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Teaching the Independence of X and

Wiebe R. Pestman

Wiebe R. Pestman has studied mathematics, physics, and astronomy at the University
of Groningen where he also got his doctor's degree. His mathematical interests are

in functional analysis, probability and statistics, operator algebras and harmonic

analysis. Aside from mathematics he likes modern painting and music.

Introduction
In introductory courses in mathematical statistics there is always the very moment where
students are confronted with the fact that, in case of a sample Xu... ,Xn from a nor-

n n

mally distributed population, the statistics X \^Xt and S2 -^\ ^(X,-X)2 are
i=\ i=\

independent. To the audience this will seem to be odd at first sight since the quantity
X occurs explicitly in the defining equation of S2. For this reason, omitting a rigorous
college proof of this statement might cause a slight feeling of annoyance among certain
students. In spite of this, many modern textbooks on statistics (even the excellent work
[5]) more or less surrender in this respect.

The theory of multivariate normal distributions (see for example [1] or [4]) provides
a natural framework for a proof, but in introductory courses it is not always advisable

to present it in that way. Alternatives are to be found for example in [8], [9] and

[10], where proofs are given relying on the theory of characteristic functions or moment
generating functions. Here one is in fact applying part of the Fourier (Laplace) machinery
of mathematical analysis, which is not always familiar to starting statisticians. In this

paper a very elementary proof based on linear algebra is given. As in [3] and [6] a

technique involving the notion of an orthogonal linear map is exploited to prove a more
general result. The necessary linear algebra is usually taught in first year undergraduate
courses in mathematics.

In einer Stichprobe aus einer Normahcrlcilung sind der Miltclwcr! X und die Varianz
S2 statistisch unabhängig. Die üblichen Beweise für diese für den Anfänger etwas
überraschende Tatsache sind ziemlich involviert. Im vorliegenden Beitrag liefert Wiebe
Pestman einen Beweis, der nur einfache Resultate der Linearen Algebra benötigt, usi



108 Elem. Math. 53 (1998)

Independence of linear statistics of normal samples

Let M (Mi,...,Mp) and N (Ni,..., Nq) be vector valued random variables,
assuming values in W and W respectively. Denote by (M,N) the variable (Mi,... ,Mp,
N\,... ,Nq) assuming its values in W+Ci. We say that M and N are statistically
independent if for every (say open) set A cW and Bet' one has

P((M,N) G A x B) P(M G A) P(N G B).

If M and N are statistically independent and / and g are continuous functions on W
and Mß, then /(M) and g(N) also are statistically independent. In particular, for all

i,j the components M and Nj are independent, if M and N are so. (It is frequently
misunderstood (see for example [8], p. 350) that the converse of this statement is not
true; see [2], [7].)

Now suppose that Xu... ,Xn are independent N(0,1) distributed variables. Writing
X (Xi,..., X„) and denoting by (•, •} the standard inner product on R", one has

P(X g A)
IA

where A c R" and c (2tt)-"/2. If Q : R" -> R" is an orthogonal linear transformation
then it can easily be proved that P(X g A) P(X g QA). We shall refer to this property
by saying that the probability distribution of X is rotation invariant. (It is interesting
to note, that rotation invariance can only occur in cases where the X, are all N(0,a2)
distributed; see [7].)

Let 33 be the linear space consisting of all linear combinations of Xi,..., X„. An inner
product (•, •) on 33 is defined by

(M,N) cov(M,N),

where cov(M, N) denotes the covariance between M and N. The Euclidean space 33 will
be referred to as the space of linear statistics. Note that {Xi,..., X„} is an orthonormal
basis in 33.

Lemma: If the linear statistics Y\,... ,Yn form an orthonormal basis in 33, then the

vector valued random variables X [X\,... ,Xn) and Y (Y\,..., Yn) are identically
distributed.

Proof: Let $ : 33 —> 33 be the linear isometry which converts the orthonormal basis

{Xi,..., X„} into the orthonormal basis {Y\,..., Yn}. Denoting the matrix of $ with
respect to basis {Xi,..., X„} by [f ], we can write

Y;
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The matrix [$] being orthogonal, this implies that there exists an orthogonal linear
transformation Q : R" —> R" such that QX Y. Taking into account that the probability
distribution of X is rotation invariant one has for every open set A c R"

P(Y G A) P(QX G A) P(X G Q^A) P(X G A).

This proves that X and Y are identically distributed.

