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Wie der Beweis der Vermutung von Baudet
gefunden wurde

Bartel Leendert van der Waerden

Artin, Schreier und ich gingen im Jahr 1926 öfter im Curiohaus in Hamburg essen und
unterhielten uns dabei über mathematische und andere Fragen. Einmal erzählte ich ihnen
über eine Vermutung des früh verstorbenen holländischen Mathematikers Baudet. Sie

lautete:

Teilt man die Gesamtheit der natürlichen Zahlen 1,2,3,... in zwei Klassen ein, so enthält
mindestens eine dieser Klassen eine arithmetische Progression von l Gliedern, wobei l
eine beliebig grosse vorgegebene Zahl ist.

Nach dem Essen gingen wir in Artins Zimmer im damaligen Mathematischen Institut an
der Rothenbaumchaussee und überlegten uns gemeinsam vor der Wandtafel an Hand von
kleinen Kreidezeichnungen wie man wohl die Vermutung beweisen könnte. Wir stellten
allerlei Überlegungen an und hatten ein paar Einfälle, die der Überlegung eine neue

Richtung gaben und schliesslich zur Lösung führten.

Die Psychologie des Findens in der Mathematik ist eine schwierige Sache. Die meisten
Mathematiker publizieren nur ihre Endergebnisse mit möglichst kurzen Beweisen, aber
sie verraten uns nicht, wie sie darauf gekommen sind. Auch erinnern sie sich nachträglich

Wir drucken hier einen Beilrag von B.L. van der Wacrdcn ab. der in Abh. Math. Sem.

Univ. Hamb. 28 (1%5). 6-15 erschienen ist. Eine davon nur geringfügig abweichende
Version wurde bercils vorher in El. Malli. 9 (1954). 49 56 veröffentlicht und von dort in

ein Sainnicllicfl Einfall und Überlegung übernommen, das ] 954 beim Birkhäuser Verlag
erschienen ist (Nachdruck 1968. 1973). Wir haben uns hier für die erstgenannte Version
entschieden, weil sie offensichtlich das nur wenig übcrarbeilele Vorlragsnianuskripl
reproduziert. So lassen sich hier auch charakteristische Eigenheiten des Vorlragsstils
von van der Wacrdcn erkennen. - Wir danken der Schrifllcilung der Abhandlungen
der. Mathematischen Seminars der Universität Hamburg für die Erlaubnis zu diesem

Nachdruck //.\/

*) Als Vortrag gehalten in der Universität Hamburg auf einer Gedenkfeier anlässlich des Todestages von
Emil Artin am 19. Dezember 1963.
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nicht an alles, was ihnen durch den Kopf gegangen ist. Es fallt uns schwer, die eigenen
vorbereitenden Überlegungen so wiederzugeben, dass auch andere sie verstehen. Die
kurzen Andeutungen, in denen man mit sich selbst spricht, lassen sich ohne Präzisierung

und Erläuterung nicht mitteilen, und durch die Präzisierung werden die Gedanken

geändert.

Im Fall unseres Gespräches über die Vermutung von Baudet liegen aber die Bedingungen
für die Wiedergabe viel günstiger. Denn alle Gedanken, die sich bei uns bildeten, wurden
sofort ausgesprochen und durch Zeichnungen an der Tafel verdeutlicht. Wir veranschaulichten

die Zahlen 1,2,3,... der beiden Klassen durch äquidistante Kreidestriche auf
zwei parallelen Geraden. Was ausgesprochen und gezeichnet wird, kann man viel besser

festhalten und reproduzieren als blosse Gedanken. Also ein idealer Fall, um den Prozess

des Findens zu analysieren, soweit er sich im bewussten Denken abspielt, und die be-
wussten Überlegungen abzugrenzen gegen die mysteriösen "Einfälle", die uns manchmal

plötzlich ins Bewusstsein treten.

Wenn nur eine zweigliedrige Progression verlangt wird (/ 2), so braucht man nicht
alle Zahlen 1,2,... zu betrachten, sondern es genügt, sich auf die Zahlen 1,2,3 zu
beschränken. Wenn diese auf zwei Klassen verteilt werden, so müssen zwei zur gleichen
Klasse gehören. Das ist klar.

