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Globale Integration lokal integrierbarer Vektorfelder

Serge Lang

Serge Lang wurde 1927 in Paris geboren, wo er auch seine ersten Schuljahre
absolvierte. Die weitere Ausbildung erhielt er dann allerdings in den Vereinigten Staaten,

wo er das California Institute of Technology (Caltech) und die University of
Princeton besuchte. Hier erhielt er das Doktorat in Mathematik im Jahre 1951. Nach
Aufenthalten am Institute for Advanced Study in Princeton und an der University
of Chicago war er von 1955 bis 1970 Professor an der Columbia University in New
York. Gastprofessuren in Princeton und Harvard folgten, und 1972 wurde er
Professor an der Yale University. Seine Interessen sind weitgespannt, aber sein
Hauptinteresse gehörte immer der Mathematik, besonders der Zahlentheorie. Bis anhin hat

er 34 Bücher und über 70 Forschungsartikel veröffentlicht.

Wir betrachten in der Ebene R2 ein Gebiet (zusammenhängende offene Menge) U und
in U ein Vektorfeld

F:U^R2 F(x,y) (p(x,y),q(x,y)).

Wir setzen dabei voraus, dass die Komponentenfunktionen p und q stetig differenzierbar
sind. Ferner sei in U ein stückweise stetig differenzierbarer Weg 7 : [a, b] —> U gegeben
mit Anfangspunkt P 7(0) und Endpunkt Q ^{b). Unter diesen Voraussetzungen ist

Der Caucln sehe lntcgralsat/. der klassischen Funktioncnthcoric isi. zustimmen mil seiner

Verallgemeinerung, dem Rcsiducnsatz, eines jener mathematischen Resultate, die

immer wieder im Zentrum neuer Überlegungen stehen. Überraschende Verbindungen
/.eigen sich zu verschiedenen anderen Gebieten, zum Beispiel zur reellen Analysis und

zur algebraischen Topologic. Nur schon das Offenlegen \on derartigen Zusammenhängen

führt zu einer lieferen Einsicht, und neue Beweise und neue Resultate sind
die Folge. Serge Lang geht in seinem Beitrag einigen dieser Beziehungen nach. Der
Problcmkreis wird, auf das Wesentlichste reduziert, in einen weilen Zusammenhang
eingeordnet. Nicht nur gewinnt der Gegenstand auf diese Weise an Transparenz,
sondern es zeigen sich auch neue allgemeine Resultate, die den Cauch> sehen Integralsalz
und den Rcsiducnsalz als einfache Folgerungen beinhalten. - Der Beilrag basiert auf
einem Vortrag von Serge Lang an der ETH Zürich, den er am 1. Juni 1995 vor einer
Zuhörerschaft von jungen Studierenden gehalten liai, usi
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das Integral / F definiert (siehe Figur 1). Bekanntlich hängt im allgemeinen der Wert
dieses Integrals vom Weg 7 - und nicht nur von Anfangs- und Endpunkt des Weges -
ab.

Fig. 1

Für eine wichtige Klasse von Vektorfeldern ist die Situation allerdings einfacher. Eine
Funktion (f> : U —> R heisst ein Potential des Vektorfeldes F, wenn F der Gradient von
4> ist:

Ein Vektorfeld, zu dem ein Potential existiert, heisst ein Potentialfeld. Ist F ein Potentialfeld

mit Potential <f>, so folgt - wie eine einfache Rechnung zeigt -

F <t>(Q) - <t>(P) (1)

Für Potentialfelder hängt der Wert des Integrals / F folglich nur von Anfangs- und

Endpunkt des Weges 7 ab. Es zeigt sich, dass die Eigenschaft (1) die Potentialfelder
auch charakterisiert. Es gilt nämlich das folgende grundlegende Resultat:

Satz 1 Das Vektorfeld F besitzt genau dann ein Potential auf U, wenn für Punkte P
und Q in U undfür in U verlaufende Wege 7 mit Anfangspunkt P und Endpunkt Q das

Integral J F von 7 unabhängig ist.

