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Sattelpunkte oder
Variationsprinzipien in Geometrie und Mechanik

Michael Struwe

Michael Struwe wurde 1955 in Wuppertal geboren. Er hat 1980 an der Universitit
Bonn promoviert. Seit 1986 ist er Professor fir Mathematik an der ETH Ziirich.
Seine Spezialgebiete sind partielle Differentialgleichungen und Variationsrechnung,

1 Einleitung

Der Kreis umschliesst unter allen einfach geschlossenen Kurven in der Ebene zu gegebe-
nem Umfang den grossten Flicheninhalt. Die Bahnen der Planeten folgen dem “Prinzip
der kleinsten Wirkung” (Maupertuis); Lichtstrahlen wihlen den optisch kiirzesten Weg
(Fermat). Dem Betrachter scheint es, als wiren die Objekte der klassischen Geometrie
ebenso wie alle Naturvorginge durch ihre Optimalitit bestimmt; Leibniz folgert kiihn,
wir lebten in der “besten aller moglichen Welten”. Die bodenstindige Antwort auf diese
These liess in Gestalt von Voltaire’s “Candide” nicht lange auf sich warten. Auch aus
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mathematischer Sicht 14sst sich der Anspruch, alle Naturvorginge liessen sich durch
Extremalprinzipien beschreiben, nicht halten. Wie koénnten zum Beispiel von einem Punkt
ausgehende Lichtstrahlen durch eine Linse in einem zweiten Punkt fokussiert werden und
hinter diesem Brennpunkt auseinanderlaufen, wenn alle Lichtstrahlen optisch kiirzeste
Verbindungen aller auf ihnen liegenden Punkte sein sollten?

Dennoch liefern Variationsprinzipien, die Naturphidnomene als “kritische Punkte” ge-
wisser Wirkungsfunktionen deuten, eine nahezu umfassende Beschreibung der uns um-
gebenden Welt. Der Begriff des “kritischen Punktes” muss dazu jedoch weiter gefasst
werden.

Betrachten wir als Beispiel die periodische Bewegung eines Massenpunktes in einem
konservativen Kraftfeld. In die Sprache der Geometrie iibersetzt, handelt es sich um eine
geschlossene “Geodéte” auf einer “Energichyperflache” im “Phasenraum”, der die Orts-
koordinaten und die Komponenten des Geschwindigkeitsvektors des Teilchens enthalt.

Als Modell fiir die allgemeine Situation betrachten wir die Sphire
S={(ny2) eRX+y+22=1}.

Geoditen auf S sind Grosskreisbogen, zum Beispiel Abschnitte der Langenkreise oder
des Aquators. Die kiirzeste Verbindung zwischen zwei Punkten auf der Sphire ist stets
eine Geodite — daher fithren manche Flugverbindungen von Europa nach Asien iiber
den Nordpol. Jedoch ist nicht jede geoditische Linie auch kiirzeste Verbindung ihrer
Endpunkte; man gelangt viel schneller von Frankfurt nach Ziirich, indem man ein kur-
zes Stiick auf dem gemeinsamen Lingenkreis nach Siiden fliegt, als durch Wahl des
komplementiren Bogens auf demselben Langenkreis, welcher iiber die Pole fiihrt. Ins-
besondere ist eine geschlossene Geodatische, ein Grosskreis, wo Anfangs- und Endpunkt
zusammenfallen, nicht die kiirzeste Verbindung zwischen diesen Punkten. Geschlossene
Geoditen sind im allgemeinen auch nicht kiirzer als jede hinreichend nahe bei ihnen ge-
legene geschlossene Kurve; zum Beispicl ist der Aquator auf S linger als jeder beliebig
nahe beim Aquator gelegene Breitenkreis.

Geschlossene Geoditen auf S sind “Sattelpunkte” der Langenfunktion: Innerhalb einer
Schar von Vergleichskurven (den Breitenkreisen) sind sie die ldngsten, in einer anderen
Schar die kiirzesten Kurven in der jeweiligen Klasse.

Hier bereits erkennen wir einen fundamentalen Unterschied zu den aus der Schule be-
kannten Extremwertaufgaben fiir Funktionen nur einer einzigen reellen Variablen. Wih-
rend letztere im allgemeinen nur Minima und Maxima als kritische Punkte zulassen,
besitzen Funktionen, die von zwei oder mehr Variablen abhiingen, zusétzlich kritische
Punkte allgemeineren Typs.