Auch im Fall / 3 braucht man nicht alle Zahlen zu betrachten, sondern man kann sich
auf die Zahlen von 1 bis 9 beschränken. Teilt man diese in zwei Klassen ein, so liegt
in einer dieser Klassen stets eine dreigliedrige arithmetische Progression a, a + b, a + 2b,

wie man durch Aufzählen der möglichen Fälle leicht zeigt. Die Zahlen von 1 bis 8 kann
man wohl in zwei Klassen teilen, ohne dass man eine dreigliedrige Progression erhält,
z.B. so: 1, 2, 5, 6 in der ersten, 3, 4, 7, 8 in der zweiten Klasse. Die Zahl 9 gerät dann
aber in eine Zwangslage. Steckt man sie in die erste Klasse, so hat man die Progression
159, andernfalls die Progression 789. Ähnlich in allen anderen Fällen. Das hatte ich mir
schon vor der Zusammenkunft mit Artin und Schreier überlegt.

Schreier stellte nun die Frage, ob die Vermutung von Baudet ganz allgemein (wie in
den Fällen / 2 und / 3) sich dahin verschärfen liesse, dass immer nur ein endlicher
Abschnitt der Zahlenreihe in Betracht gezogen werden muss, mit anderen Worten, ob es

eine Schranke N N(l) gibt, so dass bereits bei der Einteilung der Zahlen von 1 bis N in
zwei Klassen eine von diesen Klassen eine /-gliedrige Progression enthält. Die Frage war
nicht schwer zu beantworten. Wenn die Vermutung von Baudet überhaupt richtig ist, so

überlegten wir uns, dann gibt es auch ein solches N. Eine bekannte mengentheoretische
Sohlussweise, das "Diagonalverfahren", führt zu diesem Ergebnis. Man schliesst etwa
so:

Gesetzt, es gäbe kein solches N, dann würde es für jedes N eine Klasseneinteilung EN

der Zahlen von 1 bis N geben, in der keine Klasse eine /-gliedrige Progression enthält.
Es gäbe also eine Folge Ei, E2,... von solchen Klasseneinteilungen. Die Zahl 1 liegt
bei allen diesen Einteilungen in einer der beiden Klassen. Also muss sie unendlich oft in
der gleichen (ersten oder zweiten) Klasse liegen. Es gibt also eine unendliche Teilfolge
Ej'jEj, von Klasseneinteilungen, bei denen die Zahl 1 immer in der gleichen, etwa
in der ii-ten Klasse liegt.
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In den Einteilungen E'2, E^,... hat auch die Zahl 2 ihren Platz in der ersten oder zweiten
Klasse. Also muss es eine unendliche Teilfolge E", E",... geben, bei denen 2 immer in
der gleichen, etwa in der f2-ten Klasse liegt.

So weiter schliessend, findet man für jedes n eine Teilfolge E„ E„^ von
Klasseneinteilungen, in denen die Zahlen 1,2,... n alle in den gleichen Klassen liegen,
nämlich 1 in der fi-ten, 2 in der f2-ten, n in der f„-ten.

Nun bildet man eine "Diagonal-Klasseneinteilung" E der natürlichen Zahlen 1,2,...,
bei der 1 in der fi-ten, 2 in der f2-ten Klasse liegt, usw. Die Zahl n liegt bei dieser

Klasseneinteilung in der gleichen Klasse wie in der Einteilung E„ Daher der Name
Diagonalverfahren.

In der Einteilung E würde es unter den gemachten Annahmen keine Z-gliedrige arithmetische

Progression geben, deren Glieder alle derselben Klasse angehören. Wenn es sie

gäbe, würde nämlich eine der Einteilungen E„ bereits eine solche Progression enthalten,

entgegen der gemachten Annahme. So kommen wir zu einem Widerspruch, also muss
die gemachte Annahme falsch gewesen sein.

Auf Grund dieser Bemerkung von Schreier versuchten wir nun, den Satz in der
verschärften Form mit der Schranke N(l) zu beweisen. Da die Fälle / 2 und / 3 schon

erledigt waren, so konnten wir versuchen, einen Schluss von / - 1 auf / durchzuführen.
Artin bemerkte dazu, dass die finite Verschärfung für die vollständige Induktion nur von
Vorteil sein kann. Wenn man für / — 1 die Existenz einer Schranke N(l — 1) voraussetzen

kann, so hat man mehr Möglichkeiten, für / etwas zu beweisen.

