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Coxetergruppen

Ruedi Suter

Ruedi Suter wurde 1963 in Ziirich geboren. Sein Mathematikstudium an der ETH
Zirich schloss er 1987 mit dem Diplom ab; seine zahlentheoretische Diplomarbeit
wurde mit einer ETH-Medaille ausgezeichnet. Er war anschliessend als Assistent
an der ETH titig und promovierte 1994 mit einer Dissertation tiber Darstellungen
von Quantengruppen. Es folgte ein einjahriger Forschungsaufenthalt am MIT. Ruedi
Suters mathematische Interessen sind weitgespannt, zur Zeit richten sie sich vor allem
auf die Gebiete Algebra, Zahlentheorie und mathematische Physik. Ein grosser Teil
seiner Freizeit gehort dem Klavierspiel, besonders gerne spielt er Kompositionen
von Beethoven, Chopin und Schubert.

1 Einleitung

Symmetrien haben die Menschen schon immer fasziniert. In der Tat scheinen Figuren mit
Symmetrie einem dsthetischen Grundbediirfnis des Menschen entgegenzukommen. Dies
kann man bereits an ganz einfachen Beispielen feststellen. Jede der folgenden beiden

' Schon immer haben Malerei und Architektur von der starken asthetischen Wirkung

! der algeb ppen |
In seinem Beitrag gibt Ruedi Suter zuerst einen Uberblick iber |
oxetergruppen und behandelt anschliessend mit elementaren Mitleln
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Figuren kann um ihren Mittelpunkt um ganzzahlige Vielfache von 72° gedreht werden,
ohne dass sich ihr Aussehen dndert.

Wihrend damit beim Kranz schon alle Symmetrien ausgeschopft sind, hat das Penta-
gramm als Symmetrien noch die Spiegelungen an den Symmetricachsen. Ja, man erhalt
jede Symmetrie des Pentagramms, indem man Spiegelungen an den Symmetrieachsen
nacheinander ausfiihrt. Der vorliegende Artikel handelt von den Symmetrien dieses Typs,
Symmetrien, welche sich durch Zusammensetzen von Spiegelungen beschreiben lassen.
Die Symmetrien, welche eine Figur aufweist, werden mathematisch durch eine Gruppe
beschriecben. Diese besteht aus den Symmetricabbildungen, also aus allen Transforma-
tionen, welche die Figur in sich iiberfithren. Unter den Gruppen, die auf diese Art auf-
treten, spielen mathematisch und in Anwendungen diejenigen eine ausgezeichnete Rolle,
die durch Spiegelungen erzeugt werden. Man nennt solche Gruppen heute allgemein
Coxetergruppen; von ihnen handelt der vorliegende Beitrag. Nach einer allgemeinen
Einfithrung in die Theorie wird am Schluss auf ein neueres spezielles Resultat einge-
gangen (siche [Mc]). — Bei der Theorie der Coxetergruppen handelt es sich um ein sehr
aktives Forschungsgebiet, das neuerdings vielfiltige Anwendungen gefunden hat, die
mit dem geometrischen Ursprung nur noch entfernt zu tun haben. Als weiterfithrende
Literatur seien die folgenden Texte empfohlen [Bo, Br, Hi, Hu].

2 Gruppen und Gruppenprisentierungen

Bekanntlich ist eine Gruppe eine Menge G zusammen mit einer Verkniipfungsvorschrift
GxG — G, welche den Axiomen der Assoziativitit, der Existenz eines Neutralelementes
e und der Existenz der Inversen geniigt.

Gruppen lassen sich auf sehr viele verschiedene Arten beschreiben. Eine fiir unsere
Zwecke besonders geeignete Moglichkeit bieten Gruppenprdsentierungen. Eine Gruppe
wird dabei durch Erzeugende und Relationen beschrieben. Das folgende Beispiel moge
als Illustration dienen. (Die Erlduterungen im allgemeinen Fall folgen anschliessend.)
Wir fixieren eine ganze Zahl n und betrachten die Gruppe G, mit der Priasentierung

G 5= <s7t ‘ 5% =Bt =t = (18t = e> :

In G, gilt ts = stst—'ts = sts> = st. Weiter ist s = 57 '8? = s~ st? = s 1st? = £,
Damit folgt
Gu={(t|t°=t"=¢e),

also
{e} fallsn=1,5 (mod6),
- {e,t} mit # =¢ fallsn=2,4 (mod6),
" ) fet, 2} mit# =¢ fallsn=3  (mod6),
{e,t, 2,2 £} mitt* =e fallsn=0  (mod6).
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Allgemein schreiben wir
G={(S|R) .

