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Sattelpunkte oder
Variationsprinzipien in Geometrie und Mechanik

Michael Struwe

Michael Struwe wurde 1955 in Wuppertal geboren. Er hat 1980 an der Universität
Bonn promoviert. Seit 1986 ist er Professor für Mathematik an der ETH Zürich.
Seine Spezialgebiete sind partielle Differentialgleichungen und Variationsrechnung.

1 Einleitung
Der Kreis umschliesst unter allen einfach geschlossenen Kurven in der Ebene zu gegebenem

Umfang den grössten Flächeninhalt. Die Bahnen der Planeten folgen dem "Prinzip
der kleinsten Wirkung" (Maupertuis); Lichtstrahlen wählen den optisch kürzesten Weg
(Fermât). Dem Betrachter scheint es, als wären die Objekte der klassischen Geometrie
ebenso wie alle Naturvorgänge durch ihre Optimalität bestimmt; Leibniz folgert kühn,
wir lebten in der "besten aller möglichen Welten". Die bodenständige Antwort auf diese

These Hess in Gestalt von Voltaire's "Candide" nicht lange auf sich warten. Auch aus

Viele Fragen, sei es in Pin sik. Biologie oder Wirlschaft. lassen sich auf I ¦.xlrcmalaufga-
ben zurückführen, und viele Nalurvorgängc lassen sich mil Hilfe von Varialionsprinzi-
pien beschreiben. I )as "Prinzip der kleinsten Wirkung" der Pin sik das isoperimetrische
Problem der Geometrie, das "traveling salesman" Problem des Operation Research und

Oplimicrungsvorschlägc zur Steigerung der Effizienz öffentlicher Verwaltungen sind

nur einige wenige Beispiele, die diese Aussage belegen. Ist in einem solchen Problem
eine quantilizierbarc Grössc extremal oder allgemeiner stationär zu machen, so sind
natürlich mathematische Methoden besonders gefragt. Variationsproblcmc. kontinuierliche

und diskrete, treten aus diesem Grund in dcranwendungsorienlicrtcn Mathematik
außerordentlich häufig auf. I >ie Mathematik ist im Laufe der theoretischen Beschäftigung

mit diesem Gegenstand zu tiefliegenden Einsichten gelangt, vor allem im
kontinuierlichen Fall, und viele der heule verwendeten expliziten Berechnungsmethoden
basieren wesentlich auf diesen Erkenntnissen. In seinem Beitrag gehl Michael Slnrwe
auf die theoretische Seite des Gebietes näher ein und zeigt, wie sich hier in reizvoller
Weise A nah sis. Geometric und Topologie begegnen. Der Artikel basiert auf Vorträgen
des Autors an der Lchrcrfortbildungsakadcmic in Dillingcn im November 1995 und

im Kolloquium über Mathematik. Informatik und Unterricht an der ETH Zürich im
November 1996. usi
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mathematischer Sicht lässt sich der Anspruch, alle Naturvorgänge Hessen sich durch
Extremalprinzipien beschreiben, nicht halten. Wie könnten zum Beispiel von einem Punkt

ausgehende Lichtstrahlen durch eine Linse in einem zweiten Punkt fokussiert werden und
hinter diesem Brennpunkt auseinanderlaufen, wenn alle Lichtstrahlen optisch kürzeste

Verbindungen aller auf ihnen liegenden Punkte sein sollten?

Dennoch liefern Variationsprinzipien, die Naturphänomene als "kritische Punkte"
gewisser Wirkungsfunktionen deuten, eine nahezu umfassende Beschreibung der uns
umgebenden Welt. Der Begriff des "kritischen Punktes" muss dazu jedoch weiter gefasst
werden.

Betrachten wir als Beispiel die periodische Bewegung eines Massenpunktes in einem
konservativen Kraftfeld. In die Sprache der Geometrie übersetzt, handelt es sich um eine

geschlossene "Geodäte" auf einer "Energiehyperfläche" im "Phasenraum", der die
Ortskoordinaten und die Komponenten des Geschwindigkeitsvektors des Teilchens enthält.

Als Modell für die allgemeine Situation betrachten wir die Sphäre

S {(x,y,z) GK3;x2 + y2 + z2 1}.