Artin machte sodann die Bemerkung, dass die Vermutung, wenn sie für zwei Klassen

allgemein richtig ist, auch für k Klassen gelten muss. Es sei zum Beispiel k 4. Dann
kann man die Klassen zunächst zu zwei und zwei zusammennehmen. So erhält man eine

gröbere Einteilung in nur zwei Klassen. In einer dieser beiden muss eine arithmetische

Progression von N(l) Gliedern liegen. Die Glieder dieser Progression kann man von / bis

N(l) numerieren. Diese Nummern erscheinen nun wieder in zwei Klassen der feineren

Klasseneinteilung eingeteilt, und nach dem Satz, den wir für zwei Klassen als richtig
angenommen haben, muss in einer dieser Klassen eine Progression von / Gliedern liegen.

So kommt man von zwei auf vier Klassen, genau so von vier auf acht Klassen usw. Die
Klassenzahl kann also beliebig gross sein.

Wir versuchten nun, den Satz durch vollständige Induktion nach / zu beweisen. Für / 2

hat man das sogenannte "Schubfachprinzip": Wenn k + 1 Dinge auf k Schubfächer

verteilt werden, so muss eines der Fächer mindestens zwei Dinge enthalten. Ein sehr
nützliches Prinzip, das Dirichlet in der Zahlentheorie mit Erfolg angewandt hat.

Artin erwartete - und der Erfolg hat ihm recht gegeben -, dass die Verallgemeinerung
von zwei auf k Klassen für die Induktion von Vorteil sein würde. Man kann nämlich,
so meinte er, nun versuchen, die Vermutung für ein beliebiges k und für die Länge / zu
beweisen, unter der Induktionsvoraussetzung, dass sie für alle k und für die Länge / - 1

schon bewiesen sei.

Diese zunächst etwas unbestimmte Überlegung wurde im weiteren Verlauf der
Diskussion, in der Hauptsache durch Artin, folgendermassen verschärft. Es soll etwa die

Vermutung für zwei Klassen und für Progressionen der Länge / bewiesen werden. Sind
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alle ganzen Zahlen in zwei Klassen eingeteilt, so sind zum Beispiel die Tripel
aufeinanderfolgender Zahlen automatisch in acht Klassen eingeteilt, denn die drei Zahlen des

Tripeis können unabhängig voneinander in Klasse 1 oder 2 liegen, und das gibt 23 8

Möglichkeiten. Man kann nun diese Zahlentripel durchnumerieren, etwa indem man
jeweils die Anfangszahl des Tripeis als Nummer nimmt, so dass Tripel Nummer n aus den

Zahlen n,n + \ und n + 2 besteht. Die Nummern erscheinen dann in acht Klassen
eingeteilt, und auf diese acht Klassen kann man unbedenklich die Induktionsvoraussetzung
anwenden.

Dasselbe gilt, wenn man "Blöcke" von mehr als drei aufeinanderfolgenden Zahlen
betrachtet. Nach der Induktionsvoraussetzung gibt es unter genügend vielen aufeinanderfolgenden

Blöcken eine (/ — l)-gliedrige arithmetische Progression von Blöcken. Das

"Muster" der Verteilung der Zahlen auf die Klassen, das wir in einem dieser Blöcke
vorfinden, wiederholt sich genau so in allen / - 1 Blöcken der Progression. Vielleicht, so

meinte Artin, geben diese sich wiederholenden Muster uns die Mittel zur Konstruktion
einer Z-gliedrigen Folge. Ausserdem enthalten die Blöcke selbst, wenn sie genügend lang
sind, (/ - l)-gliedrige arithmetische Progressionen von Zahlen einer Klasse. Auch diese

können zur Konstruktion benutzt werden.

Wir versuchten nun, da im Fall / 2 der Satz sicher richtig ist, von / 2 auf / 3 zu
schliessen, und zwar nahmen wir zunächst zwei Klassen an (ohne Rücksicht darauf, dass

dieser Fall schon vorher durch direkte Aufzählung aller Fälle erledigt war). Wir zeichneten

die Zahlen als kleine Querstriche im waagrechten Abstand 1 auf zwei waagrechten
Linien, die die beiden Klassen darstellen sollten.

