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Globale Integration lokal integrierbarer Vektorfelder

Serge Lang

Serge Lang wurde 1927 in Paris geboren, wo er auch seine ersten Schuljahre absol-
vierte. Die weitere Ausbildung erhielt er dann allerdings in den Vereinigten Staaten,
wo er das California Institute of Technology (Caltech) und die University of Prin-
ceton besuchte. Hier erhielt er das Doktorat in Mathematik im Jahre 1951. Nach
Aufenthalten am Institute for Advanced Study in Princeton und an der University
of Chicago war er von 1955 bis 1970 Professor an der Columbia University in New
York. Gastprofessuren in Princeton und Harvard folgten, und 1972 wurde er Pro-
fessor an der Yale University. Seine Interessen sind weitgespannt, aber sein Haupt-
interesse gehorte immer der Mathematik, besonders der Zahlentheorie. Bis anhin hat
er 34 Bicher und iiber 70 Forschungsartikel veroffentlicht.

Wir betrachten in der Ebenc R® ein Gebiet (zusammenhiingende offene Menge) U und
in U ein Vektorfeld

F:U—R ) F(xd/) = (P(x7y)74(x7y))

Wir setzen dabei voraus, dass die Komponentenfunktionen p und g stetig differenzierbar
sind. Ferner sei in U ein stiickweise stetig differenzierbarer Weg ~ : [4,b] — U gegeben
mit Anfangspunkt P = ~(a) und Endpunkt Q = ~(b). Unter diesen Voraussetzungen ist
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das Integral | . F definiert (siche Figur 1). Bekanntlich hingt im allgemeinen der Wert
dieses Integrals vom Weg v — und nicht nur von Anfangs- und Endpunkt des Weges —
ab.

Fig. 1

Fiir eine wichtige Klasse von Vektorfeldern ist die Situation allerdings einfacher. Eine
Funktion ¢ : U — R heisst ein Potential des Vektorfeldes F, wenn F der Gradient von

¢ ist:
0p O
p,q) = <a—f,a—;’;).

Ein Vektorfeld, zu dem ein Potential existiert, heisst ein Pofentialfeld. Ist F ein Potenti-
alfeld mit Potential ¢, so folgt — wie eine einfache Rechnung zeigt —

[F=e@ o). 1)
g
Fiir Potentialfelder hingt der Wert des Integrals va folglich nur von Anfangs- und
Endpunkt des Weges v ab. Es zeigt sich, dass die Eigenschaft (1) die Potentialfelder
auch charakterisiert. Es gilt nimlich das folgende grundlegende Resultat:

Satz 1 Das Vektorfeld F besitzt genau dann ein Potential auf U, wenn fiir Punkte P
und Q in U und fiir in U verlaufende Wege ~ mit Anfangspunkt P und Endpunkt Q das
Integral fv F von ~ unabhdngig ist.

Wir fiihren hier den Beweis dieses in der Vektoranalysis wohlbekannten Satzes nicht
vollstindig durch, sondern begniigen uns damit, die wesentlichsten Schritte in Erinnerung
zu rufen. Um das Potential ¢ zu definieren, wihlen wir in U einen Punkt Pp. Ist Q ein
Punkt in U und v ein Weg mit Anfangspunkt P, und Endpunkt Q. so setzt man

¢>(Q):/7P~
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Wegen der Unabhingigkeit von -« definiert dies in der Tat eine Funktion ¢ auf U, die —
wie man unschwer nachweist — ¢in Potential des Vektorfeldes F ist. Fiir diec Einzelheiten
des Beweises konsultiere man z.B. [L1], Chapter 15, Theorem 4.2.

Satz 1 ldsst sich auch etwas anders ausdriicken. Ein Weg ~ heisst geschlossen, wenn
sein Endpunkt mit seinem Anfangspunkt iibereinstimmt.

Satz 1! Das Vektorfeld F besitzt genau dann ein Potential auf U, wenn fiir alle ge-
schlossenen Wege v in U gilt: fyP = 0.