Bei den oben erwihnten Problemen haben wir es sogar mit Funktionen zu tun, die von
unendlich vielen Variablen abhingen, da man zum Beispiel jeden Punkt einer Bahn
auf der Sphire als eine Variable ansehen kann. In solchen Fillen kann es vorkommen,
dass eine Funktion nur Sattelpunkte als kritische Punkte besitzt. Die oben betrachtete
Langenfunktion ist zum Beispiel nach oben unbeschrinkt, da es zwischen je zwei Punkten
auf der Sphire beliebig lange Verbindungskurven gibt; sie besitzt also kein Maximum.
Viele Probleme der klassischen Mechanik werden sogar durch Funktionen beschrieben,
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die nach oben und unten unbeschrankt sind und daher weder Minimum noch Maximum
besitzen.

Sattelpunkte spielen in der Mathematik, insbesondere in der Geometrie, und in deren
Anwendungen auf Probleme der Mechanik eine fundamentale Rolle.

Kehren wir zuriick zu den Geoditen auf S. Die betrachtete Situation ist aufgrund der
Symmetrie der Sphire hochgradig entartet; jeder Grosskreis auf S ist eine geschlossene
Geodate. Sucht man jedoch einfach geschlossene Geoditen auf dem Ellipsoid

2 2
Subc = {(xay’z) = RS; ZZC_Z + % + i—z = 1}
mit Halbachsen 0 < g2 < b < ¢, so findet man nur die drei Schnittkurven von S, mit
den Symmetrie-Ebenen {x = 0}, {y = 0} oder {z = 0}. Durch Projektion in dic Ebene
{z = 0} gehen diese iber in die elliptische Randkurve eines ebenen “Billards” und ein
Paar gerader Linien, die diese Randkurve senkrecht treffen und nach dem Stoss an der
“Bande” in sich zuriicklaufen, vgl. Abbildung 1.

Abb. 1

Wiederum erhalten wir im “entarteten” Fall 2 = b = ¢ = 1 unendlich viele derartiger
Linien, ndmlich alle Geraden durch den Mittelpunkt des Einheitskreises. Analog zu dieser
Situation sprechen wir daher auch im allgemeinen Fall von “Durchmesserlinien”.

Die Aufgabe, in einem ebenen Billard alle Durchmesserlinien zu finden, ist also ein
Spezialfall der Aufgabe, alle einfach geschlossenen Geodéten auf einer geschlossenen
Flache im Raum zu finden, und verwandt mit dem Problem der Bestimmung periodischer
Bahnen mechanischer Systeme. Im Unterschied zu letzteren Aufgaben fiihrt jedoch die
Frage nach den Durchmesserlinien eines ebenen Billards auf ein endlich-dimensionales
Variationsproblem mit nur zwei unabhédngigen Variablen, welches wir mit einfachen
Mitteln vollstindig analysieren kdnnen und welches bereits alle wesentlichen Phinomene
der allgemeinen Situation illustriert.

Im folgenden stellen wir zunichst die nétigsten Begriffe bereit und entwickeln Metho-
den, wie man im Endlichdimensionalen Sattelpunkte charakterisieren kann. Dabei wird
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eine tiefgreifende Bezichung offenbar zwischen Anzahl und Art der Sattelpunkte einer
Funktion und gewissen “topologischen” Eigenschaften des Definitionsbereichs, die wir
ausnutzen, um fiir unser Modellproblem einen allgemeinen Satz iiber die Anzahl der
Durchmesserlinien in einem ebenen Billard zu folgern.

2 Konzepte und Definitionen

Der Einfachheit halber betrachten wir in diesem Abschnitt nur beliebig oft differen-
zietbare “glatte” Funktionen f:R* — R in zwei reellen Verdnderlichen. Analog kann
man reelle Funktionen in 7 Variablen oder Funktionen auf Gebieten, Hyperflachen und
Untermannigfaltigkeiten des R” behandeln.