Geodäten auf S sind Grosskreisbögen, zum Beispiel Abschnitte der Längenkreise oder
des Äquators. Die kürzeste Verbindung zwischen zwei Punkten auf der Sphäre ist stets

eine Geodäte - daher führen manche Flugverbindungen von Europa nach Asien über
den Nordpol. Jedoch ist nicht jede geodätische Linie auch kürzeste Verbindung ihrer
Endpunkte; man gelangt viel schneller von Frankfurt nach Zürich, indem man ein kurzes

Stück auf dem gemeinsamen Längenkreis nach Süden fliegt, als durch Wahl des

komplementären Bogens auf demselben Längenkreis, welcher über die Pole führt.
Insbesondere ist eine geschlossene Geodätische, ein Grosskreis, wo Anfangs- und Endpunkt
zusammenfallen, nicht die kürzeste Verbindung zwischen diesen Punkten. Geschlossene
Geodäten sind im allgemeinen auch nicht kürzer als jede hinreichend nahe bei ihnen
gelegene geschlossene Kurve; zum Beispiel ist der Äquator auf S länger als jeder beliebig
nahe beim Äquator gelegene Breitenkreis.

Geschlossene Geodäten auf S sind "Sattelpunkte" der Längenfunktion: Innerhalb einer
Schar von Vergleichskurven (den Breitenkreisen) sind sie die längsten, in einer anderen
Schar die kürzesten Kurven in der jeweiligen Klasse.

Hier bereits erkennen wir einen fundamentalen Unterschied zu den aus der Schule
bekannten Extremwertaufgaben für Funktionen nur einer einzigen reellen Variablen. Während

letztere im allgemeinen nur Minima und Maxima als kritische Punkte zulassen,
besitzen Funktionen, die von zwei oder mehr Variablen abhängen, zusätzlich kritische
Punkte allgemeineren Typs.

Bei den oben erwähnten Problemen haben wir es sogar mit Funktionen zu tun, die von
unendlich vielen Variablen abhängen, da man zum Beispiel jeden Punkt einer Bahn
auf der Sphäre als eine Variable ansehen kann. In solchen Fällen kann es vorkommen,
dass eine Funktion nur Sattelpunkte als kritische Punkte besitzt. Die oben betrachtete

Längenfunktion ist zum Beispiel nach oben unbeschränkt, da es zwischen je zwei Punkten
auf der Sphäre beliebig lange Verbindungskurven gibt; sie besitzt also kein Maximum.
Viele Probleme der klassischen Mechanik werden sogar durch Funktionen beschrieben,
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die nach oben und unten unbeschränkt sind und daher weder Minimum noch Maximum
besitzen.

Sattelpunkte spielen in der Mathematik, insbesondere in der Geometrie, und in deren

Anwendungen auf Probleme der Mechanik eine fundamentale Rolle.

Kehren wir zurück zu den Geodäten auf S. Die betrachtete Situation ist aufgrund der

Symmetrie der Sphäre hochgradig entartet; jeder Grosskreis auf S ist eine geschlossene
Geodäte. Sucht man jedoch einfach geschlossene Geodäten auf dem Ellipsoid

9 9 9Y M 7

mit Halbachsen 0 < a < b < c, so findet man nur die drei Schnittkurven von Sabc mit
den Symmetrie-Ebenen {x 0}, {y 0} oder {z 0}. Durch Projektion in die Ebene

{z 0} gehen diese über in die elliptische Randkurve eines ebenen "Billards" und ein
Paar gerader Linien, die diese Randkurve senkrecht treffen und nach dem Stoss an der
"Bande" in sich zurücklaufen, vgl. Abbildung 1.

^ y

Abb. 1

Wiederum erhalten wir im "entarteten" Fall a b c 1 unendlich viele derartiger
Linien, nämlich alle Geraden durch den Mittelpunkt des Einheitskreises. Analog zu dieser
Situation sprechen wir daher auch im allgemeinen Fall von "Durchmesserlinien".

Die Aufgabe, in einem ebenen Billard alle Durchmesserlinien zu finden, ist also ein
Spezialfall der Aufgabe, alle einfach geschlossenen Geodäten auf einer geschlossenen
Fläche im Raum zu finden, und verwandt mit dem Problem der Bestimmung periodischer
Bahnen mechanischer Systeme. Im Unterschied zu letzteren Aufgaben führt jedoch die

Frage nach den Durchmesserlinien eines ebenen Billards auf ein endlich-dimensionales

Variationsproblem mit nur zwei unabhängigen Variablen, welches wir mit einfachen
Mitteln vollständig analysieren können und welches bereits alle wesentlichen Phänomene

der allgemeinen Situation illustriert.