Wir führen hier den Beweis dieses in der Vektoranalysis wohlbekannten Satzes nicht
vollständig durch, sondern begnügen uns damit, die wesentlichsten Schritte in Erinnerung
zu rufen. Um das Potential (f> zu definieren, wählen wir in U einen Punkt Po • Ist Q ein
Punkt in U und 7 ein Weg mit Anfangspunkt Po und Endpunkt Q, so setzt man

<t>(Q) h ¦

¦h
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Wegen der Unabhängigkeit von 7 definiert dies in der Tat eine Funktion é auf U, die -
wie man unschwer nachweist - ein Potential des Vektorfeldes F ist. Für die Einzelheiten
des Beweises konsultiere man z.B. [LI], Chapter 15, Theorem 4.2.

Satz 1 lässt sich auch etwas anders ausdrücken. Ein Weg 7 heisst geschlossen, wenn
sein Endpunkt mit seinem Anfangspunkt übereinstimmt.

Satz 1' Das Vektorfeld F besitzt genau dann ein Potential auf U, wenn für alle
geschlossenen Wege 7 in U gilt: J F 0.

Um die Äquivalenz der beiden Aussagen einzusehen, muss man nur beachten, dass aus

zwei Wegen von P nach Q ein geschlossener Weg gebildet werden kann.

Aus einem Satz der elementaren Analysis (Satz von Schwarz) folgt, dass für die

Komponenten (p,q) eines Potentialfeldes F mit Potential é,

die Gleichung

erfüllt ist, weil
dp

dy

dp

dy

d2é

dxdy

dq

dx

d2é

dydx

dq

dx

(2)

gelten muss. Die Bedingung (2) ist also eine notwendige Bedingung dafür, dass das

Vektorfeld F (p, q) ein Potential é besitzt; man spricht deshalb auch etwa von der

Integrabilitätsbedingung. In der elementaren Analysis beweist man ohne grosse Mühe,
dass unter bestimmten zusätzlichen Bedingungen, welche das Gebiet U betreffen, die

Integrabilitätsbedingung für die Existenz eines Potentials auch hinreichend ist. Es gilt:

Satz 2 Es sei F ein Vektorfeld auf U, welches die Integrabilitätsbedingung (2)
erfüllt, und es sei R ein ganz in U liegendes Rechteck, bzw. D eine ganz in U liegende
Kreisscheibe. Dann besitzt F im Rechteck R bzw. in der Kreisscheibe D ein Potential é.

Beweis. Wir fixieren einen (beliebigen) Punkt (xo,J/o) des Rechtecks R bzw. den Mittelpunkt

(xo,i/o) der Kreisscheibe D und definieren für (x,y) in R bzw. D

r fy
é{x,y)=l p{t,y)dt+ I q(xo,u)du.

Das zweite Integral ist nicht von x abhängig. Nach dem Fundamentalsatz der
Infinitesimalrechnung erhält man dann für die Ableitung von é nach x

—é{x,y)=p{x,y)
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Um die Ableitung von <f> nach y zu bestimmen, darf man unter den gegebenen
Voraussetzungen unter dem Integral ableiten. Damit ergibt sich

q(x,y)-q(xo,y)+q(xo,y)
q{x,y)

Es ist also <f> ein Potential von F.

Ein Vektorfeld, das die Integrabilitätsbedingungen (2) erfüllt, heisst lokal integrierbar.
Man könnte diese Definition sogar etwas abschwächen, indem man verlangt, dass jeder
Punkt P eine Umgebung besitzt, in der F ein Potential hat. Wir bleiben aber hier aus

Gründen der Einfachheit bei der oben angegebenen Definition.