Bezeichnen wir die Koordinaten in der euklidischen Ebene wie iiblich mit den Symbolen
x und v, so konnen wir die partiellen Ableitungen von f in einem Punkt (xo, 1) € R?
bilden, indem wir die nach der recllen Variablen ¢ differenzierbaren Hilfsfunktionen
t— (t) = f(xo +t,1), bzw. t — (t) = f(xo, 4 + t) cinfithren und setzen

g_{;(xmyo) = %‘P(ﬂ\t:m
of

d
@(xoﬂ/o) = Eiﬁ(t)\t:o-

Der Gradient von f im Punkt (xo,1) ist der Vektor

V0. ) = ( 0010 G o))

Von besonderer Bedeutung fiir das folgende ist die Kettenregel: Fiir jede glatte Kurve
v:R — R? mit Komponenten ~(t) = (v!(¢),~*(¢)) ist die zusammengesetzte Funktion
f o, definiert durch (f o v)(t) = f(~(t)) fur alle ¢, differenzierbar, und es gilt

2 (Fomlt) = Vf(8) - ). m

Dabei bezeichnet 2 - b = a'b' + a*b* das Skalarprodukt der Vektoren a = (a',a%),b =
(b',0%) € R?; das heisst, & (f o)(t) lasst sich auch in der Form

0 o0 = ZOV O+ Lm0

schreiben.

Sei Vf(xo,) # 0. Mittels (1) kdnnen wir Vf(xo,1%)/|Vf(x0,10)| als die “Richtung
steilsten Anstiegs™ der Funktion f deuten: Unter allen Kurven v: R — R? mit v(0) =
(xo0, 1) und |£~(0)| = 1 ist die Zuwachsrate £ (f o v)(0) am grossten, falls

4 oy Vi)
1" Vol
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-

\\J

Abb. 2

Besonders anschaulich wird dies, wenn wir uns den Graphen von f als ein Gelinderelief

(g(f) = {(x,y,f(x7 }/))a (x7y) € Rz}

im 3-dimensionalen Raum vorstellen, indem wir f(x,y) als die “Hohe” eines Punktes
mit ebenen Koordinaten (x,y) deuten, siche Abbildung 2. Die Punkte (xo,1) € R?
mit Vf(Xo, %) = 0 bezeichnen wir als “kritisch”. Sie entsprechen in diesem Bild genau
den Punkten von %(f) mit horizontaler Tangentialebene; ein imaginirer (punktférmiger)
Wassertropfen verharrt an diesen Punkten in Ruhe, wihrend er von einem Punkt mit
Vf(x0, %) # 0 unter Einwirkung der Schwerkraft in Richtung des negativen Gradienten
fortfliesst. Das Bild einer Wasserstromung auf dem Relief §(f) erlaubt nun eine weitere
Einteilung der kritischen Punkte von f in “Quellen”, von denen das Wasser wegfliesst,
“Senken”, in denen sich das Wasser sammelt, und “Sattel”, an denen sich die Stromung
teilt. Mathematisch entsprechen Quellen natiirlich den relativen Maxima von f, also den
Punkten 2z, = (xo,4), so dass fiir alle z = (x,y) in der Nahe von z, die Bezichung
f(z) < f(z) gilt. Analog entsprechen Senken den relativen Minima z, von f mit f(z) >
f(z0) fiir alle 2 nahe 2.

Das lokale Verhalten von f in der Néhe eines Sattelpunktes kann im allgemeinen sehr
kompliziert sein. “Generisch” verhilt sich jedoch eine glatte Funktion f in der Nihe
eines Sattelpunktes (gegebenenfalls nach Verschiebung des Nullpunktes, Drehung des
Koordinatensystems und Streckung der Koordinatenachsen) wie die Funktion

fley) =306~ ), )

deren Richtungsfeld Vf(x,y) = (x,—y) auch eine gute Vorstellung vom Strémungs-
verlauf in der Umgebung eines solchen “nicht entarteten” Sattelpunktes liefert.
Sattelpunkte lassen sich im allgemeinen nicht durch Stérung von f beseitigen sondern
nur verschieben. Dies kann man auch experimentell leicht verifizieren, indem man das
Hohenrelief G(f) einer Funktion f mit einer Plasticplane modelliert, auf die man Was-
ser oder Sand “regnen” lasst. Sattelpunkte sind daher wesentlich verschieden von den
“Stufenpunkten” reeller Funktionen f:R — R, die man durch beliebig kleine Stérungen
beseitigen oder in ein Paar von relativen Minima und Maxima auflésen kann.
Schliesslich definieren wir noch: § € R heisst kritischer Wert fiir f, falls es einen
kritischen Punkt 2, von f gibt mit f(z,) = 3: sonst heisst 3 ein reguldrer Wert von f.
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3 Kiritische Punkte und “Topologie”

Uber die Existenz von Minima und Maxima glatter Funktionen gibt der folgende Satz
von Weierstrass erschopfend Auskunft.

Satz: (Weierstrass) Eine stetige Funktion f: S — R auf einer kompakten Menge S besitzt
stets ein Minimum und ein Maximum.

