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Coxetergruppen

Ruedi Suter

Ruedi Suter wurde 1963 in Zürich geboren. Sein Mathematikstudium an der ETH
Zürich schloss er 1987 mit dem Diplom ab; seine zahlentheoretische Diplomarbeit
wurde mit einer ETH-Medaille ausgezeichnet. Er war anschliessend als Assistent

an der ETH tätig und promovierte 1994 mit einer Dissertation über Darstellungen
von Quantengruppen. Es folgte ein einjähriger Forschungsaufenthalt am MIT. Ruedi
Suters mathematische Interessen sind weitgespannt, zur Zeit richten sie sich vor allem
auf die Gebiete Algebra, Zahlentheorie und mathematische Physik. Ein grosser Teil
seiner Freizeit gehört dem Klavierspiel, besonders gerne spielt er Kompositionen
von Beethoven, Chopin und Schubert.

1 Einleitung

Symmetrien haben die Menschen schon immer fasziniert. In der Tat scheinen Figuren mit
Symmetrie einem ästhetischen Grundbedürfnis des Menschen entgegenzukommen. Dies
kann man bereits an ganz einfachen Beispielen feststellen. Jede der folgenden beiden

Schon immer haben Malerei und Architektur von der starken ästhetischen Wirkung
der Symmetrie Gebrauch gemacht. Vielleicht hat gerade dies die Mathematik in
besonderer Weise dazu angeregt, sich eingehend mit diesem geometrischen Phänomen

zu beschäftigen. Das mathematische Hilfsmittel, das eine befriedigende und durchsichtige

Beschreibung der Symmetrie ermöglicht, ist die Gruppentheorie: sie liefert zum
Beispiel eine vollständige Klassifikation der ebenen Ornamente und der räumlichen
Krislallslrukturcn. Unter den Gruppen, die in diesem Zusammenhang auftreten, sind

diejenigen, die durch Spiegelungen erzeugt werden, die wichtigsten. Denn diese

sogenannten Coxctergruppcn Irelcn wie sich im Laufe der Entwicklung gezeigt hat nichl

nur beim speziellen anschaulichen Problem in natürlicher Weise auf. sondern sie spielen
auch in höheren Dimensionen und in der abstrakten Theorie der algebraischen Gruppen
eine zentrale Rolle. - In seinem Beitrag gibt Ruedi Suter zuerst einen Überblick über
die Theorie der Coxctcrgruppcn und behandelt anschliessend mit elementaren Mitteln
ein Problem, das die Ordnung einer solchen Gruppe betrifft, usi
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Figuren kann um ihren Mittelpunkt um ganzzahlige Vierfache von 72° gedreht werden,
ohne dass sich ihr Aussehen ändert.

A

Während damit beim Kranz schon alle Symmetrien ausgeschöpft sind, hat das

Pentagramm als Symmetrien noch die Spiegelungen an den Symmetrieachsen. Ja, man erhält

jede Symmetrie des Pentagramms, indem man Spiegelungen an den Symmetrieachsen
nacheinander ausführt. Der vorliegende Artikel handelt von den Symmetrien dieses Typs,
Symmetrien, welche sich durch Zusammensetzen von Spiegelungen beschreiben lassen.

Die Symmetrien, welche eine Figur aufweist, werden mathematisch durch eine Gruppe
beschrieben. Diese besteht aus den Symmetrieabbildungen, also aus allen Transformationen,

welche die Figur in sich überführen. Unter den Gruppen, die auf diese Art
auftreten, spielen mathematisch und in Anwendungen diejenigen eine ausgezeichnete Rolle,
die durch Spiegelungen erzeugt werden. Man nennt solche Gruppen heute allgemein
Coxetergruppen; von ihnen handelt der vorliegende Beitrag. Nach einer allgemeinen
Einführung in die Theorie wird am Schluss auf ein neueres spezielles Resultat

eingegangen (siehe [Mc]). - Bei der Theorie der Coxetergruppen handelt es sich um ein sehr
aktives Forschungsgebiet, das neuerdings vielfältige Anwendungen gefunden hat, die

mit dem geometrischen Ursprung nur noch entfernt zu tun haben. Als weiterführende
Literatur seien die folgenden Texte empfohlen [Bo, Br, Hi, Hu].