Im folgenden stellen wir zunächst die nötigsten Begriffe bereit und entwickeln Methoden,

wie man im Endlichdimensionalen Sattelpunkte charakterisieren kann. Dabei wird
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eine tiefgreifende Beziehung offenbar zwischen Anzahl und Art der Sattelpunkte einer
Funktion und gewissen "topologischen" Eigenschaften des Definitionsbereichs, die wir
ausnutzen, um für unser Modellproblem einen allgemeinen Satz über die Anzahl der
Durchmesserlinien in einem ebenen Billard zu folgern.

2 Konzepte und Definitionen
Der Einfachheit halber betrachten wir in diesem Abschnitt nur beliebig oft differenzierbare

"glatte" Funktionen /: R2 —> R in zwei reellen Veränderlichen. Analog kann
man reelle Funktionen in n Variablen oder Funktionen auf Gebieten, Hyperflächen und
Untermannigfaltigkeiten des R" behandeln.

Bezeichnen wir die Koordinaten in der euklidischen Ebene wie üblich mit den Symbolen
x und y, so können wir die partiellen Ableitungen von / in einem Punkt (x0, i/o) £ K2

bilden, indem wir die nach der reellen Variablen t differenzierbaren Hilfsfunktionen
t i-*- ip(t) f(x0 + t,y0), bzw. t i-s- ip(t) f(xo,yo + t) einführen und setzen

^(*o,l/o) ^

Der Gradient von / im Punkt (xo, i/o) ist der Vektor

V/(Xo,l/o)

Von besonderer Bedeutung für das folgende ist die Kettenregel: Für jede glatte Kurve
7:R —> R2 mit Komponenten j(t) (7!(0>72(0) ist die zusammengesetzte Funktion

definiert durch (/ o j)(t) f(j(t)) für alle t, differenzierbar, und es gilt

jt t))-jtl(t). (1)

Dabei bezeichnet a ¦ b albl + a2b2 das Skalarprodukt der Vektoren a (a1,a2), b

(b1,b2) G R2; das heisst, j-t{f °l){t) lässt sich auch in der Form

schreiben.

Sei V/(xo,i/o) ^ 0. Mittels (1) können wir V/(xo,J/o)/|V/(xo,i/o)| als die "Richtung
steilsten Anstiegs" der Funktion/ deuten: Unter allen Kurven 7:R —s- R2 mit 7(0)
(xo,i/o) und |^7(0)| 1 ist die Zuwachsrate ^(/°7)(0) am grössten, falls
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Abb. 2

Besonders anschaulich wird dies, wenn wir uns den Graphen von/ als ein Geländerelief

(ê(f) {(x,yJ(x,y));(x,y)eR2}

im 3-dimensionalen Raum vorstellen, indem wir f(x,y) als die "Höhe" eines Punktes

mit ebenen Koordinaten (x,y) deuten, siehe Abbildung 2. Die Punkte (xo,yo) e R2

mit V/(xo,i/o) 0 bezeichnen wir als "kritisch". Sie entsprechen in diesem Bild genau
den Punkten von cê(f) mit horizontaler Tangentialebene; ein imaginärer (punktförmiger)
Wassertropfen verharrt an diesen Punkten in Ruhe, während er von einem Punkt mit
V/(xo,i/o) ^ 0 unter Einwirkung der Schwerkraft in Richtung des negativen Gradienten
fortfliesst. Das Bild einer Wasserströmung auf dem Relief cê(f) erlaubt nun eine weitere

Einteilung der kritischen Punkte von / in "Quellen", von denen das Wasser wegfliesst,
"Senken", in denen sich das Wasser sammelt, und "Sattel", an denen sich die Strömung
teilt. Mathematisch entsprechen Quellen natürlich den relativen Maxima von /, also den
Punkten z0 (xo,yo), so dass für alle z (x,y) in der Nähe von z0 die Beziehung

/(z) </(zo) gilt. Analog entsprechen Senken den relativen Minima z0 von/mit/(z) >
/(z0) für alle z nahe z0.

Das lokale Verhalten von / in der Nähe eines Sattelpunktes kann im allgemeinen sehr

kompliziert sein. "Generisch" verhält sich jedoch eine glatte Funktion / in der Nähe
eines Sattelpunktes (gegebenenfalls nach Verschiebung des Nullpunktes, Drehung des

Koordinatensystems und Streckung der Koordinatenachsen) wie die Funktion

-f), (2)

deren Richtungsfeld V/(x,y) (x,—y) auch eine gute Vorstellung vom Strömungsverlauf

in der Umgebung eines solchen "nicht entarteten" Sattelpunktes liefert.

