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Fonctions extrémales et gain financier

Wemer Hurlimann

Werner Hurlimann, né en 1953, a étudié les mathématiques et la physique a 1’Ecole
Fédérale de Zirich, ou il a obtenu son doctorat en 1980. Aprés des séjours a
I’Université de Yale et Bonn, il est devenu collaborateur scientifique a la Win-
terthour-Vie en 1984. Il a été professeur visiteur associé en science actuarielle a
I’Université de Toronto durant I’année 1988-89. Il a écrit de nombreux travaux de
mathématiques pures et appliquées, notamment en algebre et théorie des nombres,
calcul des probabilités et statistiques, et science actuarielle et financiére. Ses passe-
temps incluent le jeu du tennis, la musique, la numérologie et la philatélie.

Introduction

Un bon nombre de facteurs, qui jouent un rdle important dans le domaine des assu-
rances et de la finance, sont de nature stochastique, par exemple la durée de vie dun
individu ou le cours d’une action a la bourse. Il en résulte que le gain financier pro-
duit par les institutions financiéres est a priori une grandeur aléatoire. Souvent la forme
exacte du processus, qui engendre le gain financier, mathématiquement sa fonction de
répartition, n’est connu que de facon incomplete. Cela signifie que seul un nombre res-
treint de caractéristiques de sa fonction de répartition peuvent étre estimées comme par
exemple sa moyenne, son écart-type et son domaine de variation. Sous ces conditions,
de quelle maniére le gain financier peut-il varier, et comment les agents du marché fi-
nancier peuvent-ils optimer leurs propres gains financiers? Cette simple question pose
un probleme scientifique fondamental, dont dépend en partie le bon fonctionnement de
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I’économie. La branche qui s’occupe de tels problemes est 1’économie financiére, une
discipline bien établie dont I’origine principale remonte & Markowitz (1952/59/87), fon-
dateur de la théorie moderne des portefeuilles et 1'un des trois lauréats du prix Nobel
1990 en économie (les deux autres étant Miller et Sharpe).

Depuis le début des années 1970, les marchés financiers ont introduits peu a peu de nou-
veaux instruments financiers comme les options, contrats futurs, etc., connus sous le nom
de “produits dérivés”. L’existence de ces instruments financiers pose le probleme crucial
de 1’évaluation et I’optimisation des gains financiers en leur présence. Du a une contri-
bution séminale par Black et Scholes (1973) (le déces en aout 1995 du premier auteur
est profondémment ressenti par les adeptes mémes des mathématiques pures comme le
suggere Iarticle de Chichilnisky (1996)), I’économie financiere a connu un essor formi-
dable durant les vingt derni¢res années. Cependant il ne semble pas qu’a I’heure actuelle
une méthodologie générale ait ét¢ développée et unanimement acceptée pour résoudre
les problemes mentionnés.

Cet article a pour objet d’introduire le mathématicien a quelques aspects ¢lémentaires
du probleme ci-dessus, qui ont attirés 1’attention de I’auteur ces dernieres années. Etant
donné le bagage traditionnel d’un mathématicien typique, 1a tiche posée par un tel projet
demande des efforts assez divers. Il s’agit de décrire les termes financiers courants,
d’expliquer et d’introduire leur modé¢lisation par les mathématiques, et de présenter des
résultats non triviaux, dont leurs dérivations restent accessibles pour un cercle de lecteurs
aussi large que possible. Pour un livre de langue frangaise, qui décrit les principaux
outils mathématiques appliqués dans la théorie financiére moderne, on peut consulter
Roger (1991). En particulier nous renvoyons un lecteur non familier avec les notions
mathématiques de cet article au chapitre 2 de cet ouvrage.