Unter je drei aufeinanderfolgenden Zahlen muss es nach der Induktionsvoraussetzung,
das heisst in diesem Fall nach dem Schubfachprinzip zwei geben, die derselben Klasse

angehören, etwa der ersten. Setzen wir nun die arithmetische Progression, die mit diesen
beiden Strichen anfängt, fort, so können wir annehmen, dass der dritte Strich nicht mehr
der ersten Klasse angehört (sonst wären wir ja schon fertig), sondern der zweiten. Somit

ergibt sich das Bild der Figur 1. Soweit wurden alle Überlegungen von uns gemeinsam
angestellt. Ich überlegte mir nun weiter folgendes.

Fig. 1

In jedem Block von fünf aufeinanderfolgenden Zahlen muss ein Muster von der Art der

Figur 1 vorkommen, denn unter den ersten drei Zahlen des Blockes muss es schon zwei
geben, die derselben Klasse angehören und diese zweigliedrige Progression kann dann
innerhalb des Blockes zu einer dreigliedrigen Progression fortgesetzt werden.
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Solche Muster wiederholen sich. Denn die Blöcke von fünf Zahlen sind ja in 25 32

Klassen eingeteilt, und unter 33 aufeinanderfolgenden Blöcken1 muss es nach dem

Schubfachprinzip mindestens zwei gleiche geben. So ergibt sich das Bild der Figur 2,

wobei der waagrechte Abstand zwischen dem Anfang des ersten und des zweiten Blockes
höchstens 32 beträgt.

Fig. 2

Das gibt aber immer noch keine dreigliedrige Progression. Um eine solche zu erhalten,
habe ich den zweiten Block von fünf Zahlen noch einmal um dieselbe Strecke verschoben
und die dreigliedrige Progression betrachtet, die aus den angestrichenen Zahlen durch
diese Verschiebung entsteht.

Die dritte Zahl dieser verschobenen Progression hat nun keinen Ausweg mehr. Entweder
sie gehört in die erste Klasse: dann gibt es dort die arithmetische Progression a, a, a,

oder sie gehört in die zweite Klasse: dann gibt es die Progression b, b, b in der zweiten
Klasse (Fig. 3).

a

b

a

b

a

b

Fig. 3

Dieser Beweis galt zunächst nur für den bereits früher erledigten Fall k 2, / 3.

Trotzdem hatte ich, als ich ihn vorbrachte, das sichere Gefühl, nun den allgemeinen
Beweis in Händen zu haben.

Artin und Schreier glaubten es noch nicht. Da führte ich ihnen den analogen Beweis für
den nächst höheren Fall k 3, / 3 vor.

In diesem Fall kann man zunächst genau dieselbe Überlegung anstellen (mit Blöcken zu
sieben statt zu fünf und mit Abstand 37 statt 25), aber nun hat die dritte Zahl im dritten
Block wohl einen Ausweg. Sie kann in die dritte Klasse hinein, und man erhält das in
Figur 4 dargestellte Muster.

In jedem grossen Block von 37 + 37 + 7 h aufeinanderfolgenden Zahlen gibt es

ein solches Muster. Nun zerfallen die grossen Blöcke in 3h Klassen. Unter je 3/z + 1

1) "Aufeinanderfolgend" soll heissen: jeweils um Eins verschoben.
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Fig. 4

Fig. 5

aufeinanderfolgenden grossen Blöcken gibt es nach dem Schubfachprinzip zwei gleiche.
In diese zeichne man die kleinen Blöcke hinein, und man erhält das Bild der Figur 5.

Jetzt verschiebe man den grossen Block, und man erhält dann an der Stelle der verschobenen

Zahl c entweder eine Progression a, a, a in der ersten Klasse oder eine Progression
b, b, b in der zweiten oder c, c, c in der dritten (Figur 6).

a

b

c

: a

b

c

h

Fig. 6

Jetzt war es allen Beteiligten klar, dass für / 3 das Beweisverfahren sich auf beliebige
k übertragen lässt. Aber Artin und Schreier wollten nun noch den Fall / 4 sehen.