Sattelpunkte lassen sich im allgemeinen nicht durch Störung von / beseitigen sondern

nur verschieben. Dies kann man auch experimentell leicht verifizieren, indem man das

Höhenrelief <S(/) einer Funktion / mit einer Plasticplane modelliert, auf die man Wasser

oder Sand "regnen" lässt. Sattelpunkte sind daher wesentlich verschieden von den

"Stufenpunkten" reeller Funktionen /: R —s- R, die man durch beliebig kleine Störungen
beseitigen oder in ein Paar von relativen Minima und Maxima auflösen kann.

Schliesslich definieren wir noch: ß e R heisst kritischer Wert für /, falls es einen
kritischen Punkt z0 von / gibt mit /(z0) ß; sonst heisst ß ein regulärer Wert von /.
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3 Kritische Punkte und "Topologie"
Über die Existenz von Minima und Maxima glatter Funktionen gibt der folgende Satz

von Weierstrass erschöpfend Auskunft.

Satz: (Weierstrass) Eine stetige Funktion f: S

stets ein Minimum und ein Maximum.

: aufeiner kompakten Menge S besitzt

Beispiele für kompakte Flächen im K3 sind die Sphäre, der Torus oder der g-Torus
mit g Löchern, g > 2. "Legen" wir diese Flächen geeignet in den 3-dimensionalen
Raum und betrachten die z-Koordinate eines Punktes als unsere Funktion f:S —> R,
so sehen wir, dass eine Funktion auf der Sphäre im allgemeinen nur zwei kritische
Punkte (mit horizontaler Tangentialebene an S) besitzt, und zwar die vom Satz von
Weierstrass geforderten Minima und Maxima. Eine Funktion auf dem Torus hat jedoch
im allgemeinen, scheint es, noch zusätzlich zwei Sattelpunkte, und für jedes weitere
Loch, welches S aufweist, kommt ein weiteres Paar von Sattelpunkten hinzu; siehe

Abbildung 3.

\ r

Abb. 3

Gibt es also eine Beziehung zwischen der "Topologie" einer Menge (welche im
vorliegenden Beispiel bequem durch die Zahl der Löcher charakterisiert werden kann) und der
Zahl der Sattelpunkte, die jede auf dieser Menge definierte Funktion (mindestens) haben
muss? Und schliesslich: Gibt es ein systematisches Verfahren, um diese Sattelpunkte,
wenn es sie gibt, zu finden? - Diesen Fragen wollen wir in den nächsten Abschnitten
nachgehen. Damit das Vorhaben unsere Mittel nicht übersteigt, beschränken wir uns dabei

im wesentlichen auf den Torus, den wir auch erhalten können, indem wir auf dem

Einheitsquadrat Q {(x,y) G R2;0 < x,y < 1} gegenüberliegende Punkte auf dem
Rande identifizieren, vgl. Abbildung 4.

\ <=V /

Abb. 4
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Beachten wir nun noch, dass eine in beiden Variablen mit der Periode 1 periodische
Funktion /: R2 —> R durch ihre Werte auf Q vollkommen bestimmt ist, und dass wir
umgekehrt jede Funktion /: Q -> R mit /(0,i/) /(l,y) sowie f(x, 0) /(x, 1) für
0 < x,y < 1 periodisch zu einer doppelt periodischen Funktion/:R2 —> R fortsetzen
können, so entspricht das Studium reeller Funktionen auf dem Torus der Untersuchung
doppelt periodischer Funktionen /: R2 —s- R mit

f(x+k,y+l)=f(x,y)fäik,leZ;
wir schreiben hierfür auch /: R2/Z2 —> R. Später werden wir sehen, dass diese Periodi-
zitätsbedingung im eingangs formulierten Modellproblem erfüllt ist.

4 Der Gradientenfluss
Einen systematischen Zugang zum Problem, alle kritischen Punkte, insbesondere die

Sattelpunkte einer gegebenen Funktion/ zu finden, erhalten wir, indem wir unser obiges
Bild von einer dem Gefalle folgenden Strömung auf dem durch den Graphen von /
gegebenen Höhenrelief formalisieren.

Der Einfachheit halber beschränken wir uns auf doppelt periodische glatte Funktionen

/: R2 —> R. Der Gradient von / definiert das (ebenfalls doppelt periodische) Richtungsfeld

e -V/:R2 -^R2.