Dabei ist S eine Menge (man denke an ein méglicherweise unendliches Alphabet). Die
Elemente aus S sind Gruppeneclemente, welche die Gruppe G erzeugen. Jedes Element
w € G lasst sich als Produkt von Elementen aus S und ihrer Inversen schreiben:

w=s{'...5", WOS,...,5.€8, €1,...,6n € {1,-1}

fiir eine natiirliche Zahl #. Einen solchen Ausdruck fiir w wollen wir ein S-#ort nennen.
Fiir n = 0 ergibt sich das leere Wort; dieses ist gerade das Neutralelement e der Gruppe
G. Die Menge R ist eine Teilmenge der Menge aller S-Woérter. In der Gruppe G ist nun
jedes Wort aus R gleich dem Neutralelement von G. Die Schreibweise G = (S|R)
bedeutet genauer, dass die Gruppe G von den Elementen in S erzeugt wird und dass
jede Relation v = w zwischen zwei S-Wortern eine Konsequenz der Relationen ¥ = e
fiir r € R (und den Relationen in den Gruppenaxiomen) ist.

Es ist leicht einzusehen, dass sich jede Gruppe in Form einer Gruppenprisentierung
schreiben lésst.

Statt G = (S| R), wobei S = {s1,...,5¢} und R = {wy,...,w}, schreiben wir auch
G ={Fynele | @ =sue =W=EY B = {Fryiunly | @ =0 {F= Lal))
etc.

Vielleicht legt schon das Beispiel nahe, dass es im allgemeinen schwierig sein kann, sich
aus der gegebenen Gruppenprisentierung einen Uberblick iiber die Gruppe zu verschaf-
fen. Ja, es lassen sich tatsdchlich negative Resultate beweisen! So zeigte vor rund vierzig
Jahren P.S. Novikov, dass es eine Gruppe G = (S| R) mit endlichen Mengen S und
R gibt, fiir welche kein Algorithmus existiert, der entscheidet, ob zwei S-Worter in G
iibereinstimmen. Trotz dieser Tatsache sind Gruppenprisentierungen in vieler Hinsicht
ausserordentlich niitzlich. Dies gilt nicht nur fiir theoretische Aspekte, sondern auch fiir
rein praktische. Man denke etwa an die Computeralgebra. Hier lassen sich mit Hilfe von
Priasentierungen auch gewisse unendliche Gruppen, namlich die endlich prasentierbaren,
durch eine endliche Datenmenge beschreiben. Nachdem wir nun Gruppenprisentierun-
gen im allgemeinen kennengelernt haben, wollen wir uns im nichsten Abschnitt einer
speziellen Klasse zuwenden.

3 Coxetergruppen (Definition und einige Beispiele)

Coxeter [C1] hat als erster systematisch die Gruppen untersucht, welche durch Spiege-
lungen erzeugt sind. Nicht jede Gruppe gehort zur Klasse der Coxetergruppen, z.B. G;
und G, im obigen Beispiel oder auch die Symmetriegruppe des Kranzes in der Einlei-
tung sind keine Coxetergruppen. Die Klasse der Coxetergruppen ist dennoch geniigend
reichhaltig, um interessante Resultate zu erhalten; anderseits ist sie aber auch klein ge-
nug, dass sich sehr viele spezielle Eigenschaften beweisen lassen. Coxetergruppen treten
in ganz verschiedenen Gebieten der Mathematik auf, eine Tatsache, die gar nicht so
erstaunlich ist, wie es auf den ersten Blick erscheint.
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Definition. Eine Coxetergruppe ist eine Gruppe W mit einer Prisentierung der Form
W= <s ] (st = e (fiir s, € S mit m(s,t) # o0) ) ,

wobei m(s,s) = 1 fiirs € S und m(s,t) =m(t,s) € Z>, U {oc} fiirs,t € S, s # t. Die
Menge S (die wir stillschweigend als endlich voraussetzen wollen) heisst ausgezeichnetes
Erzeugendensystem. Thre Kardinalitit heisst der Rang von W oder besser von (W, S).