Beispiele fiir kompakte Flichen im R sind die Sphire, der Torus oder der g-Torus
mit ¢ Lochern, ¢ > 2. “Legen” wir diese Flichen geeignet in den 3-dimensionalen
Raum und betrachten die z-Koordinate eines Punktes als unsere Funktion f:S — R,
so sehen wir, dass eine Funktion auf der Sphire im allgemeinen nur zwei kritische
Punkte (mit horizontaler Tangentialebene an S) besitzt, und zwar die vom Satz von
Weierstrass geforderten Minima und Maxima. Eine Funktion auf dem Torus hat jedoch
im allgemeinen, scheint es, noch zusitzlich zwei Sattelpunkte, und fiir jedes weitere
Loch, welches S aufweist, kommt ein weiteres Paar von Sattelpunkten hinzu; siche

Abbildung 3.
£
Q)
Q)
@

Gibt es also eine Bezichung zwischen der “Topologie” einer Menge (welche im vorlie-
genden Beispiel bequem durch die Zahl der Locher charakterisiert werden kann) und der
Zahl der Sattelpunkte, die jede auf dieser Menge definierte Funktion (mindestens) haben
muss? Und schliesslich: Gibt es ein systematisches Verfahren, um diese Sattelpunkte,
wenn es sie gibt, zu finden? — Diesen Fragen wollen wir in den néchsten Abschnitten
nachgehen. Damit das Vorhaben unsere Mittel nicht iibersteigt, beschrinken wir uns da-
bei im wesentlichen auf den Torus, den wir auch erhalten kénnen, indem wir auf dem
Einheitsquadrat Q = {(x,y) € R%0 < x,y < 1} gegeniiberliegende Punkte auf dem
Rande identifizieren, vgl. Abbildung 4.

7
2 Ly -
A% %

Abb. 3
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Beachten wir nun noch, dass eine in beiden Variablen mit der Periode 1 periodische
Funktion f:R? — R durch ihre Werte auf Q vollkommen bestimmt ist, und dass wir
umgekehrt jede Funktion f: Q — R mit f(0,y) = f(1,y) sowie f(x,0) = f(x,1) fur
0 < x,y < 1 periodisch zu einer doppelt periodischen Funktion f:R? — R fortsetzen
konnen, so entspricht das Studium reeller Funktionen auf dem Torus der Untersuchung
doppelt periodischer Funktionen f: R* — R mit

flx+k,y+1) = f(x,y) fir k,l € Z;

wir schreiben hierfiir auch f:R*/Z? — R. Spiiter werden wir sehen, dass diese Periodi-
zitatsbedingung im eingangs formulierten Modellproblem erfiillt ist.

4 Der Gradientenfluss
Einen systematischen Zugang zum Problem, alle kritischen Punkte, insbesondere die
Sattelpunkte einer gegebenen Funktion f zu finden, erhalten wir, indem wir unser obiges
Bild von ciner dem Gefille folgenden Stromung auf dem durch den Graphen von f
gegebenen Hohenrelief formalisieren.
Der Einfachheit halber beschrinken wir uns auf doppelt periodische glatte Funktionen
f:R?* — R. Der Gradient von f definiert das (ebenfalls doppelt periodische) Richtungs-
feld

e=-Vf:R* - R%.
Zu gegebenem Anfangspunkt z, = (Xo,1) bestimmen wir die Integralkurve v =
7(-:2z0): R — R? von e durch z, als Lésung des Anfangswertproblems

L) = etrt1), 5

7(0) = 2. )

Die Existenz und Eindeutigkeit von « folgt aus allgemeinen Sétzen iiber gewohnliche
Differentialgleichungen. Insbesondere gilt aufgrund der Eindeutigkeit der Losung von
(3), @) fiir alle zo = (X0, ) € R* und s, € R die Bezichung

v(s:7(5 %)) = (s + £ 20); (5)

das heisst, die Bahn durch den Punkt ~(#;2,) ist die um ¢ zeitverschobene Fortsetzung
der Bahn durch den Punkt z,. Weiter gilt aufgrund der Periodizitit von e fiir alle z, =
(Xo,1) € R? und alle (k,I) € Z?