Zu gegebenem Anfangspunkt z0 (xo,J/o) bestimmen wir die Integralkurve 7
7(-;zo):R —? R2 von e durch z0 als Lösung des Anfangswertproblems

jp (3)

7(0) z0. (4)

Die Existenz und Eindeutigkeit von 7 folgt aus allgemeinen Sätzen über gewöhnliche
Differentialgleichungen. Insbesondere gilt aufgrund der Eindeutigkeit der Lösung von
(3), (4) für alle z0 (x0,1/0) € R2 und s, t £ R die Beziehung

7(s;7(f;zo))=7(s + f;zo); (5)

das heisst, die Bahn durch den Punkt 7(f;z0) ist die um t zeitverschobene Fortsetzung
der Bahn durch den Punkt z0. Weiter gilt aufgrund der Periodizität von e für alle z0

(xo,yo) £ R2 und alle (fc,/) e Z2

7(f; (xo + k,yo + l)) 7(f; (xo,i/o)) + (k,l). (6)

Um ein qualitatives Bild vom Verlauf dieser Bahnen in der Nähe eines kritischen Punktes

zu erhalten, betrachten wir als Beispiel die Funktion /: R2 —s- R, gegeben durch

),(x,y)€
z,

mit Parametern a^ei
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Das durch / definierte Richtungsfeld e: K2 —> K2 hat die Darstellung

e(x,y) -Vf(x,y) (-ax, -ßy).

Bezeichnen wir die Komponenten der durch (3), (4) bestimmten Kurve 7 durch einen
Punkt Zo (xo,i/o) mit7(f) (x(t),y(t)), so geht (3), (4) über in das Paar gewöhnlicher
Differentialgleichungen

—x -ax, x(0) x0; ^y -ßy, y(0) y0.

Als Lösung erhalten wir

„-erf
yoe

Speziell für die Fälle a ß=\, a ß=—\ und a= l,ß —1 ergeben sich somit
die typischen Bilder des Strömungsverlaufs in der Nähe einer Senke (Minimum), einer

Quelle (Maximum), beziehungsweise eines Sattels; siehe Abbildung 5.

\ x

f

1

/

4

1

4

\ ^
\

\ \
O

Abb. 5

Jede Lösung 7 7(; z0) von (3), (4) lässt sich deuten als Stromlinie eines Teilchens, das

sich zur Zeit t 0 an der Stelle z0 befindet; andererseits definiert die Gesamtheit aller
dieser Bahnen eine vom Parameter t abhängige Schar von Abbildungen $(-,f):K2 —s- K2,
indem wir für jedes tel definieren

Da $(•, t) aufgrund von (6) für festes t mit Verschiebungen um (k,l) G I? vertauscht,
können wir $(-,f) auch als Abbildung $(-,f):K2/^2 -^ K2/Z2 auffassen, das heisst,
als eine Transformation des Toms.

Sehen wir nun sowohl z als auch t als variabel an, so erhalten wir eine Abbildung
$:I2xR^ K2, den Gradientenfluss zu /, welcher sowohl die Schar von Abbildungen
($(•, t))teu. als auch die individuellen Stromlinien 7(;z0) $(z0, •) durch jeden Punkt
Zo G K2 erzeugt. Da wir / als glatt voraussetzen, ist auch $ eine glatte Funktion in allen
Variablen.
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Weiter können wir (3), (4) äquivalent ausdrücken durch die Bedingung

—$ eo$, $(-,0) id.

Schliesslich besitzt die Schar ($(-,f))t aufgrund von (5) die Eigenschaft

(7)

(8)

Insbesondere ist jede Abbildung $(•, t) stetig invertierbar mit $(•, t) l $(•, —t); das

heisst, $(-,f) ist ein Homöomorphismus.

Analog erhält man für glatte Funktionen / auf einer Fläche S einen Gradientenfluss

$: S xK-»S mit den obigen Eigenschaften.

5 Minimax-Prinzip
Mit Hilfe des Gradientenflusses $:SxI^S zu/: S —> R kann man nicht nur einzelne
Punkte sondern auch Teilmengen von S "transportieren". Geeignete Mengen bleiben
dabei an Sattelpunkten "hängen".

Um dies zu veranschaulichen, betrachten wir als Beispiel für S einen in R3 eingebetteten
Torus, / die z-Koordinate eines Punktes. Sei Ao a0 (R) Bild einer geschlossenen Kurve

a0: R —*¦ S auf S, die sich auf S nicht in einen Punkt "zusammenziehen" lässt.

Dann erhalten wir eine Schar derartiger Mengen, indem wir setzen

At $(A0, t) at(R),at $(•, t)oa0.