Ich nahm zunächst wieder zwei Klassen an. Nach dem bereits Bewiesenen gibt es unter
genügend vielen, sagen wir n aufeinanderfolgenden Zahlen eine dreigliedrige Progression,

deren Terme alle einer Klasse angehören. Setzt man die Progression fort, so wird
der vierte Term der anderen Klasse angehören (sonst wären wir ja schon fertig). Alle
vier Zahlen gehören einem Block von g aufeinanderfolgenden Zahlen an, wobei g das

grösste Ganze aus

n+H-^ (1)

ist. In jedem solchen Block kommt also das in Figur 7 abgebildete Muster vor.
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Fig. 7

a

b

a

b

a

b

Fig. 8

Die Blöcke von der Länge g sind in 2^ Klassen eingeteilt. Unter genügend vielen, sagen
wir n(3,2£) aufeinanderfolgenden Blöcken gibt es also drei Blöcke in arithmetischer

Progression, die derselben Klasse angehören. Das Muster im ersten Block wiederholt
sich genau so im zweiten und dritten (Figur 8).

Fügt man nun noch einen vierten Block hinzu, so erhält man wieder zwangsläufig eine
arithmetische Progression a, a, a, a oder b, b, b, b.

Nachdem ich das ausgeführt hatte, war es uns allen dreien klar, dass es genau so weitergeht,

dass man auch für beliebige / nacheinander alle Fälle k =2,3,... erledigen und
so den Schluss von / — 1 auf / allgemein vollziehen kann.

Der Beweis, den ich im "Nieuw Archief voor Wiskunde" 15, 212 (1927) dargestellt
habe, ist die genaue Ausführung des hier anschaulich erläuterten Gedankenganges. Dem
vorhin gebildeten Ausdruck (1), der allgemein so lautet:

n-\
1-2

entspricht im "Nieuw Archief beim Schluss von / - 1 auf / der Ausdruck

n(l-l,k) 1-2

(2)

(3)

Der Beweis, den Chintschin in seinem sehr schönen Büchlein2) bringt, ist nicht wesentlich

von meinem Beweis verschieden; nur nimmt Chintchin statt (2) einfach In. Weiter
betrachtet er statt aufeinanderfolgender Blöcke solche, die nebeneinanderstehen und sich

2) A.J. Chintchin: Drei Perlen der Zahlentheorie (Russisch 1947; Deutsch 1951, Akademie-Verlag, Berlin;
Englisch 1952). Einen kürzeren Beweis eines allgemeineren Satzes gab E. Witt in: Mathematische
Nachrichten 6, S. 201 (1952).
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berühren, wie (a,...,a + b — l) und (a + b,..., a + 2b - 1), wodurch die Abschätzungen
etwas gröber werden.

Ich will nun versuchen, die von Artin, Schreier und mir angestellten Überlegungen etwas
näher zu analysieren und zu untersuchen, an welchen Stellen neue Einfälle den bewussten
Überlegungen eine neue Richtung gaben.

Am Anfang stand ein Einfall von Schreier. Er fragte: Wäre es nicht möglich, der Vermutung

von Baudet eine finite Verschärfung zu geben, indem man sich auf einen endlichen
Abschnitt der Zahlenreihe beschränkt? Die Frage lag auf der Hand, denn in den Beispielen

/ 2 und / 3 war die finite Verschärfung schon gegeben. Der Beweis auf Grund
des Diagonalverfahrens, der oben wiedergegeben wurde, war für jeden von uns dreien
eine reine Routine-Angelegenheit, da wir alle drei mit diesem Verfahren vertraut waren.
Aber der Einfall von Schreier bestimmte die Richtung, die unsere Überlegungen jetzt
nahmen.

Dass wir eine Induktion nach / versuchen wollten, war nur natürlich. Dass die finite
Verschärfung die Induktion erleichtern würde, war zu erwarten.

Der nächste wesentliche Schritt wurde von Artin gemacht. Er hatte den Einfall, den Satz

von 2 auf k Klassen zu verallgemeinern. Veranlasst wurde dieser Einfall wahrscheinlich
durch die Überlegung, dass im Fall einer zweigliedrigen Progression die Verallgemeinerung

auf k Klassen evident richtig ist (Schubfachprinzip).