Eine Coxetergruppe ist also durch die symmetrische [S| x |S|-Matrix M = (m(s, 1)), q
gegeben, deren Diagonalelemente alle gleich 1 sind und deren ibrige Elemente in
Z>, U {0} liegen. Die Matrix M heisst die Coxetermatrix von (W, S).

Multiplizieren wir die Identitit (st)"") = ¢ von links und von rechts mit s, so folgt we-
gen s> = e, dass (ts)™*!) = e gilt. Das rechtfertigt die Beschrankung der Betrachtungen
auf den Fall einer symmetrischen Matrix M.

Beispiele (erster Teil)
Eine Coxetergruppe vom Rang 0 ist trivial, besteht also nur aus dem Neutralelement.
Fiir den Rang 1 haben wir eine Gruppe mit 2 Elementen.

Auch die Coxetergruppen vom Rang 2 lassen sich leicht konkret beschreiben. Fiir n €
Z>; setzen wir Dy, = (s,t]s? =12 = (st)" = ¢) und Do, = (s,t|s> =t = ¢). Die
Gruppe D,, hat 2n Elemente und heisst Diedergruppe der Ordnung 2n. (Der Diedergruppe
der Ordnung 10 sind wir in der Einleitung begegnet.) Die unendliche Diedergruppe Do,
ist eine unendliche Gruppe. Sie kann aufgefasst werden als Isometriegruppe von Z C R.
Die beiden Erzeugenden s bzw. ¢ entsprechen dann z.B. den Spiegelungen in den Punkten
0 bzw. % Fiir n € Z>5 lasst sich D,, als Symmetriegruppe eines regelmissigen n-Ecks
realisieren. Die beiden Erzeugenden s bzw. f entsprechen den Spiegelungen an zwei
Symmetricachsen, welche einen Winkel von 5- - 360° einschliessen. Die Gruppe D

2
heisst auch Kleinsche Vierergruppe.

Eine besonders ansprechende Art, die Information darzustellen, welche in der Matrix M
gespeichert ist, leisten die Coxeter-Dynkin-Diagramme (im folgenden kurz Diagramme
genannt). Dies sind ungerichtete, beschriftete Graphen mit der Eckenmenge S. Zwei
Ecken s,t € S sind durch eine Kante verbunden, falls m(s,t) € Z>3 U {oco}, und die
Kante trigt dann die Beschriftung (s, t) (= m(t,s)). Das Diagramm fiir die Dieder-
gruppe D, besteht also aus zwei Ecken, und fiir # > 2 sind die beiden Ecken durch
eine Kante mit Beschriftung 7 verbunden. Bei den “gebriuchlichsten” Coxetergruppen
kommen Kanten mit der Beschriftung 3 besonders hiufig vor; deshalb ist es iiblich, die
Beschriftung 3 wegzulassen. Eine Coxetergruppe heisst irreduzibel, falls das zugehdrige
Diagramm zusammenhéingend (also insbesondere auch nicht leer) ist.

Es soll nun eine grundlegende Eigenschaft von Coxetergruppen erlautert werden. Die
Coxetergruppe W habe das ausgezeichnete Erzeugendensystem S. Fiir eine Teilmenge
I C S bezeichne W; die Untergruppe von W, die von den Elementen in I erzeugt wird.
Die Gruppe W besteht also aus der Menge aller [-Worter in W. Die Untergruppen von

1) Man beniitzt den Buchstaben “W ™, weil die Weylgruppen prominente Beispiele fir Coxetergruppen sind.
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W der Form Wi heissen standard parabolische” Untergruppen. Natiirlich ist W die
triviale Untergruppe {e} von W. Es sei s € S. Was ist W3 ? Nach Definition ist W,
die Untergruppe von W, die von s erzeugt wird, wegen s* = e also Wy, = {e,s}.
Aber konnte es nicht sein, dass in W sogar die Relation s = e gilt? — Dass dies nicht
so ist, ist keineswegs trivial. Tatséchlich gilt aber der folgende Fundamentalsatz fiir
Coxetergruppen.