Wir erwarten, dass für t —*¦ oo die Schar At gegen eine Grenzkurve
im tiefsten Sattelpunkt um den Torus schlingt; siehe Abbildung 6.

strebt, die sich

Abb. 6

Allgemeiner definieren wir eine Familie si von Teilmengen A c S als (vorwärts-) $-
invariant, falls $(A, t) G si für alle A e si und t > 0.

Offenbar ist sä {S} eine ^-invariante Familie, ebenso si {{z};z € S}. Jede Menge
A Ao erzeugt wegen (8) eine ^-invariante Familie

si {<S>(A,t);t >0}.
Nun können wir das Hauptresultat dieses Abschnitts formulieren.
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Minimax-Prinzip. Sei f: S —> R eine glatte Funktion auf der kompakten Fläche S, $
der Gradientenfluss zu f, und sei si eine ^-invariante Familie in S.

Dann ist
ß inf sup/(ö)

AesiaeA

ein kritischer Wert von f.
Zum Beispiel erhalten wir im Falle si {S} den kritischen Wert

ß max/(ö);

im Falle si {{a};a G S} hingegen

ß min/(fl).

Falls S der Toms ist, erwarten wir zudem, mit der am Anfang dieses Kapitels beschriebenen

Konstruktion auch kritische Werte ß_ < ß < ß zu erhalten, welche Sattelpunkten
entsprechen.

Zuvor wollen wir jedoch zumindest für den Fall des Torus einen Beweis des

Minimaxprinzips angeben. Sei also /: K2 —> R doppelt periodisch, si eine ^-invariante
Familie. Wir argumentieren indirekt und nehmen widerspruchsweise an, ß sei regulär.

Es folgt, dass für eine geeignete Zahl e > 0 und alle zel2 gilt:

|2>e. (9)

Andernfalls gäbe es eine Folge von Punkten zn G R2 mit

^oo). (10)

Wegen der Periodizität von / dürfen wir annehmen, dass die Folge (z„) beschränkt
ist. Aufgrund des Satzes von Weierstrass besitzt (z„) dann einen Häufungspunkt z, und
es gibt eine Teilfolge (z„)„£a mit z„ —> z(n —*¦ oo,n e A). Grenzübergang in (10)
für n -^ oo,n e A liefert dann wegen der Stetigkeit von / und V/ die Gleichung
/(z) ß, V/(z) 0; das heisst, ß ist kritisch, im Widerspruch zu unserer Annahme.
Damit ist (9) gezeigt.

Für A G si mit
sup/(fl)</3 + e (11)
aeA

und alle a e A mit

M>ß-e (12)

folgt nun aus (1), (7) und (9)

|2 < -e. (13)

Insbesondere gilt (11) auch für alle Mengen At 3>(A, t),t >0.
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Beachte nun, dass At e si für alle t > 0, da si nach Voraussetzung ^-invariant ist.
Somit gilt nach Definition von ß auch stets

ß(t): sup/(ö) >ß,
aeAt

und zur Bestimmung von ß(t) muss man nur Punkte a e At berücksichtigen, die auch

(12) und daher (13) erfüllen.

Es folgt, die Funktion t i-s- ß(t) ist monoton fallend, und

Nach der Zeit t=\ erhalten wir den Widerspruch

ß < ß{\) sup f(a) < ß(0) - e sup/(fl) - e < ß. D

Die Anwendung des Minimaxprinzips für reelle Funktionen auf dem Torus wollen wir
nun anhand unseres Modellproblems illustrieren.

6 Anwendung auf Modellproblem
Sei T die Randkurve eines konvexen ebenen Billards, parametrisiert durch eine glatte
Abbildung 7: R —> K2 mit 7(x+1) 7(2:) für alle x. Weiter nehmen wir an, dass 7 nach

Bogenlänge parametrisiert ist, das heisst, |7'(x)| 1 für alle x, und dass 7 im Intervall
[0,1[ injektiv ist, also keine Doppelpunkte besitzt. Wir identifizieren "Bahnen" zwischen
Punkten p 7(2:) und q 7(1/) auf T mit dem Paar (x,y). Aufgrund der Periodizität
von 7 liefern Paare (x,y), bzw. (x',i/) e M2 dieselbe Bahn, falls (x - x',y - y') e Z2;

vgl. Abbildung 7.

Abb. 7

Offenbar geht eine Bahn (x,y) nach Reflexion in Y in sich über, falls die

Verbindungsgerade von 7(x) nach 7(1/) den Rand senkrecht trifft, das heisst, falls gilt

(7(y) - 7W) • 7'(x) (7(y) - 7W) • 7'(y) o. (14)
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Sei nun /: R2 --> R definiert durcl

Elem.