Um die Aquivalenz der beiden Aussagen einzusehen, muss man nur beachten, dass aus
zwei Wegen von P nach Q ein geschlossener Weg gebildet werden kann.

Aus einem Satz der elementaren Analysis (Satz von Schwarz) folgt, dass fiir die Kom-
ponenten (p,q) eines Potentialfeldes F mit Potential ¢,

dp
F:(p7q):<a—f7a—j>7

die Gleichung
P _N
oy  Ox @

erfiillt ist, weil
op Py 0o 9q
oy  Oxdy Oyox  Ox

gelten muss. Die Bedingung (2) ist also eine notwendige Bedingung dafiir, dass das
Vektorfeld F = (p,q) ein Potential ¢ besitzt; man spricht deshalb auch etwa von der
Integrabilititsbedingung. In der elementaren Analysis beweist man ohne grosse Miihe,
dass unter bestimmten zusitzlichen Bedingungen, welche das Gebiet U betreffen, die
Integrabilititsbedingung fiir die Existenz eines Potentials auch hinreichend ist. Es gilt:

Satz 2 FEs sei F ein Vektorfeld auf U, welches die Integrabilititshedingung (2) er-
JSullt, und es sei R ein ganz in U liegendes Rechteck, bzw. D eine ganz in U liegende
Kreisscheibe. Dann besitzt F im Rechteck R bzw. in der Kreisscheibe D ein Potential ¢.

Beweis. Wir fixieren einen (beliebigen) Punkt (xo, 1) des Rechtecks R bzw. den Mittel-
punkt (xo, 1) der Kreisscheibe D und definieren fiir (x,y) in R bzw. D

x y
plx,y) = / pt,ydt+ | qlxo,u)du .
Xo Yo

Das zweite Integral ist nicht von x abhédngig. Nach dem Fundamentalsatz der Infinitesi-
malrechnung erhélt man dann fiir die Ableitung von ¢ nach x

d
a—x¢(x7y) =px,y) .
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Um die Ableitung von ¢ nach y zu bestimmen, darf man unter den gegebenen Voraus-
setzungen unter dem Integral ableiten. Damit ergibt sich

—¢> / gy h Yt +4(xo,y)

9
= / iy dt+q(x0,y)

=40, y) — q(x0, y) + 4(xo0, y)

=q(x,y) -
Es ist also ¢ ein Potential von F.
Ein Vektorfeld, das die Integrabilititsbedingungen (2) etfiillt, heisst /lokal integrierbar.
Man konnte diese Definition sogar etwas abschwichen, indem man verlangt, dass jeder
Punkt P eine Umgebung besitzt, in der F ein Potential hat. Wir bleiben aber hier aus
Griinden der Einfachheit bei der oben angegebenen Definition.
Im allgemeinen Fall ist die Integrabilititsbedingung fiir die Existenz eines Potentials
nicht hinreichend. Ein explizites Beispiel ist durch das Vektorfeld

—y i -y x
s = (i)~ (F)  vo Perr

gegeben, das auf der punktierten Ebene R?\ {O} definiert ist. Wie man leicht nachrech-
net, erfiillt das Vektorfeld G die Integrabilititsbedingung (2), es ist also lokal integrierbar.
Andererseits kann G, wie wir jetzt nachweisen, global kein Potential besitzen. Wir wer-
den namlich zeigen, dass es geschlossene Wege ~ gibt, fiir die das Integral ] G nicht
Null ist. Dazu berechnen wir zuerst p dx + g dy in Polarkoordinaten 7, 6. Es erglbt sich

pdx +qdy=4de
denn mit x = rcos @, y = sin @ erhilt man

?6(0059 dr —rsinf do) + rcos@

pdx +qdy= — (sin@ dr + rcosf df),

und die rechte Seite reduziert sich sofort auf 46.