En ce qui concerne les termes financiers, nous utilisons la notion de gain financier,
respectivement perte financiere, dans son sens intuitif commun comme différence entre
recettes (ou actifs) et dépenses (ou passifs), resp. différence entre dépenses et recettes.
Le gain absolu, resp. 1a perte absolue, représente le gain financier, resp. la perte finan-
ciere, lorsque celui-ci est non-négatif, resp. celle-ci strictement positive. Des situations
particuli¢res importantes, qui résultent de ces concepts incluent les notions de contrat
Jorward et contrat fitur, d’option (financiére), et de (réassurance) stop-loss. Un contrat
Jforward est un arrangement entre deux partenaires a une date initiale pour la livraison
d’un actif (p. ex. une action) a une date ultérieure T contre paiement du prix du contrat
spécifié¢ a la date initiale. La livraison de ’actif se fait contre paiement au temps T et,
contrairement au contrat futur, aucun paiement intermédiaire n’a lieu. Le partenaire, qui
a I’obligation d’acheter 1’actif au temps T contre paiement du prix du contrat, occupe une
position longue. Alors I'autre partenaire occupe une position courte et il a 1’obligation
de livrer I’actif au prix de livraison égal au prix du contrat. La valeur a la date initiale
d’un contrat forward normé, qui ne prévoit aucun paiement initial, est nulle. Le prix
du contrat correspondant est appelé prix forward. Pour une étude détaillée et des réfé-
rences a ce sujet, le lecteur intéressé peut consulter Merton (1990), p. 347-349, ainsi
que Elton et Gruber (1991), chapitre 21. Une option est un contrat qui donne le droit
et non 1’obligation d’acheter ou de vendre, durant ou a la fin d’une période déterminée,
un certain bien spécifié par le contrat, d’habitude un actif financier. La date spécifiant
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la limite de validit¢ de 1’option est appelée date d’expiration. Une option est du fype
européen si elle ne peut étre exercée qu’a la date d’expiration tandis qu’elle est du #Hype
américain si elle peut étre exercée a n’importe quelle date de la durée du contrat. Une
call-option donne le droit a I’acheteur d’acquérir ’actif & un prix spécifié par le con-
trat, appelé prix d’exercice. Une put-option donne le droit a 1’acheteur de I’option de
vendre I’actif sous-jacent au prix d’exercice. L’acheteur d’une option occupe la position
longue du contrat et le vendeur, aussi appelé souscripteur (“writer” pour la littérature
anglaise), occupe la position courte. Un contrat (de réassurance) stop-loss est I’analogue
actuariel d’une call-option. Son prix d’exercice est appelé déductible sur les marchés
de la (ré)assurance. Il existe déja quelques ouvrages enticrement dédiés a I’étude des
options et instruments dérivés, entre autres MacMillan (1980), Jarrow et Rudd (1983),
Cox et Rubinstein (1985), Hull (1989), Gemmill (1992), Wilmott et al. (1993/95). Une
illustration concrete de ces notions est présentée dans nos exemples 1.1.

Une modélisation mathématique (minimale) du gain financier, qui n’utilise que les no-
tions de base de la théorie des probabilités, est présentée en tant que préliminaire dans
la section 1. Il est important de remarquer que nous nous occupons pour ainsi dire pas
du prix des instruments financiers, qui est un sujet déja suffisamment établi et développé
dans la litérature. Notre intérét se concentre sur les variations extrémales possibles de
I’espérance mathématique et de la variance des gains et pertes absolues de ces instru-
ments, étant donné une information incompléte de la fonction de répartition des gains
financiers. A notre avis la connaissance de bonnes bornes (meilleures bornes si possible)
est primordial & I’étude du probleme général d’évaluation et d’optimisation des gains
financiers en présence des instruments financiers dérivés.