1

j\j.,y) —

Aufgrund der Penodizität von 7 ist /
weist / die folgende Symmetrie auf

Weiter gilt:
df( •) (•

Math. 52 (1997)

1
2

doppelt penodisch,

y)=f(y,x).

T(x)-7(y))-7'(x),

n>2 /rp2K /A —*¦ R. Zusätzlich

(15)

das heisst, Durchmesserlinien gehören zu kritischen Punkten von /.
Betrachten wir zunächst die Maxima und Minima von /. Offenbar gilt f(x, y) > 0 für
alle (x, y), und f(x,y) 0 genau dann, wenn x — yeZ. Die Minima von/ entsprechen
also genau den konstanten "Bahnen", wo die Kugel an einem Randpunkt des Billards
liegenbleibt. Diese "Bahnen" sind natürlich für uns nicht von Interesse

Der Satz von Weierstrass liefert uns hingegen auch ein Paar (x, y) z mit

/(z) max/(z) ß.

Geometrisch entspricht (x,y) der längsten Durchmesserlinie L oder der Richtung, in
welcher F die maximale "Dicke" aufweist. Aufgrund der Penodizität von / finden wir
unendlich viele weitere Maxima, die aus (x, y) oder (y, x) durch Translation mit einem
Paar (k,l) e I? hervorgehen; diese entsprechen jedoch alle derselben Durchmesserlinie.

Finden wir mit Hilfe des Minimaxprinzips hiervon auch geometrisch verschiedene
weitere kntische Punkte von /?
Um das Minimax-Prinzip einzusetzen, müssen wir eine geeignete Familie von Mengen
finden, die unter dem Gradientenfluss invanant ist. Zum Beispiel können wir als sä. die
Familie der Mengen A a([0,1]) definieren, wobei a: [0,1] —> R2 ein stetiger "Weg"
ist, der zwei fest gewählte Minima a(0) (xo,xo) zo,a(l) (x\,X\ + 1) Zi in
verschiedenen "Zusammenhangskomponenten" der Menge {(x,x + k);x e R,k e Z}
der Minima von/ miteinander verbindet, vgl Abbildung 8

Abb. 8
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Offenbar gilt 3>(zo, t) Zo, 3>(zi, t) Z\ für alle t. Daher ist mit a auch $(•, f) o a ein
Weg von z0 nach Zi, und die so definierte Familie ist "^-invariant. (Anstelle der Bedingung
a(0) Zo, a(l) Zi mit festen Punkten Zo,Zi könnten wir auch lediglich verlangen,
dass a(0) (x,x),a(l) (y,y+l) für irgendwelche x, y £ R; auch dies liefert eine
(l'invariante Familie von Mengen A a([0,1]), welche die Gerade Zo {(x,x);x G R}
mit der Geraden Z\ {(x,x + l);x e R} verbinden.)

Auf jedem derartigen Weg muss ein "Wall" der Mindesthöhe

ß inf sup/(fl) > inf f(x, x + -) > 0

überschritten werden, und aufgrund des Minimax-Prinzips ist ß ein kritischer Wert.

Im allgemeinen ist der so gefundene Wert ß strikt kleiner als ß, entspricht also einer
Durchmesserlinie L, welche kürzer ist als L und damit von L verschieden.

Was kann man jedoch aussagen, falls ß ß max/ In diesem Fall trifft jeder
Weg von Zo nach Zi auf ein Maximum von /; insbesondere lassen sich dann zwei
Maxima z0 (x,y) und Zi (x + l,y+ 1) in der Menge der Maxima "verbinden".
Geometrisch bedeutet dies, es gibt Durchmesserlinien in jeder Richtung, welche alle
dieselbe (maximale) Länge besitzen. (Jedoch folgt hieraus nicht, dass F ein Kreis ist.

Der Wankelmotor zum Beispiel benützt zu seiner Funktion, dass auch eine aus drei

Kreisbögen von je 60° zusammengefügte Kurve konstante Dicke aufweist.)

In jedem Fall zeigt unser Argument jedoch, dass eine ebene Kurve stets (mindestens)
zwei Durchmesserlinien besitzt.

7 Topologische Betrachtungen
In Abschnitt 3 haben wir vermutet, es könne eine Beziehung geben zwischen der Zahl
der Sattelpunkte einer Funktion /: S —> R und der "Topologie" von S. Im Falle des

ebenen Billards ist nun bereits das Niveau des Minimums / 0 hochgradig entartet,
und es gibt unendlich viele "triviale" kritische Punkte. Jedoch wollen wir hier versuchen,
eine topologische Beziehung aufzudecken, die uns im Fall des ebenen Billards ein Paar

von nicht trivialen kritischen Punkten liefert. Wesentlich ist die folgende Beobachtung.