Es folgt aus dieser Rechnung, dass der Polarwinkel @ fiir G lokal ein Potential ist: Fiir
jedes ganz in R? \ {O} liegende Rechteck R, bzw. fiir jede ganz in R? \ {O} liegende
Kreisscheibe D ist € ein Potential fiir G.

Ist v irgendein Weg, der O nicht enthilt, so liefert fﬂ/G das Integral iiber d6. Fiir
einen geschlossenen Weg « in der punktierten Ebene R? \ {O} édndert sich # um ein
ganzzahliges Vielfaches von 27. Man erhélt folglich

/WG:27rk, 3)

wo k eine ganze Zahl ist. Insbesondere ist fiir den einmal im Gegenuhrzeigersinn durch-
laufenen Kreis mit Mittelpunkt O der Wert des Integrals 27 und nicht Null. Wir nehmen
(3) zum Anlass fiir die folgende Definition:
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Definition Es sci + ein geschlossener Weg in der Ebene, der O nicht enthilt. Dann
definieren wir die Umlaufzahl W (v, O) von ~ beziiglich O durch

1
W(y,0) = Q/G
;

Fiir einen beliebigen Punkt P € R?, P = (xo, 1) setzen wir
GP(X,V) - G(x —Xo, Y — yo)

Fiir einen geschlossenen Weg ~ mit P ¢ ~ ist die Umlaufzahl W (-, P) von v beziiglich
P durch

1
Wep) =5 [ G
definiert.

Es wird sich in der Folge zeigen, dass das Vektorfeld G und seine verschobenen Kopien
Gp das einzige Hindernis dafiir bilden, dass Vektorfelder, welche die Integrabilitits-
bedingung (2) erfiillen, in U auch global ein Potential besitzen. Dieses iiberraschende
Resultat basiert auf dem folgenden Satz 3. Wie eine tiefere Analyse, auf die wir hier
nicht eingehen konnen, zeigt, handelt es sich dabei eigentlich um ein rein topologisches
Resultat; es wird hier aber in einer analytischen Form ausgesprochen.

Satz 3 Es sei v ein geschlossener Weg in U, so dass fiir alle P ¢ U die Umlaufzahl
W (~,P) Null ist. Es sei F ein lokal integrierbares Vektorfeld in U. Dann gilt

/F:O.
.

Wir werden weiter unten auf einige Anwendungen des Satzes 3 zuriickkommen.

Der Beweis verlauft in mehreren Schritten. Der erste Schritt besteht in einer Reduktion
auf “Rechteckswege”. Wir nennen einen Weg ~ einen Rechtecksweg, wenn er sich aus
endlich vielen Geradenstiicken zusammensetzt, die parallel zu den Koordinatenachsen
verlaufen. Wir behaupten:

Lemma 4 Gilt die Aussage von Satz 3 fiir Rechteckswege 0, so gilt sie auch fiir beliebige
(stiickweise stetig differenzierbare) Wege .

Beweis. Wir iiberdecken den Weg v durch ganz in U liegende offene Kreisscheiben
D;,i = 1,2,...,N, und wihlen Kurvenpunkte P; mit P; € D; N D;_;, und ferner
Pyi1 = Py € Dy N Dy (man beachte, dass der Weg v geschlossen ist). Das Wegstiick ;
zwischen P; und P;;; ersetzen wir dann durch ein Wegstiick 7;, das aus zwei geradlinigen
Stiicken parallel zu den beiden Koordinatenachsen besteht und ganz im Innern von D;
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4

¥

%

verlauft (siche Figur 2). Da das Vektorfeld F lokal integrierbar ist, folgt

/F:/F7 fir i=1,2,...,N,

i %
[F=[F. 4)
v U

Analoges gilt fiir die (ebenfalls lokal integrierbaren) Vektorfelder Gp, die zur Berechnung
der Umlaufzahl herangezogen werden. Daraus folgt fiir P ¢ U

W(n,P)=W(y,P)=0.
Da dies fiir jedes P ¢ U zutrifft, folgt

Fig. 2

und damit

falls die Aussage des Satzes 3 fiir Rechteckswege als richtig angenommen wird. Mit (4)

ergibt sich somit
/F:07
Y
wie in Lemma 4 behauptet.