Der oben dargestellte Beweis, dass die Vermutung von Baudet, wenn sie für zwei Klassen

richtig ist, auch für k Klassen richtig sein muss, stammt von Artin. In diesem Beweis
steckt eine Idee, die nachher in meinem Beweis der verschärften Vermutung von Baudet
eine zentrale Rolle spielen sollte, nämlich: Wenn die Vermutung für den Abschnitt von
1 bis N richtig ist, so ist sie auch für jede N-gliedrige arithmetische Progression richtig,
da man die Glieder dieser Progression ja von 1 bis N numerieren kann.

Bei einem Schluss von / - 1 auf / ist es immer vorteilhaft, wenn man für / - 1 möglichst
viel voraussetzen kann und für / möglichst wenig zu beweisen sich vornimmt. Im Sinne

dieser Überlegung nahmen wir für / - 1 die Richtigkeit der Vermutung, also die Existenz

von N(l - l,k) für alle k an und versuchten zunächst für den nächsthöheren Wert /

und für ein einziges k, z.B. für k 2, die Existenz von N(l, k) zu beweisen. Um die

Gedanken zu bestimmen, nahmen wir zunächst / 3 an, weil hier der genaue Wert

N(l-l,k) N(2,k) k + l

nach dem Schubfachprinzip bekannt war. Damit war der Plan des Beweises vorgezeichnet.

Wir betrachteten also zunächst den Fall k 2, / 3. Durch direkte Aufzählung aller
Möglichkeiten war dieser Fall zwar früher schon erledigt, aber wir suchten einen
Beweisgedanken, der sich vielleicht auf höhere Fälle übertragen lassen würde. "Immer mit
den ganz einfachen Beispielen anfangen", pflegte Hubert zu sagen.

Der nächste entscheidende Einfall stammte von Artin. Wir können die Induktionsvoraussetzung,

so sagte Artin, nicht nur auf Zahlen, sondern auch auf Blöcke von aufeinanderfolgenden

Zahlen anwenden; denn auch diese sind in Klassen eingeteilt. Die Anzahl der
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Klassen ist zwar grosser (kn für Blöcke von n aufeinanderfolgenden Zahlen), aber das

schadet nichts, da wir die Induktionsvoraussetzung ja für alle k zur Verfügung haben.

Durch den Einfall von Artin war die Wiederholbarkeit eines ganzen Blockmusters
gesichert und wir konnten die Figur 2 zeichnen, die im ersten Block zwei Zahlen der ersten
und eine der zweiten Klasse in arithmetischer Progression zeigt, im zweiten Block die

entsprechenden Zahlen in denselben Klassen.

Die Figur 2 zeigt immer noch keine dreigliedrige Progression in einer Klasse. Wie könnte

man sie erhalten? Wir schauten die Striche auf der Tafel einige Zeit schweigend an. Auf
einmal hatte ich einen Einfall, begleitet von dem sicheren Gefühl: Das ist die Lösung. Ich
verschob den zweiten Block der Fig. 2 noch einmal um dieselbe Strecke und erhielt so

die Figur 3, in der die dritte Zahl des dritten Blockes in eine Zwangslage gerät, ähnlich
wie die Zahl 9 in der früheren Überlegung in eine Zwangslage geraten war.

Der Einfall lag eigentlich ganz nahe. Die einzige Zahl in Fig. 3, die sowohl mit zwei
Zahlen a, a der ersten Klasse als mit zwei Zahlen b, b der zweiten Klasse je eine

arithmetische Progression a, a, a oder b, b, b bildet, ist die dort angekreuzte dritte Zahl
des dritten Blockes.

Das Bemerkenswerteste an diesem Einfall war das Gefühl der vollkommenen Sicherheit,

das ihn begleitete. Das gleiche Gefühl der Sicherheit hatte auch Poincaré als ihm
beim Einsteigen in einen Omnibus plötzlich eine mathematische Idee einfiel, "ohne dass

irgend etwas in seinen früheren Gedanken diese Idee vorbereitet hatte"3'. Ich glaube,
viele Mathematiker haben ähnliche Erinnerungen an plötzliche Einfälle, deren Herkunft
sie nicht bestimmen können. Oft sind diese Einfälle von einem Gefühl der Sicherheit

begleitet, das allerdings auch trügen kann.