Im allgemeinen Fall ist die Integrabilitätsbedingung für die Existenz eines Potentials
nicht hinreichend. Ein explizites Beispiel ist durch das Vektorfeld

gegeben, das auf der punktierten Ebene R2 \ {0} definiert ist. Wie man leicht nachrechnet,

erfüllt das Vektorfeld G die Integrabilitätsbedingung (2), es ist also lokal integrierbar.
Andererseits kann G, wie wir jetzt nachweisen, global kein Potential besitzen. Wir werden

nämlich zeigen, dass es geschlossene Wege 7 gibt, für die das Integral / G nicht
Null ist. Dazu berechnen wir zuerst pdx + qdy in Polarkoordinaten r, 9. Es ergibt sich

pdx + qdy= d9

denn mit x r cos 6, y r sin 9 erhält man

pdx + qdy ^— (cos9 dr - r sin9 dO) H ^— (sin9 dr + rcos9 dO),

und die rechte Seite reduziert sich sofort auf dO.

Es folgt aus dieser Rechnung, dass der Polarwinkel 9 für G lokal ein Potential ist: Für
jedes ganz in R2 \ {0} liegende Rechteck R, bzw. für jede ganz in R2 \ {0} liegende
Kreisscheibe D ist 9 ein Potential für G.

Ist 7 irgendein Weg, der O nicht enthält, so liefert / G das Integral über dô. Für

einen geschlossenen Weg 7 in der punktierten Ebene R2 \ {0} ändert sich 9 um ein
ganzzahliges Vielfaches von 2tt. Man erhält folglich

G 2nk (3)

wo k eine ganze Zahl ist. Insbesondere ist für den einmal im Gegenuhrzeigersinn
durchlaufenen Kreis mit Mittelpunkt O der Wert des Integrals 2tt und nicht Null. Wir nehmen

(3) zum Anlass für die folgende Definition:
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Definition Es sei 7 ein geschlossener Weg in der Ebene, der O nicht enthält. Dann
definieren wir die Umlaufzahl W(7,0) von 7 bezüglich O durch

Für einen beliebigen Punkt P G R2, P (x0,1/0) setzen wir

Gp(x,i/) G(x-xo,i/-i/o)-

Für einen geschlossenen Weg 7 mit P ^ 7 ist die Umlaufzahl W(7,P) von 7 bezüglich
P durch

definiert.

Es wird sich in der Folge zeigen, dass das Vektorfeld G und seine verschobenen Kopien
Gp das einzige Hindernis dafür bilden, dass Vektorfelder, welche die Integrabilitäts-
bedingung (2) erfüllen, in U auch global ein Potential besitzen. Dieses überraschende
Resultat basiert auf dem folgenden Satz 3. Wie eine tiefere Analyse, auf die wir hier
nicht eingehen können, zeigt, handelt es sich dabei eigentlich um ein rein topologisches
Resultat; es wird hier aber in einer analytischen Form ausgesprochen.

Satz 3 Es sei 7 ein geschlossener Weg in U, so dass für alle P <£ U die Umlaufzahl
W(7,P) Null ist. Es sei F ein lokal integrierbares Vektorfeld in U. Dann gilt

F 0

Wir werden weiter unten auf einige Anwendungen des Satzes 3 zurückkommen.

Der Beweis verläuft in mehreren Schritten. Der erste Schritt besteht in einer Reduktion
auf "Rechteckswege". Wir nennen einen Weg 7 einen Rechtecksweg, wenn er sich aus

endlich vielen Geradenstücken zusammensetzt, die parallel zu den Koordinatenachsen
verlaufen. Wir behaupten:

Lemma 4 Gilt die Aussage von Satz 3 für Rechteckswege 77, so gilt sie auch für beliebige
(stückweise stetig differenzierbare) Wege 7.