In einem zweiten Schritt beweisen wir die Aussage des Satzes 3 fiir Rechteckswege. Es
sei zuerst R ein beliebiges, ganz in U liegendes Rechteck, und OR sei der im positiven
Umlaufsinn durchlaufene Rand von R. Da das Vektorfeld F lokal integrierbar ist, folgt
aus unserem Satz 2 [, F = 0.

Wenn der Weg ~ als Summe Y m; OR; gegeben ist, wobei fiir alle i das Rechteck R;
ganz in U enthalten sei, so folgt

F = m/ F=0.
[,

Das fundamentale Resultat ist nun das folgende; es beweist gemiss den obigen Bemer-
kungen die Aussage des Satzes 3 fiir Rechteckswege.
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Satz 5 FEs sei v ein geschlossener Rechtecksweg in U. Es gelte W (v, P) = 0 fir alle
Punkte P mit P ¢ U. Dann existieren ganz in U enthaltene Rechtecke R; und ganze

Zahlen m; € Z mit
e = Z m; OR;.
i

Beweis. Ausgehend vom Rechtecksweg v zeichnen wir als erstes alle achsenparallelen
Geraden, welche Geradenstiicke des Weges ~ enthalten. Dies liefert eine Zerlegung der
Ebene R? in endlich viele endliche und unendliche Rechtecke. Wir zeichnen ferner vier
weitere achsenparallele Geraden ein, die dazu dienen, die bei der so konstruierten Unter-
teilung entstandenen unendlichen Rechtecke abzuschneiden. Damit verlduft die gegebene
Rechteckskurve so, dass in jeden Teilstiick sowohl links wie rechts des Weges ein end-
liches Rechteck unserer Unterteilung liegt (siche Figur 3). Es seien Ry, R,, ..., Ry die
endlichen Rechtecke der so entstandenen Unterteilung. Wir wihlen in jedem R; einen
Punkt P; und definieren m; = W(~, P;). Dann behaupten wir

(@) Es gilt v =", m; OR;.
(b) Fiir m; # 0 ist R; C U.

Diese beiden Behauptungen zusammen beweisen Satz 5.

Fig. 3

Wir wenden uns zuerst der Behauptung (b) zu. Es sei m; # 0. Laut Definition von #;
ist die Umlaufzahl W (y, P;) ungleich Null. Nun ist aber die Umlaufzahl einerseits stetig
vom Punkt P; abhédngig, andererseits eine ganze Zahl. Es ist also die Umlaufzahl auf
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zusammenhdngenden Mengen konstant. Fiir P im Innern des Rechtecks R; ist folglich
W(P,~) = W(P;,v) # 0. Daraus folgt P € U, denn fur P ¢ U gilt W(P,~) = 0 nach
Voraussetzung. Fiir P € OR; gilt dasselbe Argument, ausser im Fall P € ~. Da aber + in
U liegt, folgt auch in diesem Fall P e U. Es ergibt sich aus diesen Uberlegungen, dass
das ganze (abgeschlossene) Rechteck R; in U liegt.

Um die Behaupung (a) zu beweisen, betrachten wir den Weg ~/ mit
'y’:'y—ZmlﬁRi .
i

Es ist zu zeigen, dass v’ kein gerades Teilstiick von v mehr enthélt.
Es sei o eine Seite des beliebigen Rechtecks Ry. Dann kdnnen wir schreiben

'y/:'y—ZmiaRi:maqLTenneohnea?

i

wobei m eine gewisse ganze Zahl ist. Betrachten wir den Weg v — >, m; OR; — m OR,
so erhalten wir fiir die Umlaufzahl beziiglich Py

W (y—ZmiBRi—maRth) ’y7Pk Zml BR17Pk mW(BRk,Pk)
i
=M —MmMi—m
=-m.