Yt (X0 + K, 30 + 1) = y(E: (%0, o)) + (k. D). (6)

Um ein qualitatives Bild vom Verlauf dieser Bahnen in der Nihe eines kritischen Punktes
zu erhalten, betrachten wir als Beispiel die Funktion f: R* — R, gegeben durch

fx,) = 3lar® +67), () € B,

mit Parametern «, 5 € R.
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Das durch f definierte Richtungsfeld e: R? — R? hat die Darstellung

e(x,y) = =Vf(x,y) = (—ax, = fy).
Bezeichnen wir die Komponenten der durch (3), (4) bestimmten Kurve ~ durch einen

Punkt 2o = (X0, 1) mit y(#) = (x(¢),y(¢)), so geht (3), (4) iiber in das Paar gewodhnlicher
Differentialgleichungen

%x = —ax, x(0) = xo; %y: =By, y(0) = Yo.
Als Losung erhalten wir
x(t) = xoe ™, y(t) = we 7.
Speziell fiir die Falle « = =1, a == —1und o = 1,3 = —1 ergeben sich somit

die typischen Bilder des Stromungsverlaufs in der Nidhe einer Senke (Minimum), einer
Quelle (Maximum), beziehungsweise eines Sattels; siche Abbildung 5.

NN i
- TN~ W N
CrIANY T A W

Abb. 5

Jede Losung v = v(+; z0) von (3), (4) lasst sich deuten als Stromlinie eines Teilchens, das
sich zur Zeit t = 0 an der Stelle z, befindet; andererseits definiert die Gesamtheit aller
dieser Bahnen eine vom Parameter ¢ abhiingige Schar von Abbildungen ®(-, ¢): R? — R2,
indem wir fiir jedes ¢t € R definieren

®(20,1) = y(t:20),20 € R

Da ®(-,t) aufgrund von (6) fiir festes ¢ mit Verschiebungen um (k,!) € Z* vertauscht,
konnen wir ®(-,#) auch als Abbildung ®(-,t):R?/Z*> — R?/Z? auffassen, das heisst,
als eine Transformation des Torus.

Sehen wir nun sowohl z als auch ¢ als variabel an, so erhalten wir eine Abbildung
®:R? x R — R?, den Gradientenfluss zn f, welcher sowohl die Schar von Abbildungen
(®(-,t));er als auch die individuellen Stromlinien v(-;z) = P (2o, ) durch jeden Punkt
zo € R? erzeugt. Da wir f als glatt voraussetzen, ist auch ® eine glatte Funktion in allen
Variablen.
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Weiter kénnen wir (3), (4) dquivalent ausdriicken durch die Bedingung

Db —cod, B(,0)=id )
Schliesslich besitzt die Schar (®(-,¢)); aufgrund von (5) die Eigenschaft
q)(7s)oq)(7t):q)(7s+t) (8)

Insbesondere ist jede Abbildung ®(-,#) stetig invertierbar mit ®(-,¢)~! = &(-, —t); das
heisst, (-, ¢) ist ein Homoomorphismus.

Analog erhilt man fiir glatte Funktionen f auf einer Fliche S cinen Gradientenfluss
$:S x R — S mit den obigen Eigenschaften.

5 Minimax-Prinzip

Mit Hilfe des Gradientenflusses ¢: S xR — S zn f: S — R kann man nicht nur einzelne
Punkte sondern auch Teilmengen von S “transportieren”. Geeignete Mengen bleiben
dabei an Sattelpunkten “hingen”.

Um dies zu veranschaulichen, betrachten wir als Beispiel fiir S einen in R? eingebetteten
Torus, f die z-Koordinate eines Punktes. Sei Ay = o (R) Bild einer geschlossenen Kurve
ap:R — S auf S, die sich auf S nicht in einen Punkt “zusammenzichen” lasst.

Dann erhalten wir eine Schar derartiger Mengen, indem wir setzen
Ap = (Ao, t) = a(R), 04 = O(-, 1) 0 .

Wir erwarten, dass fiir + — oo die Schar A; gegen eine Grenzkurve A, strebt, die sich
im tiefsten Sattelpunkt um den Torus schlingt; siche Abbildung 6.

Abb. 6

Allgemeiner definieren wir eine Familiec & von Teilmengen A C S als (vorwirts-) ®-
invariant, falls $(A,t) € o firalle A € s{ und ¢ > 0.

Offenbar ist 4 = {S} eine P-invariante Familie, ebenso o = {{z},z € S}. Jede Menge
A = A, erzeugt wegen (8) eine ®-invariante Familie

A= [B(A,1):t > 0}.

Nun kénnen wir das Hauptresultat dieses Abschnitts formulieren.
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Minimax-Prinzip. Sei f:S — R eine glatte Funktion auf der kompakten Fliche S,
der Gradientenfluss zu f, und sei 3l eine $-invariante Familie in S.