2 Gruppen und Gruppenpräsentierungen
Bekanntlich ist eine Gruppe eine Menge G zusammen mit einer Verknüpfungsvorschrift
GxG —> G, welche den Axiomen der Assoziativität, der Existenz eines Neutralelementes
e und der Existenz der Inversen genügt.

Gruppen lassen sich auf sehr viele verschiedene Arten beschreiben. Eine für unsere
Zwecke besonders geeignete Möglichkeit bieten Gruppenpräsentierungen. Eine Gruppe
wird dabei durch Erzeugende und Relationen beschrieben. Das folgende Beispiel möge
als Illustration dienen. (Die Erläuterungen im allgemeinen Fall folgen anschliessend.)

Wir fixieren eine ganze Zahl n und betrachten die Gruppe G„ mit der Präsentierung

G„:=/s,t s2 stsr1 tst2 (tst)n e

In G„ gilt ts stst'Hs sts2 st. Weiter ist s s"^2 s-ltst2 s-lstt2 t3.

Damit folgt

also

G„

G„ (t

'{e} falls n= 1,5 (mod6),

{e, t} mit t2 e falls n 2,4 (mod6),

{e, f, f2} mit f3 e falls n 3 (mod6),

{e,£,£2,f\£4,£5} mitf6=e falls n 0 (mod6).
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Allgemein schreiben wir
G (S\R)

Dabei ist S eine Menge (man denke an ein möglicherweise unendliches Alphabet). Die
Elemente aus S sind Gruppenelemente, welche die Gruppe G erzeugen. Jedes Element

w e G lässt sich als Produkt von Elementen aus S und ihrer Inversen schreiben:

W s\1...S£„", WOSi,...,S„ G S, £i,...,£„ G {1,-1}

für eine natürliche Zahl n. Einen solchen Ausdruck für w wollen wir ein S-Wort nennen.

Für n 0 ergibt sich das leere Wort; dieses ist gerade das Neutralelement e der Gruppe
G. Die Menge R ist eine Teilmenge der Menge aller S-Wörter. In der Gruppe G ist nun
jedes Wort aus R gleich dem Neutralelement von G. Die Schreibweise G (S \R)
bedeutet genauer, dass die Gruppe G von den Elementen in S erzeugt wird und dass

jede Relation v w zwischen zwei S-Wörtern eine Konsequenz der Relationen r e

für r G R (und den Relationen in den Gruppenaxiomen) ist.

Es ist leicht einzusehen, dass sich jede Gruppe in Form einer Gruppenpräsentierung
schreiben lässt.

Statt G (S I -R), wobei S {s\,..., sg} und R {w\,... ,Wi}, schreiben wir auch
G (si,... ,sg | W\ wi e), G (si,... ,sg \ Wk e (fc 1,...,/))
etc.

Vielleicht legt schon das Beispiel nahe, dass es im allgemeinen schwierig sein kann, sich

aus der gegebenen Gruppenpräsentierung einen Überblick über die Gruppe zu verschaffen.

Ja, es lassen sich tatsächlich negative Resultate beweisen! So zeigte vor rund vierzig
Jahren RS. Novikov, dass es eine Gruppe G (S | R) mit endlichen Mengen S und
R gibt, für welche kein Algorithmus existiert, der entscheidet, ob zwei S-Wörter in G
übereinstimmen. Trotz dieser Tatsache sind Gruppenpräsentierungen in vieler Hinsicht
ausserordentlich nützlich. Dies gilt nicht nur für theoretische Aspekte, sondern auch für
rein praktische. Man denke etwa an die Computeralgebra. Hier lassen sich mit Hilfe von
Präsentierungen auch gewisse unendliche Gruppen, nämlich die endlich präsentierbaren,
durch eine endliche Datenmenge beschreiben. Nachdem wir nun Gruppenpräsentierungen

im allgemeinen kennengelernt haben, wollen wir uns im nächsten Abschnitt einer
speziellen Klasse zuwenden.