Fundamentalsatz. Sei W eine Coxetergruppe mit ausgezeichnetem Erzeugendensystem
S und Coxetermatrix M. Sei I C S. Dann ist Wy eine Coxetergruppe mit ausgezeichnetem
Erzeugendensystem I und Coxetermatrix M|rxr.

Der Satz besagt, dass die zusitzlichen Relationen (st)"f) — ¢ firs € S—1,t € S,
m(s,t) # oo unter den [-Wortern keine zusétzlichen Relationen erzwingen.

Besonders anschaulich 1asst sich die Aussage des Fundamentalsatzes fiir Coxetergruppen
anhand der Diagramme darstellen. Das Diagramm von W ist der von der Eckenmenge
I induzierte Subgraph des Diagramms von W.

Korollar. Sei W eine Coxetergruppe mit ausgezeichnetem Erzeugendensystem S.

(i) FirseS gilts+#e.

(il) Firs,t € S mit m(s,t) # oo ist m(s,t) die kleinste positive ganze Zahl m, fiir die
(st)™ = e gilt.

(iii) Fir s,t € S mit m(s,t) = oo gilt (st)™ +# e fiir m # 0.

Bei (i) ist Wiy = (s|s* = e). Zu (ii): Fiir s # t ist Wy, eine Diedergruppe der
Ordnung 2m(s, t). Im Fall (iii) ist Wy, eine unendliche Diedergruppe.

Der Beweis des Fundamentalsatzes fiir Coxetergruppen geschiecht mit Hilfe der kanoni-
schen Darstellung. Sei V ein reeller Vektorraum mit Basis (v )scs. Wir definieren die

™

symmetrische Bilinearform b : V x V — R durch b(vs,v;) = — cos 6D firs,t €S

(mit L = 0). Fir s € S ist die lineare Selbstabbildung ps auf V gegeben durch
ps © U — v —2b(v,0vs)vs eine Spiegelung an der Hyperebene {v € V | b(v,v5) = 0}
langs vs. Allgemeiner gilt fiir s, + € S mit m(s, ) # oo die Identitét (ps o pt)m(s’t> = idy.
Wir erhalten deshalb p : W — AutV mit py, 4, = pw, © pu, (einen Gruppenhomomor-
phismus). Dies wird die kanonische Darstellung von (W, S) genannt.> Entscheidend fiir
die Niitzlichkeit der kanonischen Darstellung ist die Tatsache, dass der Gruppenhomo-
morphismus p injektiv ist. Das wurde von Tits bewiesen.

Beispiele (zweiter Teil)
Als letztes in unserer Liste von Beispielen folgt noch ein etwas anspruchsvolleres, jenes
mit Diagramm

o0
o ——©

2) Der Ausdruck “standard parabolisch” stammt aus der Theorie der linearen algebraischen Gruppen.

3) Falls die Bilinearform b entartet ist, so ist es fiir geometrische Uberlegungen zweckmissig, die duale
Darstellung von p zu betrachten.
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Die zugehorige Gruppenprisenticrung lautet
W=(rst|r=8==F=(s)=(t)]=e).

Wir wollen nun die kanonische Darstellung von W beschreiben. Es sei V' der reelle
Vektorraum mit Basis (v,,vs,v¢). Fir u € {r,s,t} ist p, die Spiegelung an der Ebene
H,={veV|b(v,v,) =0} lings v,. Wir haben

H, ={x0, +x0s + x,0, € V|2x, —xs =01},

Hs = {x0, + x0s + ;0 € V| =%, + 2% — 2x¢ = 0 },

He={x0 +x0s+xv: € V|—xs+x=0}.
Nun soll die kanonische Darstellung von W “konkreter” beschriecben werden. Dazu
bendtigen wir einen dreidimensionalen reellen Vektorraum. Fiir unsere Zwecke eignet

sich dazu der Vektorraum & der symmetrischen reellen 2 x 2-Matrizen. Als Basis von
¥ wihlen wir die Matrizen

