vorhandensein der Progression a, 4, a in der ersten oder b, b, b in der zweiten Klasse.
Ich aber hatte eine Methode gefunden, diese Progressionen zu bilden, und ich hatte das
bestimmte Gefiihl, dass diese Methode auch auf die hoheren Fille anwendbar sein wiirde.

Es ist, wie wenn einer Apfel von einem Baum pfliickt. Wenn man einen Apfel gepfliickt
hat und ein anderer hingt etwas hoher, so kann es sein, dass man selbst weiss, dass
man mit etwas mehr Anstrengung den andern Apfel auch noch erreichen kann, wihrend
ein Zuschauer, der nur sicht, dass man den einen Apfel gerade erreicht hat, dariiber im
Zweifel ist. Man hat eben nicht nur den Apfel, sondern auch das Gefiihl der Bewegungen,
die man ausgefiihrt hat, um ihn zu pfliicken.

Das Gefiihl, dass eine Beweismethode noch weiter reicht, ist manchmal triigerisch. Oft
stellt sich nachher heraus, dass in den hoheren Fillen eine neue Schwierigkeit auftaucht.

3) J. Hadamard: Psychology of Invention in the Mathematical Field. Siche auch B.L. van der Waerden:
Einfall und Uberlegung; Birkhiuser, Basel 1954.
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Trotzdem gehdren solche Ahnungen iiber die Tragweite von Beweismethoden zu den
niitzlichsten Wegweisern bei der mathematischen Forschung.

Jetzt habe ich Ihnen alles erzihlt, was mir von jener denkwiirdigen Stunde, in der wir
drei gemeinsam eine “Perle” gefunden haben, noch in Erinnerung ist. Es war eine meiner
schonsten Stunden.

Van der Waerden publizierte den Beweis der Vermutung von Baudet erstmals in Nieuw
Arch. Wisk. 15 (1927), 212-216. In der Literatur wurde das Resultat in der Folge als
Satz von van der Waerden angesprochen. Nach Richard Rado (siche Math. Z. 36 (1933),
424-480; Proc. London Math. Soc. (II) 48 (1945), 122-160) und Walter Deuber (siche
Math. Z. 133 (1973), 109-123) lasst sich das Resultat in einen wesentlich allgemei-
neren Rahmen stellen. Rado betrachtete in seinen beiden Arbeiten homogene lineare
Gleichungssysteme (mit rationalen Koeffizienten), welche die Eigenschaft haben, dass
bei jeder Zerlegung der natiirlichen Zahlen in endlich viele Klassen in mindestens ei-
ner Klasse eine Losung existiert. Solche Gleichungssysteme, die er partitionsregular
nannte, konnte Rado auf erstaunlich einfache Weise charakterisieren und zeigen, dass
sich die Aussage des Satzes von van der Waerden auf die Losbarkeit eines parti-
tionsreguldren Gleichungssystems zuriickfithren ldsst. Aus Rado’s Charakterisierung
partitionsregularer Gleichungssysteme ergibt sich dariiberhinaus das folgende iiberra-
schende Resultat: Bei einer Zerlegung der natiirlichen Zahlen in endlich viele Klassen
gibt es mindestens eine Klasse, in der jedes partitionsregulire Gleichungssystem I6sbar
ist. Walter Deuber hat in seiner Dissertation unter der Leitung von Ernst Specker eine
daran anschliessende Vermutung von Rado beweisen konnen: Es sei S eine Teilmenge
der natiirlichen Zahlen, welche die Eigenschaft hat, dass in ihr jedes partitionsregulére
Gleichungssystem losbar ist. Zerlegt man S in endlich viele Klassen, so ist in minde-
stens einer dieser Klassen wiederum jedes partitionsreguliare Gleichungssystem losbar.
ust
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