3 Coxetergruppen (Definition und einige Beispiele)

Coxeter [Cl] hat als erster systematisch die Gruppen untersucht, welche durch Spiegelungen

erzeugt sind. Nicht jede Gruppe gehört zur Klasse der Coxetergruppen, z.B. G3

und Go im obigen Beispiel oder auch die Symmetriegruppe des Kranzes in der Einleitung

sind keine Coxetergruppen. Die Klasse der Coxetergruppen ist dennoch genügend
reichhaltig, um interessante Resultate zu erhalten; anderseits ist sie aber auch klein
genug, dass sich sehr viele spezielle Eigenschaften beweisen lassen. Coxetergruppen treten
in ganz verschiedenen Gebieten der Mathematik auf, eine Tatsache, die gar nicht so

erstaunlich ist, wie es auf den ersten Blick erscheint.
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Definition. Eine Coxetergruppe ist eine Grappe W1' mit einer Präsentierung der Form

W (S (st)m{s>l) e (für s, t e S mit m(s, £) + oo) ^

wobei m(s,s) 1 für s e S und m(s, f) =m{t,s) £ Z>2 U {00} für s,t e S, s ^ t. Die
Menge S (die wir stillschweigend als endlich voraussetzen wollen) heisst ausgezeichnetes

Erzeugendensystem. Ihre Kardinalität heisst der Rang von W oder besser von (W, S).

Eine Coxetergruppe ist also durch die symmetrische \S | x \S |-Matrix M (m(s, t))s s
gegeben, deren Diagonalelemente alle gleich 1 sind und deren übrige Elemente in
Z>2 U {00} liegen. Die Matrix M heisst die Coxetermatrix von (W,S).

Multiplizieren wir die Identität (st)"1^ e von links und von rechts mit s, so folgt wegen

s2 e, dass (ts)"1^ e gilt. Das rechtfertigt die Beschränkung der Betrachtungen
auf den Fall einer symmetrischen Matrix M.

Beispiele (erster Teil)

Eine Coxetergruppe vom Rang 0 ist trivial, besteht also nur aus dem Neutralelement.

Für den Rang 1 haben wir eine Grappe mit 2 Elementen.

Auch die Coxetergrappen vom Rang 2 lassen sich leicht konkret beschreiben. Für n G

Z>2 setzen wir D„ := (s,t \s2 t2 (st)n e) und DM := (s,t \s2 t2 e). Die
Grappe D„ hat In Elemente und heisst Diedergruppe der Ordnung In. (Der Diedergrappe
der Ordnung 10 sind wir in der Einleitung begegnet.) Die unendliche Diedergruppe D^
ist eine unendliche Grappe. Sie kann aufgefasst werden als Isometriegrappe von Z ç R.

Die beiden Erzeugenden s bzw. t entsprechen dann z.B. den Spiegelungen in den Punkten
0 bzw. \. Für n e Z>3 lässt sich D„ als Symmetriegruppe eines regelmässigen n-Ecks
realisieren. Die beiden Erzeugenden s bzw. t entsprechen den Spiegelungen an zwei
Symmetrieachsen, welche einen Winkel von ^ • 360° einschliessen. Die Grappe D2
heisst auch Kleinsche Vierergrappe.

Eine besonders ansprechende Art, die Information darzustellen, welche in der Matrix M
gespeichert ist, leisten die Coxeter-Dynkin-Diagramme (im folgenden kurz Diagramme
genannt). Dies sind ungerichtete, beschriftete Graphen mit der Eckenmenge S. Zwei
Ecken s,t e S sind durch eine Kante verbunden, falls m(s,t) e Z>3 U {00}, und die
Kante trägt dann die Beschriftung m(s,t) m(t,s)). Das Diagramm für die Diedergrappe

D„ besteht also aus zwei Ecken, und für n > 2 sind die beiden Ecken durch
eine Kante mit Beschriftung n verbunden. Bei den "gebräuchlichsten" Coxetergrappen
kommen Kanten mit der Beschriftung 3 besonders häufig vor; deshalb ist es üblich, die

Beschriftung 3 wegzulassen. Eine Coxetergruppe heisst irreduzibel, falls das zugehörige
Diagramm zusammenhängend (also insbesondere auch nicht leer) ist.