Dann ist

B= mfsupf

Aed gep
ein kritischer Wert von f.
Zum Beispiel erhalten wir im Falle ¢ = {S} den kritischen Wert

(3 = max f(a)
im Falle § = {{a};a € S} hingegen
= min f(a)

e acs
Falls S der Torus ist, erwarten wir zudem, mit der am Anfang dieses Kapitels beschrie-
benen Konstruktion auch kritische Werte 3 < 8 < 3 zu erhalten, welche Sattelpunkten
entsprechen. o
Zuvor wollen wir jedoch zumindest fiir den Fall des Torus einen Beweis des Mini-
maxprinzips angeben. Sei also f:R? — R doppelt periodisch, s/ eine ®-invariante Fa-
milie. Wir argumentieren indirekt und nehmen widerspruchsweise an, 3 sei regulir.
Es folgt, dass fiir eine gecignete Zahl £ > 0 und alle z € R? gilt:

f(z) =Bl <e = [Vf@) > e (9)
Andernfalls gibe es eine Folge von Punkten z, € R? mit
f(z0) = B,V f(z) — 0(n — o). (10)

Wegen der Periodizitit von f diirfen wir annchmen, dass die Folge (z,) beschriankt
ist. Aufgrund des Satzes von Weierstrass besitzt (z,) dann einen Hiufungspunkt z, und
es gibt eine Teilfolge (z,)nea mit 2z, — z(n — oo,n € A). Grenziibergang in (10)
fir n — oo,n € A liefert dann wegen der Stetigkeit von f und Vf die Gleichung
f(z) = B,Vf(z) = 0; das heisst, 3 ist kritisch, im Widerspruch zu unserer Annahme.
Damit ist (9) gezeigt.

Fir A € oA mit
sup f(a) < 5+ = (11)
acA
und alle 4 € A mit
fla)>p—¢ (12)
folgt nun aus (1), (7) und (9)
L f@(0, )0 = VAW - S0 )0 = ~VF@F <~ (13)

Insbesondere gilt (11) auch fiir alle Mengen A; = $(A,t),t+ > 0.
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Beachte nun, dass A; € oA fiir alle ¢t > 0, da & nach Voraussetzung P-invariant ist.
Somit gilt nach Definition von 3 auch stets

p(t):= sup f(a) = 5,

acA;

und zur Bestimmung von 3(¢) muss man nur Punkte a € A, beriicksichtigen, die auch
(12) und daher (13) erfiillen.

Es folgt, die Funktion ¢t — g(¢) ist monoton fallend, und

d
Eﬁ(t) S —E

Nach der Zeit £ = 1 erhalten wir den Widerspruch

B < B(1) = sup f(a) < B0) — = = sup f(a) — & < . O

acA; acA

Die Anwendung des Minimaxprinzips fiir reelle Funktionen auf dem Torus wollen wir
nun anhand unseres Modellproblems illustrieren.

6 Anwendung auf Modellproblem

Sei I die Randkurve eines konvexen ebenen Billards, parametrisiert durch eine glatte
Abbildung v: R — R? mit v(x+ 1) = v(x) fiir alle x. Weiter nehmen wir an, dass v nach
Bogenlinge parametrisiert ist, das heisst, |y/(x)| = 1 fiir alle x, und dass ~ im Intervall
[0, 1] injektiv ist, also keine Doppelpunkte besitzt. Wir identifizieren “Bahnen” zwischen
Punkten p = y(x) und g = ~(y) auf I' mit dem Paar (x,y). Aufgrund der Periodizitit
von v liefern Paare (x,y), bzw. (x',y/) € R* dieselbe Bahn, falls (x — x',y — /) € Z*;
vgl. Abbildung 7.

Abb. 7

Offenbar geht eine Bahn (x,y) nach Reflexion in T in sich iiber, falls die Verbin-
dungsgerade von +y(x) nach ~(y) den Rand senkrecht trifft, das heisst, falls gilt

(@) —7(x) ' (x) = (v(y) —v(x)) - ¥'(y) = 0. (14)
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Sei nun f: R? — R definiert durch

f,) = 5 b))

Aufgrund der Periodizitit von v ist f doppelt periodisch, f:R?*/Z? — R. Zusitzlich
weist f die folgende Symmetric auf

f(xﬂ/) :f(%x)- (15)
Weiter gilt: 5
Y (x,) = () = 1)),
g—f;uw — (1) - W) A W)

das heisst, Durchmesserlinien gehéren zu kritischen Punkten von f.