Beweis. Wir überdecken den Weg 7 durch ganz in U liegende offene Kreisscheiben

Di, i 1,2,... ,N, und wählen Kurvenpunkte P, mit P, e D, fl D,-_i, und ferner
Pn+i P0 € DN n Di (man beachte, dass der Weg 7 geschlossen ist). Das Wegstück 7,
zwischen P, und P!+i ersetzen wir dann durch ein Wegstück rju das aus zwei geradlinigen
Stücken parallel zu den beiden Koordinatenachsen besteht und ganz im Innern von D,
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Fig. 2

verläuft (siehe Figur 2). Da das Vektorfeld F lokal integrierbar ist, folgt

f F= f F für i l,2,...,N,
¦J~fi Jrii

und damit

Jf Jf. (4)

Analoges gilt für die (ebenfalls lokal integrierbaren) Vektorfelder Gp, die zur Berechnung
der Umlaufzahl herangezogen werden. Daraus folgt für P £ U

W(ri,P) W(7,P) 0

Da dies für jedes P <£ U zutrifft, folgt

[f=o,
falls die Aussage des Satzes 3 für Rechteckswege als richtig angenommen wird. Mit (4)
ergibt sich somit

'
F=0,

wie in Lemma 4 behauptet.

In einem zweiten Schritt beweisen wir die Aussage des Satzes 3 für Rechteckswege. Es

sei zuerst R ein beliebiges, ganz in U liegendes Rechteck, und dR sei der im positiven
Umlaufsinn durchlaufene Rand von R. Da das Vektorfeld F lokal integrierbar ist, folgt
aus unserem Satz 2 JdRF 0.

Wenn der Weg 7 als Summe Yl mi ^ gegeben ist, wobei für alle i das Rechteck R,

ganz in U enthalten sei, so folgt

Das fundamentale Resultat ist nun das folgende; es beweist gemäss den obigen
Bemerkungen die Aussage des Satzes 3 für Rechteckswege.



Elem. Math. 52 (1997)

Satz 5 Es sei 7 ein geschlossener Rechtecksweg in U. Es gelte W(j,P) 0 fiir alle
Punkte P mit P <£ U. Dann existieren ganz in U enthaltene Rechtecke Rt und ganze
Zahlen in,eZ mit

1 YmldRl.

Beweis. Ausgehend vom Rechtecksweg 7 zeichnen wir als erstes alle achsenparallelen
Geraden, welche Geradenstücke des Weges 7 enthalten. Dies liefert eine Zerlegung der
Ebene R2 in endlich viele endliche und unendliche Rechtecke. Wir zeichnen ferner vier
weitere achsenparallele Geraden ein, die dazu dienen, die bei der so konstruierten
Unterteilung entstandenen unendlichen Rechtecke abzuschneiden. Damit verläuft die gegebene
Rechteckskurve so, dass in jeden Teilstück sowohl links wie rechts des Weges ein
endliches Rechteck unserer Unterteilung liegt (siehe Figur 3). Es seien R\, R2,..., Rn die

endlichen Rechtecke der so entstandenen Unterteilung. Wir wählen in jedem Rt einen
Punkt P, und definieren m, W(7, Pf). Dann behaupten wir

(a) Es gilt 7 E, m, dRi.

(b) Für nii^O ist Rr Ç LZ.

Diese beiden Behauptungen zusammen beweisen Satz 5.

R G

J P
J

Rk\
•Pk

\-

Fig. 3

Wir wenden uns zuerst der Behauptung (b) zu. Es sei m, ^ 0. Laut Definition von m,
ist die Umlaufzahl W(7, Pf) ungleich Null. Nun ist aber die Umlaufzahl einerseits stetig
vom Punkt P, abhängig, andererseits eine ganze Zahl. Es ist also die Umlaufzahl auf
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zusammenhängenden Mengen konstant. Für P im Innern des Rechtecks R, ist folglich
W(P,7) W(P{,7) + 0. Daraus folgt P G LZ, denn für P i U gilt W(P,-/) 0 nach

Voraussetzung. Für P G 8Rr gilt dasselbe Argument, ausser im Fall P G 7. Da aber 7 in
LZ liegt, folgt auch in diesem Fall P G LZ. Es ergibt sich aus diesen Überlegungen, dass

das ganze (abgeschlossene) Rechteck Rr in LZ liegt.

Um die Behaupung (a) zu beweisen, betrachten wir den Weg 7' mit

Es ist zu zeigen, dass 7' kein gerades Teilstück von 7 mehr enthält.