Im Weg v = v — > m; OR; — m IRy kommt aber das Geradenstiick o nicht mehr vor.
In unserer Unterteilung gehdrte ¢ zum Rand von zwei Rechtecken: Liegt Ry auf der
einen Seite, so liege R; auf der anderen Seite von o (siche Figur 3). Die Punkte Py und
P; liegen dann fiir 4"/ in einem zusammenhéngenden Gebiet, so dass folgt

—m=W (V—Zmia& —maRk,Pk)

=W (’V—ZmiaRi —maRk,P')

=W(y,P Zm (8R;,P;) — mW (OR, P;)
=mj—m;j—0
=0.

Dies beweist unsere Behauptung (a).

Unser Beweis des Satzes 5 ist einem Beweis von Emil Artin fiir den Satz von Cauchy der
(komplexen) Funktionentheorie nachgebildet (siche [A]). Wenn man das obige Resultat
im Kontext der rellen Analysis kennt, so sicht man sofort, wie es sich in den komplexen
Fall tibersetzen l4sst. Die obigen Argumente liefern in der Tat den Hauptteil des globalen
Satzes von Cauchy (siche z.B. [L2], Chapter IV, Theorem 2.2). Dazu werden wir weiter
unten noch einige Bemerkungen machen. Zuerst wenden wir uns aber einer anderen
Anwendung zu (siche Figur 4).
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Fig. 4

Satz 6 Im Gebiet U der Ebene sei ein geschlossener Weg ~ gegeben, welcher die
Eigenschaft hat, dass fiir jeden ausserhalb von U liegenden Punkt P die Umlaufzahl
W (~,P) Null ist. Es seien ferner P\, P, ..., P, Punkte in U, die nicht auf ~ liegen.
Fiir jedes i = 1,2,...,n wahlen wir eine ganz in U enthaltene (kleine) Kreisscheibe D;
mit Mittelpunkt P;, und zwar so, dass keiner der Punkte Py mit k # i in D; liegt. Die
Randkurve ~; von D; orientieren wir im Gegenuhrzeigersinn. Wir setzen m; = W (v, B;).
Es sei U* = U\ {P,,P,,...,P,}, und F sei ein in U* lokal integrierbares Vektorfeld.

Dann gilt
n
/ F=Y m / F.
Y i=1 i

Beweis. Wir setzen C = v —>_ m;~;. Ist P ein Punkt ausserhalb U, so folgt nach obigem
W(C,P) =W (v,P) = > miW(y,P)=0.

Fiir den Punkt Py an Stelle des Punktes P erhilt man W(v;,Px) = 1 fir i = k und
W (i, Pr) =0 fiir i # k. Damit folgt

W(C,Pr) =W (~,Pr) —mr =0 .
Auf das Gebiet U* und die Kurve C wollen wir jetzt unseren Satz 3 anwenden. Dabei

ist zu bemerken, dass die Aussage des Satzes 3 nicht nur fiir geschlossene Kurven gilt,
sondern auch fiir Kurven, die — wie C — endliche Summen von geschlossenen Kurven

sind. Es folgt dann
n
o- [F-[E-3m [F.
C ¥ i Yi

woraus sofort die Aussage des Satzes 6 folgt.
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Wir kénnen — dhnlich wie in der (komplexen) Funktionentheorie — das Residuum eines
lokal integrierbaren Vektorfeldes F in einem Punkt P; definieren durch

1
reslal.(lf):%/F7
i

wo ~; wie oben einen kleinen, im Uhrzeigersinn orientierten Kreis um P; bezeichnet.
Das Residuum ist unter den Voraussetzungen des Satzes 6 unabhingig von +;. Mit dieser
Definition lautet die Aussage von Satz 6