Es soll nun eine grandlegende Eigenschaft von Coxetergrappen erläutert werden. Die
Coxetergruppe W habe das ausgezeichnete Erzeugendensystem S. Für eine Teilmenge
I Ç S bezeichne Wi die Untergruppe von W, die von den Elementen in I erzeugt wird.
Die Grappe Wi besteht also aus der Menge aller J-Wörter in W. Die Untergruppen von

1) Man benützt den Buchstaben "W", weil die Weylgruppen prominente Beispiele für Coxetergruppen sind.
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W der Form Wi heissen standard parabolische2^ Untergruppen. Natürlich ist W0 die
triviale Untergruppe {e} von W. Es sei s G S. Was ist W{s}? Nach Definition ist W{sy
die Untergruppe von W, die von s erzeugt wird, wegen s2 e also W{sy {e,s}.
Aber könnte es nicht sein, dass in W sogar die Relation s e gilt? - Dass dies nicht
so ist, ist keineswegs trivial. Tatsächlich gilt aber der folgende Fundamentalsatz fiir
Coxetergruppen.

Fundamentalsatz. Sei W eine Coxetergruppe mit ausgezeichnetem Erzeugendensystem
S und Coxetermatrix M. Sei I Ç S. Dann ist W[ eine Coxetergruppe mit ausgezeichnetem
Erzeugendensystem I und Coxetermatrix M\ixi.

Der Satz besagt, dass die zusätzlichen Relationen (st)ml>s^ e für s e S -1, t e S,

m{s, t) ^ oo unter den /-Wörtern keine zusätzlichen Relationen erzwingen.

Besonders anschaulich lässt sich die Aussage des Fundamentalsatzes für Coxetergruppen
anhand der Diagramme darstellen. Das Diagramm von Wi ist der von der Eckenmenge
I induzierte Subgraph des Diagramms von W.

Korollar. Sei W eine Coxetergruppe mit ausgezeichnetem Erzeugendensystem S.

(i) Für s e S gilt s ^ e.

(ii) Für s,teS mit m{s,t) ^ oo ist m{s,t) die kleinste positive ganze Zahl m, fiir die

{st)m e gilt.

(iii) Für s,t e S mit m(s, t) oo gilt (st)m ^efiürm^O.

Bei (i) ist W{sy {s\s2 e). Zu (ii): Für s ^ t ist W{s,t} eine Diedergruppe der

Ordnung 2m(s, t). Im Fall (iii) ist W{s,t} eine unendliche Diedergruppe.

Der Beweis des Fundamentalsatzes für Coxetergruppen geschieht mit Hilfe der kanonischen

Darstellung. Sei V ein reeller Vektorraum mit Basis (vs)ses- Wir definieren die

symmetrische Bilinearform b : V x V ^ M durch b(vs, vt) - cos -^j: für s,t e S

(mit ^ OJ. Für s G S ist die lineare Selbstabbildung ps auf V gegeben durch

ps : bh5- 2b(v,vs)vs eine Spiegelung an der Hyperebene {v e V \ b{v,vs) 0}
längs vs. Allgemeiner gilt für s, t G S mit m(s, t) ^ oo die Identität (ps o pt) idy.
Wir erhalten deshalb p : W —> AutV mit pWlW2 pWl o pW2 (einen Gruppenhomomorphismus).

Dies wird die kanonische Darstellung von (W,S) genannt.3' Entscheidend für
die Nützlichkeit der kanonischen Darstellung ist die Tatsache, dass der Gruppenhomomorphismus

p injektiv ist. Das wurde von Tits bewiesen.

Beispiele (zweiter Teil)

Als letztes in unserer Liste von Beispielen folgt noch ein etwas anspruchsvolleres, jenes
mit Diagramm

2) Der Ausdruck "standard parabolisch" stammt aus der Theorie der linearen algebraischen Gruppen.

3) Falls die Bilinearform b entartet ist, so ist es für geometrische Überlegungen zweckmässig, die duale

Darstellung von p zu betrachten.
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Die zugehörige Gruppenpräsentierung lautet

W (r,s,t | r2 s2 t2 (rs)3 (rtf e).