Es sei a eine Seite des beliebigen Rechtecks Rk. Dann können wir schreiben

7' 7 - y^ wi; dRi ma + Terme ohne a
i

wobei m eine gewisse ganze Zahl ist. Betrachten wir den Weg 7 - J2i mi^
so erhalten wir für die Umlaufzahl bezüglich Pk

1

mk-mk-m
—m

Im Weg 7" 7 - 53 mi <9^i - m ö^fc kommt aber das Geradenstück a nicht mehr vor.
In unserer Unterteilung gehörte a zum Rand von zwei Rechtecken: Liegt Rk auf der
einen Seite, so liege Rj auf der anderen Seite von a (siehe Figur 3). Die Punkte Pk und

Pj liegen dann für 7" in einem zusammenhängenden Gebiet, so dass folgt

-m W Cy-^rmdRi -mdRk,Pk

W ("f-

m; - m; - 0

0

Dies beweist unsere Behauptung (a).

Unser Beweis des Satzes 5 ist einem Beweis von Emil Artin für den Satz von Cauchy der

(komplexen) Funktionentheorie nachgebildet (siehe [A]). Wenn man das obige Resultat
im Kontext der rellen Analysis kennt, so sieht man sofort, wie es sich in den komplexen
Fall übersetzen lässt. Die obigen Argumente liefern in der Tat den Hauptteil des globalen
Satzes von Cauchy (siehe z.B. [L2], Chapter IV, Theorem 2.2). Dazu werden wir weiter
unten noch einige Bemerkungen machen. Zuerst wenden wir uns aber einer anderen

Anwendung zu (siehe Figur 4).
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Fig. 4

Satz 6 Im Gebiet U der Ebene sei ein geschlossener Weg 7 gegeben, welcher die

Eigenschaft hat, dass für jeden ausserhalb von U liegenden Punkt P die Umlaufzahl
W(7,P) Null ist. Es seien ferner P\,P2, ¦ ¦ ¦ ,Pn Punkte in U, die nicht auf 7 liegen.
Für jedes i 1,2,... ,n wählen wir eine ganz in U enthaltene (kleine) Kreisscheibe D,
mit Mittelpunkt P;, und zwar so, dass keiner der Punkte Pk mit k ^ i in D, liegt. Die
Randkurve 7, von D, orientieren wir im Gegenuhrzeigersinn. Wir setzen mt W(j,P,).
Es sei U* U\ {P\,P2, ¦ ¦ ¦ ,Pn}> und F sei ein in U* lokal integrierbares Vektorfeld.
Dann gilt

Beweis. Wir setzen C 7 - J^ m,7,. Ist P ein Punkt ausserhalb U, so folgt nach obigem

W(C,P) W(7,P) - ^m!W(7!,P) 0

Für den Punkt Pjt an Stelle des Punktes P erhält man W(7f,Pjt) 1 für i k und

W(7,,Pjt) 0 für i ^ k. Damit folgt

Auf das Gebiet U* und die Kurve C wollen wir jetzt unseren Satz 3 anwenden. Dabei
ist zu bemerken, dass die Aussage des Satzes 3 nicht nur für geschlossene Kurven gilt,
sondern auch für Kurven, die - wie C - endliche Summen von geschlossenen Kurven
sind. Es folgt dann

0= / F
IC Jj

F

woraus sofort die Aussage des Satzes 6 folgt.
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Wir können - ähnlich wie in der (komplexen) Funktionentheorie - das Residuum eines

lokal integrierbaren Vektorfeldes F in einem Punkt P, definieren durch

wo 7, wie oben einen kleinen, im Uhrzeigersinn orientierten Kreis um P, bezeichnet.
Das Residuum ist unter den Voraussetzungen des Satzes 6 unabhängig von 7,. Mit dieser
Definition lautet die Aussage von Satz 6

F =^27rm, -respf(F)

Diese Terminologie wird in der Funktionentheorie bei der Darstellung des entsprechenden

Resultates benützt, das vom Wegintegral einer meromorphen Funktion längs eines

geschlossenen Weges in der komplexen Ebene handelt. Der Zusammenhang ist leicht
beschrieben: Es seien / eine komplexe Funktion und 7 ein Weg in der komplexen Ebene.