1 0 01 0-—1
(o) A= () 4= (070)
Der Vektorraumisomorphismus 9 : V=9, welcher durch Ho,) = A, firu € {r,s,t}

gegeben ist, identifiziert den “abstrakten” Vektorraum V' mit dem “konkreten” Vektor-
raum &. Die Bilder der Ebenen H,, sind
() |

%, = 9(Hy) — {(Z i) ey

(x) a=c, (%) a=2D, (%) b=0.

Die lineare Selbstabbildung 5, := Yo p,09 ! auf ¥ ist die Spiegelung an der Ebene %,
langs A,,. Wir setzen

01 11 10
= (10) w o) U= (o)

Nun kénnen wir die Spiegelungen p, fiir u € {r,s,t} folgendermassen beschreiben:

PNu(A) = tuuAuu (A € y) (1)

mit

(U, ist die Transponierte der Matrix U,), und wir erhalten dann den Gruppenhomomor-
phismus g : W — Aut¥.

Mit P = { GYHey ‘ a > 0und ac — b* > 0} C ¥ bezeichnen wir den Kegel?
der positiv definiten Matrizen. Aus der Formel (1) wird ersichtlich, dass die Gruppe

4) Ein Kegel 6 ist eine Teilmenge eines reellen Vektorraumes mit der Eigenschaft

XEBG, AER )= Ax€SB.
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{Pw|w € W} den Kegel P auf sich abbildet. Der Kegel P und die affine Ebene
A= { @hed ‘ =g } schneiden sich in der Kreisscheibe

_ B a b
aona-{(1 ,",)es

Sie ist in der folgenden Figur dargestellt. Die eingezeichneten Segmente sind die Schnitte
der Ebenen g, (#,) firw € W, u € {r,s,t} mit %. Die Kammerm, die dabei entstehen,
stehen in bijektiver Korrespondenz zu den Elementen der Gruppe W. Der Durchschnitt
des Kegels F = { & lg) ey ‘ a<c,a>2b,b>0,a >0} mit der affinen Ebene
A ist in der Figur schattiert.

(u—1)2+b2<1}.

Wir schen: fiir jede Matrix A € P gibt es w € W mit j,(A) € F. Liegt dabei p,(A)
im /nnern von %, so ist w eindeutig bestimmt. In jedem Fall gibt es zu A € % nur
endlich viele w € W mit p,,(A) € %. Mehr zur Reduktionstheorie der positiv definiten
quadratischen Formen, auch im héherdimensionalen Fall, ist etwa im Buch [Si] zu finden.

Die Kreisscheibe % kann bijektiv auf die obere Halbebene {7 € C|Im7 > 0} abge-

bildet werden, namlich durch (¢ ,? ) — 2 (” "% Mit Ausnahme von s 2
konnen wir auch die Matrizen auf dem Rand der Krelsschelbe 9 in dieselbe Formel ein-
setzen. Sie werden dabei auf die reelle Achse abgebildet. Der Matrix (0 2) ordnen wir
als Bild den Punkt ico zu. Die Bilder der Enden der Segmente sind dann die rationalen

Zahlen vereinigt mit {ico}.
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4 Endliche und affine Coxetergruppen
Fiir die Coxetergruppe W mit ausgezeichnetem Erzeugendensystem S und Coxetermatrix

M= (m(s, t))s ;e betrachten wir wie bei der Konstruktion der kanonischen Darstellung
nochmals die symmetrische Matrix B = (— cosL> .
m(s,t) steS

Die endlichen Coxetergruppen lassen sich dadurch charakterisieren, dass die zugehdrige
symmetrische Matrix B positiv definit ist, was nach einem bekannten Kriterium (siche
z.B. [Si, p. 107]) damit dquivalent ist, dass alle ihre Hauptminoren positiv sind.

Eine affine Coxetergruppe ist eine irreduzible Coxetergruppe mit positiv semidefiniter
aber nicht positiv definiter Matrix B. Mit anderen Worten: B ist singulér, aber jeder echte
Hauptminor von B ist positiv (und damit jede echte standard parabolische Untergruppe
endlich).