Donnons encore un résumé des résultats obtenus. A la section 2 nous déterminons le
maximum de la perte financi¢re absolue moyenne lorsque 1’espérance mathématique
et la variance sont connues. Il s’avere que celui-ci est atteint par une perte financiere
diatomique. Il s’agit en fait d’une version plus moderne d’une inégalité originalement
proposée par Bowers (1969) dans le cadre de la réassurance stop-loss. Nous mentionnons
également la généralisation de ce résultat au cas ou la perte financiére ne varie que dans
un intervalle fermé, et expliquons pourquoi ce dernier résultat est plus significatif dans
les applications. A la section 3 nous montrons que le maximum ci-dessus est également
atteint par une variable aléatoire de fonction de répartition continue (en général de type
mixte discret et continu). Ce résultat est utile pour la modélisation de la solvabilité des
compagnies d’assurance (voir I’auteur (1993b)), et sa généralisation permet en particulier
d’obtenir de “bonnes” bornes analytiques pour les primes nettes d’une réassurance stop-
loss d’un portefeuille d’assurances (voir I’auteur (1995b)). Ainsi le contenu des sections
2 et 3 constitue en quelque sorte une introduction d’un niveau ¢lémentaire aux travaux
plus avancés dans ce domaine. Dans le méme esprit, nous présentons a la section 4
quelques inégalités sur la variance du gain et de la perte financiere absolue, et obtenons
ala section 5 des situations simples pour lesquelles ces inégalités sont atteintes. Certains
de ces derniers résultats ont été utilisés dans divers travaux, dont les plus accessibles
sont Hiirlimann (1994/95c).

Finalement le lecteur appréciera peut-étre qu’il existe aussi une certaine esthétique ma-
thématique dans les applications. Ainsi toutes les inégalités par Bowers (1969), Kremer



Elem. Math. 52 (1997) 155

(1990), Hiirlimann (1993a/94) et Birkel (1994) découlent d’un méme principe, a savoir
la propriété de non-négativité de certaines fonctions variance. De plus les inégalités sur
la variance satisfont a une propriété de dualité obtenue par une opération de conjugaison,
analogue de la conjugaison en théorie des nombres complexes (voir les remarques 4.1),
ce qui simplifie considérablement la compréhension et la mémorisation des formules.

1 Modélisation probabiliste du gain financier

Soit (©2,A,P) un espace probabilis¢, ou €2 est ’ensemble des états de la nature ou
univers, A est la o-algébre des événements de €2, et P la mesure de probabilité. Consi-
dérons X : €2 — R une variable aléatoire réelle définie sur cet espace. On fait I’hypotheése
suivante:

0<P(X>0),P(X<0)<1, (H)

c’est-a-dire X prend a la fois des valeurs positives et non-positives. Par interprétation
nous appelons X une perte financiére. Le négatif de la perte financiere, appelé gain
financier, est not¢ G = —X. Pour un événement E de A notons I : E — {0,1} la
fonction indicatrice définie comme suit. Si w € €2 est un événement élémentaire, alors
I(w) =1 lorsque w € E et I(w) = 0 sinon. Associées aux variables aléatoires X et G,
nous aurons besoin des valeurs suivantes:

Xy =X-1I(X>0) : la perte absolue,
G, =X_=(-X)-I{(X<0) : Ie gain absolu.

Bien sirona X = X, — X_, ou encore 'identité¢ du gain financier
G+X+:G+, (11)

qui nous dit que le gain absolu est la somme du gain financier et de la perte absolue.
De fagon plus générale on a pour n = 1,2, .. ..

G"+ (-1)" X" =G (1.2)
La valeur absolue de la perte et du gain financier est définie par
X| = G| = X} + Gy (13)