Wir wollen nun die kanonische Darstellung von W beschreiben. Es sei V der reelle
Vektorraum mit Basis {vr,vs,vt). Für u G {r,s,t} ist pu die Spiegelung an der Ebene

Hu { v e V | b{v, vu) 0 } längs vu. Wir haben

Hr { XrVr + XSVS + XtVt G V

Hs { XrVr + XSVS + XtVt G V

Ht { XrVr + XSVS + XtVt G V
-xr
-xs

2xs-2xt
xt 0 }

Nun soll die kanonische Darstellung von W "konkreter" beschrieben werden. Dazu

benötigen wir einen dreidimensionalen reellen Vektorraum. Für unsere Zwecke eignet
sich dazu der Vektorraum S3 der symmetrischen reellen 2 x 2-Matrizen. Als Basis von
S3 wählen wir die Matrizen

Ar
1 0

0-1
0 1

1 1

0-1
-1 0

Der Vektorraumisomorphismus ê : V—>if, welcher durch ê(vu) Au für u G {r,s, t}
gegeben ist, identifiziert den "abstrakten" Vektorraum V mit dem "konkreten" Vektorraum

if. Die Bilder der Ebenen Hu sind

a b

b c
G93

mit
(*r) a c, (*s) a 2b, (*t) b 0.

Die lineare Selbstabbildung pu := ïïopuoïï~l auf Sf ist die Spiegelung an der Ebene CX,U

längs AM. Wir setzen

Ur
0 1

Us
1 1 l o

vi oy ' V°-v
Nun können wir die Spiegelungen pu für m g {r,s, t} folgendermassen beschreiben:

pu(A) tUuAUu (AgSP) (1)

(Uu ist die Transponierte der Matrix Uu), und wir erhalten dann den Gruppenhomomorphismus

p : W -^ Aut Sf.

Mit SP := fl > 0 und flc - b2 > 0 i Ç if bezeichnen wir den Kegel4'

der positiv definiten Matrizen. Aus der Formel (1) wird ersichtlich, dass die Gruppe
\b c)

4) Ein Kegel ^ ist eine Teilmenge eines reellen Vektorraumes mit der Eigenschaft

x £r-$, A £ R>0 ==> \x £<-&.
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{ pw I w G W } den Kegel 9P auf sich abbildet. Der Kegel 9P und die affine Ebene

d a + c 2 i schneiden sich in der Kreisscheibe

a b

b 2-a (a - l)2 + b2 < 1

Sie ist in der folgenden Figur dargestellt. Die eingezeichneten Segmente sind die Schnitte
der Ebenen pw{^u) für w G W, u G {r,s,t} mit 2). Die Kammern, die dabei entstehen,
stehen in bijektiver Korrespondenz zu den Elementen der Gruppe W. Der Durchschnitt

des Kegels 9 j (£ ^) G Sf fl < c a > 2b & > 0 a > 0 j mit der affinen Ebene

si ist in der Figur schattiert.

IOO

Wir sehen: für jede Matrix A e 9P gibt es w G W mit /5a, (A) g S?. Liegt dabei ^(A)
im Innern von 3% so ist w eindeutig bestimmt. In jedem Fall gibt es zu A G S? nur
endlich viele w eW mit pw{A) e aJ>. Mehr zur Reduktionstheorie der positiv definiten
quadratischen Formen, auch im höherdimensionalen Fall, ist etwa im Buch [Si] zu finden.

Die Kreisscheibe 2) kann bijektiv auf die obere Halbebene {TGC|Imr>0}
abgebildet werden, nämlich durch (£ 2h_a) \-^ —+'^

fl — Mit Ausnahme von (° °)
können wir auch die Matrizen auf dem Rand der Kreisscheibe 2) in dieselbe Formel
einsetzen. Sie werden dabei auf die reelle Achse abgebildet. Der Matrix Q °2) ordnen wir
als Bild den Punkt ioo zu. Die Bilder der Enden der Segmente sind dann die rationalen
Zahlen vereinigt mit {ioo}.