Bei den Beispielen im vorherigen Abschnitt sind alle Coxetergruppen vom Rang kleiner
oder gleich 2, ausgenommen die unendliche Diedergruppe, endliche Coxetergruppen.
Die unendliche Diedergruppe ist eine affine Coxetergruppe. Das letzte Beispiel im vor-
angegangenen Abschnitt beschreibt eine Coxetergruppe, welche weder endlich noch affin
ist.

Mit der Formel in Proposition B im nichsten Abschnitt lassen sich die Ordnungen derje-
nigen endlichen Coxetergruppen berechnen, welche standard parabolische Untergruppen
von affinen Coxetergruppen sind. Es stellt sich deshalb die Frage, welche irreduziblen
Coxetergruppen standard parabolische Untergruppen von affinen Coxetergruppen sein
konnen. Ist W eine endliche Coxetergruppe und p : W — Aut V ihre kanonische Dar-
stellung, so nennen wir W kristallographisch, wenn W ein Gitter in V stabilisiert (ein
Gitter in V ist die Menge aller ganzzahligen Linearkombinationen einer Vektorraumba-
sis von V). Die Antwort auf die obige Frage lautet: Unter den irreduziblen endlichen
Coxetergruppen kommen genau die kristallographischen als standard parabolische Unter-
gruppen affiner Coxetergruppen vor. Von den irreduziblen endlichen Coxetergruppen sind
lediglich die Diedergruppen der Ordnung 2m fiir 1 # 3,4,6 sowie die Coxetergruppen
mit Diagramm o o 5 ¢ Oder oo o 5 4 nicht kristallographisch.

5 Alternierende Summenformeln

Zur Berechnung der Ordnung einer endlichen Coxetergruppe liegen zahlreiche Formeln
vor (siche etwa [C3]). Eine der bemerkenswertesten sei jene in McMullens Artikel [Mc],
behauptet Coxeter [C4]. Neu war allerdings jene Formel nicht. Ich werde im folgenden
eine kleine Modifikation vorschlagen, welche den Rechenaufwand drastisch reduziert.
Wir benétigen die folgenden beiden alternierenden Summenformeln.

Proposition A. Sei W eine endliche Coxetergruppe mit ausgezeichnetem Erzeugenden-

system S. Dann gilt
1 1
(- e =
2 Wil W]

FCS
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Proposition B. Sei W eine (irreduzible) affine Coxetergruppe mit ausgezeichnetem
Erzeugendensystem S. Dann gilt

T (.
Z( 1) Wi 0.

1SS

Proposition A (fiir |S| ungerade) ist [Mc, Theorem 4] und wurde urspriinglich von Witt
[Wi] gefunden. Proposition B ist [Mc, Theorem 3], und eine Referenz hierzu ist Serres
Artikel [Se].”)

Als Anwendung von Proposition B berechnet McMullen die Ordnungen von drei end-
lichen kristallographischen Coxetergruppen. Er schreibt: “[. . .] although its character is
elementary, the calculations involved in its application are lengthy (in n-dimensions,
there are 2! — 1 terms [...]).” Wir zeigen im Rest unseres Beitrages, dass man mit
wesentlich weniger Rechenaufwand ebenfalls zum Ziel kommt! Es sei W eine affine
Coxetergruppe mit ausgezeichnetem Erzeugendensystem S. Wir fixieren eine Ecke sy € S
des Diagramms ‘€ von W und definieren die folgende Familie ¥ (s,) von Teilmengen
von S:

H(so) = {]; S

So € J und der Subgraph von € indu-} U {2}
ziert von | ist zusammenhingend ’

Fiir | € K(so) setzen wir

T ::{seS—(]U{so})

es gibt kein f € | so, dass}
{s,t} eine Kante in € ist |

Da es zwischen s € [* und ¢ € | keine Kante im Diagramm € gibt, ist fir H C [* der
Subgraph von 6 induziert von H U | die Vereinigung der Subgraphen induziert von H
und von J. Es gilt daher Wy ; = Wy x W} und insbesondere |Wr 7| = |Wg| - [Wj|.
Lauft nun | iber die Elemente von K(s) und H iiber die Teilmengen von [*, so zihlen
H U] gerade alle echten Teilmengen von S auf. Gemiss Propositionen A und B gilt