Betrachten wir zunichst die Maxima und Minima von f. Offenbar gilt f(x,y) > 0 fiir
alle (x,y), und f(x,y) = 0 genau dann, wenn x —y € Z. Die Minima von f entsprechen
also genau den konstanten “Bahnen”, wo die Kugel an einem Randpunkt des Billards
liegenbleibt. Diese “Bahnen” sind natiirlich fiir uns nicht von Interesse.

Der Satz von Weierstrass liefert uns hingegen auch ein Paar (X,7) = Z mit

fz) = maxf(z) = B.

Geometrisch entspricht (¥,7) der lingsten Durchmesserlinie L oder der Richtung, in
welcher I' die maximale “Dicke” aufweist. Aufgrund der Periodizitat von f finden wir
unendlich viele weitere Maxima, die aus (¥,7) oder (7,%) durch Translation mit einem
Paar (k,l) € Z? hervorgehen; diese entsprechen jedoch alle derselben Durchmesserli-
nie. Finden wir mit Hilfe des Minimaxprinzips hiervon auch geometrisch verschiedene
weitere kritische Punkte von f?

Um das Minimax-Prinzip einzusetzen, miissen wir eine geeignete Familiec von Mengen
finden, die unter dem Gradientenfluss invariant ist. Zum Beispiel konnen wir als & die
Familie der Mengen A = ([0, 1]) definieren, wobei a: [0,1] — R? ein stetiger “Weg”
ist, der zwei fest gewihlte Minima «(0) = (xo,X0) = 2o, (1) = (x1,%1 + 1) =z in
verschiedenen “Zusammenhangskomponenten” der Menge {(x,x + k);x € R, k € Z}
der Minima von f miteinander verbindet; vgl. Abbildung 8.

IEEEES

Abb. 8
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Offenbar gilt ®(2y,t) = 2o, P(21,t) = z; fir alle ¢. Daher ist mit « auch ®(-,#) o « ein
Weg von 2, nach z;, und die so definierte Familie ist $-invariant. (Anstelle der Bedingung
a(0) = zp, (1) = z; mit festen Punkten z;,z; konnten wir auch lediglich verlangen,
dass a(0) = (x,x), a(1) = (y,y+1) fiir irgendwelche x,y € R; auch dies liefert cine $-
invariante Familic von Mengen A = (][0, 1]), welche die Gerade Z, = {(x,x);x € R}
mit der Geraden Z; = {(x,x + 1);x € R} verbinden.)

Auf jedem derartigen Weg muss ein “Wall” der Mindesthéhe

1
= inf > inf =) >0
f= jf supfla) > Ik flo, %+ 50>

tiberschritten werden, und aufgrund des Minimax-Prinzips ist 4 ein kritischer Wert.
Im allgemeinen ist der so gefundene Wert 3 strikt kleiner als 3, entspricht also einer
Durchmesserlinie L, welche kiirzer ist als L und damit von L verschieden.

Was kann man jedoch aussagen, falls 3 = § = max f 7 In diesem Fall trifft jeder
Weg von z, nach z; auf ein Maximum von f; insbesondere lassen sich dann zwei
Maxima zZ, = (¥,7) und Z; = (¥ + 1,7+ 1) in der Menge der Maxima “verbinden”.
Geometrisch bedeutet dies, es gibt Durchmesserlinien in jeder Richtung, welche alle
dieselbe (maximale) Liange besitzen. (Jedoch folgt hieraus nicht, dass I' ein Kreis ist.
Der Wankelmotor zum Beispiel beniitzt zu seiner Funktion, dass auch eine aus drei
Kreisbogen von je 60° zusammengefiigte Kurve konstante Dicke aufweist.)

In jedem Fall zeigt unser Argument jedoch, dass eine ebene Kurve stets (mindestens)
zwei Durchmesserlinien besitzt.

7 Topologische Betrachtungen

In Abschnitt 3 haben wir vermutet, es kdnne eine Beziehung geben zwischen der Zahl
der Sattelpunkte einer Funktion f:S — R und der “Topologie” von S. Im Falle des
ebenen Billards ist nun bereits das Nivean des Minimums f = 0 hochgradig entartet,
und es gibt unendlich viele “triviale” kritische Punkte. Jedoch wollen wir hier versuchen,
eine topologische Beziechung aufzudecken, die uns im Fall des ebenen Billards ein Paar
von nicht trivialen kritischen Punkten licfert. Wesentlich ist die folgende Beobachtung.
Dic in Abschnitt 6 untersuchte Funktion f: R? — R weist neben der doppelten Periodi-
zitat auch noch die Spiegelinvarianz

f(xJ/) :f(%x)

als weitere Symmetrie auf. Daher ist f bereits durch die Werte auf dem Bereich D =
{(x,y) € R%0 < x <y < 1} vollkommen bestimmt, dessen Randpunkte zudem durch
f folgendermassen “identifiziert” werden

f(x7x) =0, f(O’]/) :f(%o) :f(%l% 0 <xy< L.