Puisque {X > 0} et {X < 0} sont des événements complémentaires, le produit de
variables aléatoires X, - G, = 0. Il suit que |X|> = |G]* = X® = G2, ce qui jus-
tifie I'interprétation de (1.3) comme valeur absolue. Les identités (1.2) impliquent des
relations semblables sur les moments des quantités aléatoires, pour autant que ceux-ci
existent. En pratique on n’utilise souvent que les moments d’ordre un et deux, et parfois
ceux d’ordre trois et quatre. Considérons les moments d’ordre un et deux de la perte et
du gain absolus, qui sont des moments partiels de la perte et du gain financiers, soient
M" = E[Xy], M~ = E[X_], M)’ = E[X3|, M, = E[X?] = E[G?], ainsi que les
variances partielles V' = Var[X.] = M)" — (M")* et V- = Var[X_| =M, — (M)~
Soit encore 1 = E[X] et o> = Var[X] la moyenne et la variance de la perte financiére.
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En appliquant I’opération d’espérance mathématique aux relations (1.2) pour n = 1,2,
on obtient les identités:
MY —M =pu
M+ M, =@+ a2 (1.4)
ViV =02 —2MTM~

Remarque 1.1. 11 est possible de généraliser les notions ci-dessus (ainsi que les résultats
qui suivent) & une paire d’événements complémentaires E, E quelconques, et a des

partitions {E;}, i € N, de A telles que |J E; = Q, E;(E; = 0 pour i # j. Pour des
ieN
raisons de simplicité et une meilleure compréhension, cet article ne considere que la

situation la plus intuitive, qui donne licu a la perte absolue et au gain absolu.

Exemples 1.1.

(1) Si P est la valeur des primes d’assurance a un instant futur donné, et si S est le
montant aléatoire des prestations d’assurance a cet instant, alors le gain financier G =
P — S représente le résultat technique dune compagnie d’assurance. Un réarrangement
de I'identité (1.1), a savoir

P+(S—P).=S+(P -8, (1.5)

montre que la somme des primes et des prestations d’une réassurance stop-loss de dé-
ductible P suffit a financer avec certitude (c’est-a-dire avec probabilité¢ un) le montant
des prestations d’assurance et une participation aux bénéfices de montant P — S lorsque
les sinistres n’excedent pas les primes.

(ii) De facon semblable soit S la valeur aléatoire d’un titre financier (p.ex. action) 4 un
instant futur donné. Notons F le prix forward de ce titre au méme instant, qui est connu
sur le marché financier lors d’un investissement dans ce titre. Alors le gain financier
G = S — F d’une position longue dans un contrat forward satisfait 1’identité

S+(F—8)y=F+(S—F),. (16)

La somme d’une position longue dans un titre et d’une put-option de prix d’exercice
F suffit a financer le prix forward et le paiement qui résulte d’une call-option de prix
d’exercice F.

(iii) De facon plus générale, soient A et L des actifs et passifs financiers aléatoires
quelconques 4 un instant futur donné. Alors le gain financier G = A — L satisfait a la
relation

A+(L—-A),=L+(A-L),, (1.7)

qui montre que la somme des actifs A et d’une option d’échange A contre L suffit
a financer les passifs L et le paiement qui résulte d’une option d’échange L contre
A. Bien entendu (i) et (ii) sont des cas particuliers. Mentionnons encore deux autres
situations importantes. Si A = d > 0 est la rétention d’un assureur ¢t L = S sont
les prestations aléatoires d’assurance, alors l'identité d + (S —d). = S+ (d — S);
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généralise (1.5) a4 une réassurance stop-loss de déductible d quelconque. De méme si
A=S5,L=E >0, on généralise (1.6) au cas des options financi¢res de prix d’exercice
E quelconque. L’identité (1.7) est fondamentale a 1’ Assurance des Portefeuilles, qui a
été créée par Leland durant 1a nuit du 11 septembre 1976 (voir Luskin (1988)). Dans un
environnement économique incertain, pour lequel on suppose que seul la moyenne et la
variance jouent un role, les risques financiers extrémes de la relation d’équilibre (1.7)
dépendent des bornes inférieures et supérieures des variances partielles V*t, V. pour
autant que les prix futurs des instruments dérivés M™ = E[(L—A).], M~ = E[(A-L).]
sont connus. Rappelons que le prix de 'option d’échange a été déterminé d’abord par
Margrabe (1978). Lorsque les actifs ou passifs sont des quantités déterministes, on est
ramené au cas des call- et put-options, dont les prix ont ét¢ déterminés par Black et
Scholes (1973).