. |I\ \HUN
0= =3 S |wHu;|

1Cs Je%(s0) HOJ*
1
e m Z \H\ =3 (i s
JEX(s0) HC]* H| JEH(s0) (Wl - [Wj-]

Wir wollen nun mittels der Formel (2) die Ordnung der grossten exzeptionellen end-
lichen Coxetergruppe (Typ Es) berechnen. Das Diagramm der entsprechenden affinen
Coxetergruppe W sieht so aus:

5) Inder Tat sind beide Propositionen Spezialfille einer Formel, welche die Poincaréreihe einer Coxetergruppe
mit ihrer Eulercharakteristik verbindet.
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Es ist zweckmassig, Namen fiir gewisse Typen von Diagrammen und der zugehorigen
Coxetergruppen einzufithren. Ein Y-formiger Graph, dessen drei Beine die Langen p — 1,
g — 1 und r — 1 besitzen und die (unsichtbare) Beschriftung 3 tragen, heisst Diagramm
vom Typ Y, ;. Der oben gezeichnete Graph ist also vom Typ Y,34. — Nebenbei sei
hier noch bemerkt, dass Y, genau dann Typ einer affinen Coxetergruppe ist, wenn
%4— % +1 =1 gilt; solche Tripel (p,q,r) mitp < g < r gibt es drei. — Offensichtlich sind
samtliche zusammenhingenden Subgraphen eines Diagramms vom Typ Y, ;- wieder von
einem Typ Y, .+ fiir geeignete p’, q’, 7', Fiir gewisse Tripel (p, 4,7) haben sich spezielle
Namen eingebiirgert:

A=Y (n >0, A ist der Typ des leeren Graphen)
Di=Yo2n02 (n>4)
E, = Y2,3,n73 (l’l - 67778) .

Gehen wir zuriick z7um Beispiel. Als Ecke s, wahlen wir die dusserste Ecke im langsten
Bein des oben gezeichneten Diagramms. Die Familie ¥ (s,) besteht dann aus 11 Ele-
menten. Hier ist die Liste: fiir | € J(so) steht rechts der Typ von W; und links jener
von Wy«.

e ’ — o —8 @ »

Eg I AO E7 I Al
—o . —]

= I A; Ds I As

*—=o—o—o *—=o *—eo—o0—0—9o
Ay Ay ALUA, As

A1 A6 Al

f
J

vl

Mit x (X, ) bezeichnen wir den Reziprokwert der Ordnung einer endlichen Coxetergruppe
vom Typ X,. Die Formel (2) licfert

0:><( 8) - X(Ao) — X(E7) - x(A1) + x(Es) - x(Az2) — x(Ds) - x(As)

)
X(A4) - x(As) — x(A1) - x(A2) - x(As) + x(A1) - x(As) — x(A1) - x(A7)
X(Ao) - X(A7) + x(Ao) - x(As) + x(Ao) - x(Dsg) .
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Setzen wir nun die Werte

1 1

=m+1) n=0,...,8 =2""'nl (n=4,....8
Ay~ Dt ) O ( )
1 1

— 51840 — 2903 040
x(Es) x(E7)

ein, die sich induktiv aus x(A,) = 1 bestimmen lassen, so folgt

= 696729600 .

x(Es)

Bemerkung zum Schiuss. In Coxeters Buch [C2] — ein Buch, das auch in McMullens
Literaturliste aufgefiihrt ist! — wird x(Es) durch die Methode der relativen Anzahl Fa-
cetten in der Eg-Parkettierung von R® berechnet. Die Rechnung [C2, Chap. X1, p. 204]
und die obige Rechnung sind identisch. McMullen meint: “The method is, in a vague
sense, related to [the method of relative numbers of faces in a tessellation].” Ich hoffe,
die Situation habe sich durch den vorliegenden Artikel etwas aufgeklirt.
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