Die in Abschnitt 6 untersuchte Funktion /: R2 —> R weist neben der doppelten Periodi-
zität auch noch die Spiegelinvarianz

f(x,y)=f(y,x)

als weitere Symmetrie auf. Daher ist / bereits durch die Werte auf dem Bereich D
{(x,y) gR2;0 <x < y < 1} vollkommen bestimmt, dessen Randpunkte zudem durch

/ folgendermassen "identifiziert" werden

/(x,x) 0, /(0,y) =/(y,0) =/(y,l), 0 < x,y< 1.

Kollabieren wir die Punkte auf der Diagonalen Zo {x y} in einen einzigen Punkt

po, so geht der Bereich D über in einen Kreis, wobei / in einander gegenüberliegenden
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"Antipoden" auf dem Rand dieselben Werte annimmt. Nun verformen wir den Kreis zu
einer Halbsphäre S+ und vervollständigen S+ durch "Ankleben" einer zweiten Sphärenkappe

zur Sphäre S C R3, wobei wir / durch die Festsetzung f(p) f(—p) auf S

fortsetzen. Nach dieser Operation erhalten wir eine Abbildung /: S —*¦ R, die in jedem
Paar von Antipoden denselben Wert annimmt und nur in einem einzigen Paar von Punkten

(p0, —p0) verschwindet. Da Paare von Antipoden (p,—p) auf S genau den Geraden
durch den Koordinatenursprung in R3 entsprechen, deren Gesamtheit den "projektiven
Raum" P2R bildet, erkennen wir auf diesem Wege, dass unser Modellproblem "topolo-
gisch" zu dem Problem äquivalent ist, kritische Punkte von Funktionen /: P2R -
finden; vgl. Abbildung 9.

zu

Abb. 9

Der Grund dafür, dass solch eine Funktion ausser dem stets vorhandenen Minimum und
Maximum noch mindestens einen weiteren kritischen Punkt besitzt, wird am ehesten

ersichtlich, wenn wir zum Bild einer Funktion /: S —> R zurückkehren, welche die

Symmetriebedingung /(p) =/(-p) für alle p G S erfüllt.

Der von / erzeugte Gradientenfluss $ weist eine dazu passende Symmetrie auf, und
zwar gilt

für alle p e S, t G R. Folglich erzeugt eine Kurve a: R

a(s + 1/2) -a(s)

S mit

(16)

eine Schar at $(•,£) o a von Kurven, die dieselbe Symmetrie aufweisen, und die

zugehörige Familie si {at(M);t > 0} ist ^-invariant. Offenbar verhindert die

Bedingung (16), dass sich die Kurven at zusammenziehen, und mit dem Minimaxprinzip
erhalten wir einen weiteren kritischen Wert. Fällt dieser Wert mit dem Minimum oder
dem Maximum von / zusammen, so gibt es unendlich viele Minima, bzw. Maximalstellen

von /. Im Falle unseres Modellproblems haben wir alle Minima zu einem einzigen
Antipodenpaar kollabiert; daher kann es in diesem Fall nur unendlich viele Maxima, also

nicht triviale Lösungen, geben.

Kurven a:R —s- S, die der Bedingung (16) genügen, entsprechen übrigens genau den

nicht zusammenziehbaren Kurven auf P2R.
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8 Verallgemeinerungen, Ausblick
Mit ähnlichen Konzepten wie den hier vorgestellten beweist man, dass es aufjeder Fläche

in K3 vom Typ der Sphäre (mindestens) drei einfach geschlossene Geodätische gibt, auf
jeder topologischen 3-Sphäre mindestens vier "minimale 2-Sphären", usw. Dabei wird
man jedoch auf Variationsprobleme in Funktionenräumen geführt, zu deren Behandlung
es recht aufwendiger analytischer Methoden bedarf. Variationsmethoden sind auch bei
aktuellen Fragestellungen in der Geometrie und in der Theorie der dynamischen Systeme,

speziell der Himmelsmechanik, ein wichtiges Hilfsmittel.

Im anschliessenden Literaturverzeichnis sind einige einführende Werke aufgeführt, die

einen Überblick über das Gebiet der Variationsrechnung vermitteln und deren
Bibliographien eine Übersicht über die umfangreiche Forschungsliteratur zu diesem Thema
bieten.
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