Main theorem: Let X\,... ,Xn be independent normally distributed variables. Suppose

M (M!,...,Mp) andN (Nu... ,Nq), where M,N, e^S for alii, j. Then M and
N are statistically independent iff cov(Mi,Nj) 0 _/&r every i,y.

Proof: If M and N are statistically independent then so are the components M and Nj.
Consequently one has cov(M,M;) 0 for all i,j.
Next, we prove the converse of this statement in the special case where Xi,..., X„
are independent and N(0,1) distributed. Let We and Ti in S3 be the linear span of
M\,...,Mp and N\,...,Nq respectively. The assumption that cov(Ml,NJ)=0 for all i,j
implies that Tt± 31 in S3. It follows that S3 can be decomposed as Ï8=WI(&%1(&%
where 9t (3R 0 9?)^. Choose orthonormal bases {EU...,ES}, {Fu...,Ft} and

{Gi,..., GM} in DÎ, 31 and 01 respectively. Set E (Ej,..., Es), F (Fu..., Ft)
and G (G\,..., Gu). By the lemma the random variables X (Xi,..., X„) and

(E,F,G) are identically distributed. From this it follows that (Xi,...,Xs+t) and (E,F)
also are identically distributed. Observing that (Xi,... ,XS) and (Xs+i,... ,Xs+t) are

statistically independent, one has for A c Rs and B c Rf

P((E,F) gAxB) =P((X1,...,Xs+t) gAxB)
C1,...,Xs)GA)P((Xs+1,...,Xs+t)GB).

It is easy to see that this implies P((E,F) G A x B) P(E g A) P(F G B), thus

proving the statistical independence of E and F. The variable M (N) can be obtained
from E (F by linear transformation, so M and N are also statistically independent. In
the general case where Xi,..., X„ are independent and X, is, say N(^, of) distributed,

one can pass to variables X, (X,-/i,)/o-, and reduce to the preceding case.

Remark: We have stated the main theorem in terms of two random variables M and

N, having components in S3. The theorem can easily be generalised to the case of an
arbitrary number of vector valued variables, having components in S3. A generalisation
of this kind can be applied for example in the theory of normal analysis of variance
whenever independence of linear statistics has to be proved. The premise in the theorem
is equivalent to the requirement that the vectorial variable (M, N) enjoys a multivariate
normal distribution. Details of all this can be found in [7].

Theorem A:IfX\,...,Xn form a sample from a normally distributed population, then

X and S2 are statistically independent.

Proof: Observe that X and X,—X are in S3 and that cov(X, X,--X) 0. By the main
theorem we conclude that X and (X]-X,... ,X„—X) are independent; it thus follows
that X and S2 are independent.
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Next, let Xi,..., Xm and Y,..., Yn be two independent samples from a N(/xx, a2) and

aN(fiy,(72) distributed population, respectively. Set

x

The pooled variance (S2) of both samples together is understood to be

n - 2

Theorem B: The variables (X, Y) awa" S^ are statistically independent.

Proof: Applying the main theorem, the independence of the vectors (X, Y) and (Xi -X,
Xm—X, Y-Y,... ,Yn-Y) is easily verified. As in the proof of theorem A the

independence of (X, Y) and S2 follows.

Remark: Lecturers encounter the independence of (X, Y) and S2 when teaching the fact
that the test statistic _ _

is Student distributed with m + n - 2 degrees of freedom.

The problem of independence also comes across in the theory of linear regression.

Consider a model of linear regression with one controlled variable x and one response
variable Yx. For a given sequence of values %\,..., xn the variables Yx. will be denoted

by Y,. The following assumptions are made:

i) Yx is N(a+ßx,a2) distributed.

ii) Given the values X\,..., xn for x, the variables Y,..., Y„ are independent.

Under these conditions the variables

are unbiased estimators for ß and a. Writing Y, a+ßxr, the so called "Sum of Squares

of Errors" can be expressed as

SSE
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Theorem C: The variables (a,ß) and SSE are statistically independent.

Proof: Observe that a,ß and Yl-Yl are linear statistics in Y\,..., Yn. Apply the main
theorem to verify that (a, ß) and {Y\ -Y\,..., Yn-Yn) are independent variables. Then

conclude that (a,ß) and SSE are independent.

Remark: The independence of (a, ß) and SSE plays a role when teaching that the test
statistic

Vssë
is Student distributed with n — 2 degrees of freedom.
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