Kollabieren wir die Punkte auf der Diagonalen Z, = {x = y} in einen einzigen Punkt
Po, so geht der Bereich D iiber in einen Kreis, wobei f in einander gegeniiberliegenden



58 Elem. Math. 52 (1997)

“Antipoden” auf dem Rand dieselben Werte annimmt. Nun verformen wir den Kreis zu
einer Halbsphire ST und vervollstandigen S™ durch “Ankleben” einer zweiten Sphéren-
kappe zur Sphire S C R?, wobei wir f durch die Festsetzung f(p) = f(—p) auf S
fortsetzen. Nach dieser Operation erhalten wir eine Abbildung f:S — R, dic in jedem
Paar von Antipoden denselben Wert annimmt und nur in einem einzigen Paar von Punk-
ten (po, —po) verschwindet. Da Paare von Antipoden (p, —p) auf S genau den Geraden
durch den Koordinatenursprung in R? entsprechen, deren Gesamtheit den “projektiven
Raum” PR bildet, erkennen wir auf diesem Wege, dass unser Modellproblem “topolo-
gisch” zu dem Problem &dquivalent ist, kritische Punkte von Funktionen f ‘P°’R—R zu
finden; vgl. Abbildung 9.

?%W@W

Der Grund dafiir, dass solch eine Funktion ausser dem stets vorhandenen Minimum und
Maximum noch mindestens einen weiteren kritischen Punkt besitzt, wird am chesten
ersichtlich, wenn wir zum Bild einer Funktion f:S — R zuriickkehren, welche die
Symmetriebedingung f(p) = f(—p) fiir alle p € S erfiillt.

Abb. 9

Der von f erzeugte Gradientenfluss ¢ weist eine dazu passende Symmetrie auf, und
zwar gilt

q)(p7 t) = _q)(_pv t)
fiir alle p € S,t € R. Folglich erzeugt eine Kurve . R — S mit

a(s+1/2) = —als) (16)

eine Schar oy = ®(-,f) o o von Kurven, die dieselbe Symmetrie aufweisen, und die
zugehorige Familie o = {a;(R);¢+ > 0} ist $-invariant. Offenbar verhindert die Be-
dingung (16), dass sich die Kurven oy zusammenzichen, und mit dem Minimaxprinzip
erhalten wir einen weiteren kritischen Wert. Fallt dieser Wert mit dem Minimum oder
dem Maximum von f zusammen, so gibt es unendlich viele Minima, bzw. Maximalstel-
len von f. Im Falle unseres Modellproblems haben wir alle Minima zu einem einzigen
Antipodenpaar kollabiert; daher kann es in diesem Fall nur unendlich viele Maxima, also
nicht triviale Losungen, geben.

Kurven o: R — S, die der Bedingung (16) geniigen, entsprechen iibrigens genau den
nicht zusammenziehbaren Kurven auf P?R.
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8 Verallgemeinerungen, Ausblick

Mit dhnlichen Konzepten wie den hier vorgestellten beweist man, dass es auf jeder Fliche
in R? vom Typ der Sphire (mindestens) drei einfach geschlossene Geoditische gibt, auf
jeder topologischen 3-Sphiare mindestens vier “minimale 2-Sphéaren”, usw. Dabei wird
man jedoch auf Variationsprobleme in Funktionenriumen gefiihrt, zu deren Behandlung
es recht aufwendiger analytischer Methoden bedarf. Variationsmethoden sind auch bei
aktuellen Fragestellungen in der Geometrie und in der Theorie der dynamischen Systeme,
speziell der Himmelsmechanik, ein wichtiges Hilfsmittel.

Im anschliessenden Literaturverzeichnis sind einige einfithrende Werke aufgefiihrt, die
einen Uberblick iiber das Gebiet der Variationsrechnung vermitteln und deren Biblio-
graphien eine Ubersicht iiber die umfangreiche Forschungsliteratur zu diesem Thema
bieten.
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