Elem. Math. 52 (1997) 19

4 Endliche und affine Coxetergruppen
Für die Coxetergruppe W mit ausgezeichnetem Erzeugendensystem S und Coxetermatrix
M (m(s, t))s s

betrachten wir wie bei der Konstruktion der kanonischen Darstellung

nochmals die symmetrische Matrix B — cos-£

Die endlichen Coxetergruppen lassen sich dadurch charakterisieren, dass die zugehörige
symmetrische Matrix B positiv définit ist, was nach einem bekannten Kriterium (siehe
z.B. [Si, p. 107]) damit äquivalent ist, dass alle ihre Hauptminoren positiv sind.

Eine affine Coxetergruppe ist eine irreduzible Coxetergruppe mit positiv semidefiniter
aber nicht positiv definiter Matrix B. Mit anderen Worten: B ist singular, aber jeder echte

Hauptminor von B ist positiv (und damit jede echte Standard parabolische Untergruppe
endlich).

Bei den Beispielen im vorherigen Abschnitt sind alle Coxetergruppen vom Rang kleiner
oder gleich 2, ausgenommen die unendliche Diedergruppe, endliche Coxetergruppen.
Die unendliche Diedergruppe ist eine affine Coxetergruppe. Das letzte Beispiel im
vorangegangenen Abschnitt beschreibt eine Coxetergruppe, welche weder endlich noch affin
ist.

Mit der Formel in Proposition B im nächsten Abschnitt lassen sich die Ordnungen derjenigen

endlichen Coxetergruppen berechnen, welche Standard parabolische Untergruppen
von affinen Coxetergruppen sind. Es stellt sich deshalb die Frage, welche irreduziblen
Coxetergruppen standard parabolische Untergruppen von affinen Coxetergruppen sein

können. Ist W eine endliche Coxetergruppe und p : W —> Aut V ihre kanonische
Darstellung, so nennen wir W kristallographisch, wenn W ein Gitter in V stabilisiert (ein
Gitter in V ist die Menge aller ganzzahligen Linearkombinationen einer Vektorraumbasis

von V). Die Antwort auf die obige Frage lautet: Unter den irreduziblen endlichen

Coxetergruppen kommen genau die kristallographischen als Standard parabolische
Untergruppen affiner Coxetergruppen vor. Von den irreduziblen endlichen Coxetergruppen sind

lediglich die Diedergruppen der Ordnung 2m für m ^ 3,4,6 sowie die Coxetergruppen
mit Diagramm .—, 5 oder s nicht kristallographisch.

5 Alternierende Summenformeln

Zur Berechnung der Ordnung einer endlichen Coxetergruppe liegen zahlreiche Formeln
vor (siehe etwa [C3]). Eine der bemerkenswertesten sei jene in McMullens Artikel [Mc],
behauptet Coxeter [C4]. Neu war allerdings jene Formel nicht. Ich werde im folgenden
eine kleine Modifikation vorschlagen, welche den Rechenaufwand drastisch reduziert.
Wir benötigen die folgenden beiden alternierenden Summenformeln.

Proposition A. Sei W eine endliche Coxetergruppe mit ausgezeichnetem Erzeugendensystem

S. Dann gilt
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Proposition B. Sei W eine (irreduzible) affine Coxetergruppe mit ausgezeichnetem
Erzeugendensystem S. Dann gilt

Proposition A (für \S\ ungerade) ist [Mc, Theorem 4] und wurde ursprünglich von Witt
[Wi] gefunden. Proposition B ist [Mc, Theorem 3], und eine Referenz hierzu ist Serres

Artikel [Se].5)

Als Anwendung von Proposition B berechnet McMullen die Ordnungen von drei
endlichen kristallographischen Coxetergruppen. Er schreibt: "[...] although its character is

elementary, the calculations involved in its application are lengthy (in n-dimensions,
there are 2"+1 - 1 terms [...])." Wir zeigen im Rest unseres Beitrages, dass man mit
wesentlich weniger Rechenaufwand ebenfalls zum Ziel kommt! Es sei W eine affine

Coxetergruppe mit ausgezeichnetem Erzeugendensystem S. Wir fixieren eine Ecke s0 G S

des Diagramms % von W und definieren die folgende Familie %{sq) von Teilmengen

von S:

3{(so) :=
So G / und der Subgraph von ^ indu-

ziert von / ist zusammenhängend

Für / G ^{(so) setzen wir

_ J es gibt kein t G / so, dass 1

/ • — \ ^ ^— ^ l / ^~"^ i ^o r / i *

Da es zwischen s G /* und £ G / keine Kante im Diagramm ^ gibt, ist für H Ç /* der

Subgraph von ^ induziert von H U / die Vereinigung der Subgraphen induziert von H
und von/. Es gilt daher Whuj Wh x W/ und insbesondere |Whu/| |Wh| • \Wj\.
Läuft nun / über die Elemente von 3{(s0) und H über die Teilmengen von /*, so zählen

HU/ gerade alle echten Teilmengen von S auf. Gemäss Propositionen A und B gilt

Wir wollen nun mittels der Formel (2) die Ordnung der grössten exzeptionellen
endlichen Coxetergruppe (Typ E8) berechnen. Das Diagramm der entsprechenden affinen
Coxetergruppe W sieht so aus:

5) In der Tat sind beide Propositionen Spezialfàlle einer Formel, welche die Poincaréreihe einer Coxetergruppe
mit ihrer Eulercharakteristik verbindet.
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Es ist zweckmässig, Namen für gewisse Typen von Diagrammen und der zugehörigen
Coxetergruppen einzuführen. Ein Y-förmiger Graph, dessen drei Beine die Längen p—l,
q - 1 und r - 1 besitzen und die (unsichtbare) Beschriftung 3 tragen, heisst Diagramm
vom Typ YPil?ir. Der oben gezeichnete Graph ist also vom Typ Y2j3i6. - Nebenbei sei

hier noch bemerkt, dass Yp^r genau dann Typ einer affinen Coxetergruppe ist, wenn
h + l + j l gilt; solche Tripel (p, q, r) mit p <q <r gibt es drei. - Offensichtlich sind

sämtliche zusammenhängenden Subgraphen eines Diagramms vom Typ Yp^r wieder von
einem Typ Yp/il?/ir/ für geeignete p',q',r'. Für gewisse Tripel (p, q, r) haben sich spezielle
Namen eingebürgert:

A„ Yii„ (n > 0, Ao ist der Typ des leeren Graphen)

D„ Y2,2,n-2 (n > 4)

E„=Y2i3,„-3 (n 6,7,8).

Gehen wir zurück zum Beispiel. Als Ecke s0 wählen wir die äusserste Ecke im längsten
Bein des oben gezeichneten Diagramms. Die Familie 3{(s0) besteht dann aus 11

Elementen. Hier ist die Liste: für / G 3{(s0) steht rechts der Typ von Wj und links jener
von Wj*.

Ao E7

E6 I A2 D5 I

•—•—• •—•—•—• •—• •—•—•—•—•
A4 1 A4 AjUAz

Ai A6 Ax

A7 Ao A8

Ao i D8

Mit x(Xn) bezeichnen wir den Reziprokwert der Ordnung einer endlichen Coxetergruppe
vom Typ X„. Die Formel (2) liefert

0 x(E8) • x(Ao) - x(E7) • x(Ai) + x(E6) • x(A2) - x(D5) • x(A3)

+ x(A4) • x(A4) - x(Ai) • X(A2) • x(A5) + x(Ai) • x(A6) - x(Ai) • x(A7)

- x(Ao) • x(A7) + x(Ao) • x(A8) + x(A0)
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Setzen wir nun die Werte

=- 51840 —=-=2 903 040
(E) (E)

ein, die sich induktiv aus x(Ao) 1 bestimmen lassen, so folgt

—=- =696729600

Bemerkung zum Schluss. In Coxeters Buch [C2] - ein Buch, das auch in McMullens
Literaturliste aufgeführt ist! - wird x(Es) durch die Methode der relativen Anzahl
Facetten in der E8-Parkettierung von R8 berechnet. Die Rechnung [C2, Chap. XI, p. 204]
und die obige Rechnung sind identisch. McMullen meint: "The method is, in a vague
sense, related to [the method of relative numbers of faces in a tessellation]." Ich hoffe,
die Situation habe sich durch den vorliegenden Artikel etwas aufgeklärt.
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