Fasst man 7 als Weg in der reellen Ebene auf, so lassen sich Real- und Imaginärteil des

komplexen Wegintegrals / /(z) dz als Integral von zwei zweidimensionalen reilen
Vektorfeldern längs 7 auffassen. Diese beiden Vektorfelder sind ausserdem lokal integrierbar,
wenn / die Cauchy-Riemannschen Differentialgleichungen erfüllt. Unser Satz 6 enthält
also als Korollar das entsprechende Resultat der Funktionentheorie, den sogenannten
Residuensatz (siehe z.B. [L2], Chapter VI, Theorem 1.2).

Eine weitere Anwendung betrifft die folgende Situation, die ebenfalls in der
Funktionentheorie betrachtet wird. Wir formulieren allerdings nur das reelle Resultat, die

Übersetzung ins Komplexe ist einfach. Für diesen Zweck nennen wir ein Gebiet U einfach
zusammenhängend, wenn für jeden Weg 7 und jeden Punkt ausserhalb U die Umlaufzahl
W(7,P) verschwindet, W(7,P) 0. Es ist nicht schwer nachzuweisen, dass dies aus

den sonst üblichen Definitionen von einfach zusammenhängend folgt.

Satz 7 Es sei U ein einfach zusammenhängendes Gebiet der Ebene. Es seien P\ ,Pi, ¦ ¦ ¦ ,Pn

paarweise verschiedene Punkte in U, und es sei U* U\ {P\,P2,...,P„}. Wie oben

setzen wir

G(x,y)= + y2 x2 + y2

und bezeichnen mit Gp{ die Translation von G nach P,. 1st F ein lokal integrierbares
Vektorfeld auf U*, so existieren Konstanten a.\, «2, • • •, ein und eine Funktion 4> auf U*,
so dass

n

F - \^alGpi grade/»



Elem. Math. 52 (1997) 11

Beweis. Es sei 7, die im Uhrzeigersinn orientierte Peripherie eines kleinen Kreises mit
Mittelpunkt P,, der keinen weiteren der Punkte Pi, P2,..., P„ enthält. Dann gilt

_
(2tt falls i j

f 1 0 falls i + j.
Wir setzen

1 r "
F und F\ =F — y^a,Gpi

i=\

Nach unserem Satz 6 genügt es dann zu beweisen, dass für alle geschlossenen Kurven
in U* das Integral / F\ verschwindet. Aber gemäss unserem Satz 5 haben wir

^ =0.
i j

Dies beweist unsere Behauptung.

Der Begriff der Umlaufzahl liefert in der Mathematik die Basis für die Behandlung der
elementaren topologischen Eigenschaften von Kurven in der Ebene. Es war die Idee von
Emil Artin (siehe [A]), auch die Homologie (in Dimension 1) mit Hilfe der Umlaufzahl
zu definieren: Ein geschlossener Weg 7 in einem Gebiet U heisst nullhomolog in U,
wenn für alle Punkte P, die nicht in U liegen, die Umlaufzahl W(7,P) Null ist. Die
Voraussetzungen über den Weg 7 in unseren Sätzen 5 und 6 bedeuten also, dass 7 in
U nullhomolog ist. Für weiteren Aufschluss über die mit dem hier behandelten Thema

zusammenhängenden elementaren Aspekte der Homologie und der Integration verweisen
wir auf das klassische Buch von S. Lefschetz [Le], insbesondere auf den Abschnitt
Integration and topology, p. 19-25. Dort werden auch einige weiterführende Entwicklungen
angesprochen.

Acknowledgment: I am very grateful to U. Stammbach for the care he has given to the

translation and the publication of my talk, and to Chr. Blatter for a critical reading of
the text.
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