Ich hatte also in diesem Fall die intuitive Überzeugung, dass genau dieselbe Beweismethode,

die ich im Fall k 2,1 3 an der Tafel vorführte, auch in allen höheren Fällen
zum Ziel führen würde.

Wie diese Überzeugung sich im Unbewussten bilden konnte, das weiss ich nicht. Ich
glaube aber, erklären zu können, warum Artin und Schreier nicht so sicher waren, auch
nachdem ich ihnen den Fall k 2,1 3 erklärt hatte. Sie sahen nur das Ergebnis: das

Vorhandensein der Progression a, a, a in der ersten oder b, b, b in der zweiten Klasse.

Ich aber hatte eine Methode gefunden, diese Progressionen zu bilden, und ich hatte das

bestimmte Gefühl, dass diese Methode auch auf die höheren Fälle anwendbar sein würde.

Es ist, wie wenn einer Äpfel von einem Baum pflückt. Wenn man einen Apfel gepflückt
hat und ein anderer hängt etwas höher, so kann es sein, dass man selbst weiss, dass

man mit etwas mehr Anstrengung den andern Apfel auch noch erreichen kann, während
ein Zuschauer, der nur sieht, dass man den einen Apfel gerade erreicht hat, darüber im
Zweifel ist. Man hat eben nicht nur den Apfel, sondern auch das Gefühl der Bewegungen,
die man ausgeführt hat, um ihn zu pflücken.

Das Gefühl, dass eine Beweismethode noch weiter reicht, ist manchmal trügerisch. Oft
stellt sich nachher heraus, dass in den höheren Fällen eine neue Schwierigkeit auftaucht.

3) J. Hadamard: Psychology of Invention in the Mathematical Field. Siehe auch B.L. van der Waerden:
Einfall und Überlegung; Birkhäuser, Basel 1954.
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Trotzdem gehören solche Ahnungen über die Tragweite von Beweismethoden zu den
nützlichsten Wegweisern bei der mathematischen Forschung.

Jetzt habe ich Ihnen alles erzählt, was mir von jener denkwürdigen Stunde, in der wir
drei gemeinsam eine "Perle" gefunden haben, noch in Erinnerung ist. Es war eine meiner
schönsten Stunden.

Van der Waerden publizierte den Beweis der Vermutung von Baudet erstmals in Nieuw
Arch. Wisk. 15 (1927), 212-216. In der Literatur wurde das Resultat in der Folge als

Satz von van der Waerden angesprochen. Nach Richard Rado (siehe Math. Z. 36 (1933),
424-480; Proc. London Math. Soc. (II) 48 (1945), 122-160) und Walter Deuber (siehe
Math. Z. 133 (1973), 109-123) lässt sich das Resultat in einen wesentlich allgemeineren

Rahmen stellen. Rado betrachtete in seinen beiden Arbeiten homogene lineare

Gleichungssysteme (mit rationalen Koeffizienten), welche die Eigenschaft haben, dass

bei jeder Zerlegung der natürlichen Zahlen in endlich viele Klassen in mindestens
einer Klasse eine Lösung existiert. Solche Gleichungssysteme, die er partitionsregulär
nannte, konnte Rado auf erstaunlich einfache Weise charakterisieren und zeigen, dass

sich die Aussage des Satzes von van der Waerden auf die Lösbarkeit eines parti-
tionsregulären Gleichungssystems zurückführen lässt. Aus Rado's Charakterisierung
partitionsregulärer Gleichungssysteme ergibt sich darüberhinaus das folgende
überraschende Resultat: Bei einer Zerlegung der natürlichen Zahlen in endlich viele Klassen

gibt es mindestens eine Klasse, in der jedes par titionsreguläre Gleichungssystem lösbar
ist. Walter Deuber hat in seiner Dissertation unter der Leitung von Ernst Specker eine

daran anschliessende Vermutung von Rado beweisen können: Es sei S eine Teilmenge
der natürlichen Zahlen, welche die Eigenschaft hat, dass in ihr jedes partitionsreguläre
Gleichungssystem lösbar ist. Zerlegt man S in endlich viele Klassen, so ist in mindestens

einer dieser Klassen wiederum jedes partitionsreguläre Gleichungssystem lösbar.
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