/F = Z27rmi‘reSpi(F) .
v

Diese Terminologie wird in der Funktionentheorie bei der Darstellung des entsprechen-
den Resultates beniitzt, das vom Wegintegral einer meromorphen Funktion lidngs eines
geschlossenen Weges in der komplexen Ebene handelt. Der Zusammenhang ist leicht be-
schrieben: Es seien f eine komplexe Funktion und ~ ein Weg in der komplexen Ebene.
Fasst man v als Weg in der reellen Ebene auf, so lassen sich Real- und Imaginirteil des
komplexen Wegintegrals f7 f(z) dz als Integral von zwei zweidimensionalen rellen Vek-
torfeldern langs -y auffassen. Diese beiden Vektorfelder sind ausserdem lokal integrierbar,
wenn f die Cauchy-Riemannschen Differentialgleichungen erfiillt. Unser Satz 6 enthalt
also als Korollar das entsprechende Resultat der Funktionentheorie, den sogenannten
Residuensatz (siche z.B. [L2], Chapter VI, Theorem 1.2).

Eine weitere Anwendung betrifft die folgende Situation, die ebenfalls in der Funktio-
nentheorie betrachtet wird. Wir formulieren allerdings nur das reelle Resultat, die Uber-
setzung ins Komplexe ist einfach. Fiir diesen Zweck nennen wir ein Gebiet U einfach
zusammenhdngend, wenn fiir jeden Weg ~ und jeden Punkt ausserhalb U die Umlaufzahl
W (~,P) verschwindet, W (,P) = 0. Es ist nicht schwer nachzuweisen, dass dies aus
den sonst iiblichen Definitionen von einfach zusammenhdngend folgt.

Satz 7 Es sei U ein einfach zusammenhdngendes Gebiet der Ebene. Es seien Py ,P,,... P,
paarweise verschiedene Punkte in U, und es sei U* = U\ {P,,P,,...,P,}. Wie oben
selzen wir

G(x,y) = <m7 x2—+y2>

und bezeichnen mit Gp, die Translation von G nach P;. Ist F ein lokal integrierbares
Vektorfeld auf U*, so existieren Konstanten a,,a,, . .. ,a, und eine Funktion ¢ auf U*,
so dass

F — ZaiGpi =grad ¢ .
i=1
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Beweis. Es sei v; die im Uhrzeigersinn orientierte Peripherie eines kleinen Kreises mit
Mittelpunkt P;, der keinen weiteren der Punkte Py, P, . .., P, enthilt. Dann gilt

J2r fallsi=j,
%Gp,-{o falls i /]

Wir setzen .
1
ai:E/%F und Plzp—;aicp,..

Nach unserem Satz 6 geniigt es dann zu beweisen, dass fiir alle geschlossenen Kurven
in U* das Integral f7 F, verschwindet. Aber gemiss unserem Satz 5 haben wir

[-s[r-5 [ (r-Sac)
Y i i i i j
=Y mara =YY ma, [ Gr =S mana— 3 mazw—o.
i i i i i

Dies beweist unsere Behauptung.

Der Begriff der Umlaufzahl liefert in der Mathematik die Basis fiir die Behandlung der
elementaren topologischen Eigenschaften von Kurven in der Ebene. Es war die Idee von
Emil Artin (siche [A]), auch dic Homologie (in Dimension 1) mit Hilfe der Umlaufzahl
zu definieren: Ein geschlossener Weg ~ in einem Gebiet U heisst nullhomolog in U,
wenn fiir alle Punkte P, die nicht in U liegen, die Umlaufzahl W (v, P) Null ist. Die
Voraussetzungen iiber den Weg ~ in unseren Sitzen 5 und 6 bedeuten also, dass ~ in
U nullhomolog ist. Fiir weiteren Aufschluss iiber die mit dem hier behandelten Thema
zusammenhingenden elementaren Aspekte der Homologie und der Integration verweisen
wir auf das klassische Buch von S. Lefschetz [Le], insbesondere auf den Abschnitt /nte-
gration and topology, p. 19-25. Dort werden auch einige weiterfiihrende Entwicklungen
angesprochen.

Acknowledgment: I am very grateful to U. Stammbach for the care he has given to the
translation and the publication of my talk, and to Chr. Blatter for a critical reading of
the text.
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