2 Maximum de la perte financiére absolue moyenne

Il est bien connu en théorie des probabilités que les valeurs extrémales d’espérance
mathématique du type E[f(X)], f(x) une fonction continue, X une variable aléatoire
dont on connait certaines caractéristiques, comme par exemple 1a moyenne et la variance,
sont sous certaines conditions atteintes par des variables aléatoires discrétes de support
fini. 11 est moins connu que souvent il existe des variables aléatoires continues (plus
généralement de type mixte discret et continu) pour lesquelles ces valeurs extrémales
sont également atteintes. A la section 3, nous montrons comment de telles fonctions
extrémales peuvent étre construites dans le cas particulier f(x) = (x — d) représentant
le paiement d’une option ou d’un stop-loss. Déterminons d’abord le maximum de la
perte financiere absolue moyenne.

Rappelons la forme des variables aléatoires diatomiques de support {x1,x2}, X1 < X2
et de probabilités {p1,p>} lorsque la moyenne . et la variance o2 sont connues. 11 faut
satisfaire les équations de la somme des probabilités, de 1a moyenne et de la variance:

ptpa=1,
piXi +paXo = p, (2.1)
pr-(n —p) +p2- (2 —p) =0’

11 suit des deux premicres équations que les probabilités sont déterminées par le support

et la moyenne, soit
Xo — [ =X
= =—). 22
po (22 e (A0 22)

11 reste a satisfaire 1’équation de la variance. Tenu compte de (2.2) celle-ci devient
02 = (u—2x1) - (x2 — p). Ainsi il suffit de connaitre un atome, par exemple x;, le second
est alors déterminé par

0.2

p—x
On observe que I’application (2.3) est une involution (algébrique) dans le sens que
j*(x1) = j(x2) = x1 pour tout x;, ¢’est-a-dire j* est I'identité. Pour simplifier notons x =

X = j(xl) =ut (23)
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j(x), qui suggere une opération de conjugaison analogue a I’opération familiere de con-
jugaison en théorie des nombres complexes. Alors I’ensemble D, := D (p, 0; (—00,00))
des variables diatomiques de caractéristiques i, o, et a valeurs dans les nombres réels,
est décrit par une famille & un parametre de supports {x,x} et probabilités {p,p} tels
que )

_ o X—p —x

x*](x)fu+u_x7 p*f_x7 p* x7 x €R. (24)
De fagon équivalente, exprimons le support comme fonctlon de la probabilité p, & savoir

/1— _pP
X=p—o T 0<p<L (2.5)

Apres ces préliminaires, déterminons le maximum de la perte financiére absolue
moyenne.

R |

Proposition 2.1. (Inégalit¢ de Bowers(1969)). Soit X une perte financiere définie sur
lintervalle (—oco, 00), d’espérance mathématique 4 et de variance 0. Alors on a

(A) La perte absolue moyenne satisfait 1’inégalité
1
MY =EX.] < 5 {Vid T +u}. (26)

(B) L’égalité est atteinte par une perte financiere diatomique X* de support {x*,x*} tel
que x* = —/p? + o2, Xx* = /2 + o2

Démonstration.

(A) Montrons d’abord que I’inégalité (2.6) est satisfaite. D’aprés (1.3) la valeur absolue
de la perte financiére est égale a |X| = X, + G et satisfait 'identité |X|*> = X2. On a

Var[|X|] = E[(X*] = E[|X|]* = p* +o* = (MT + M)
Puisqu’une variance est toujours non-négative, on obtient 1’inégalité
MY+ M~ < A/p?+ o2,

L’inégalité (2.6) suit par insertion de la relation M~ = M — p (voir (1.4)).

(B) La borne supéricure est atteinte par une perte financiere diatomique du type (2.5).
Par I’hypothése (H) du paragraphe 1, on a nécessairement x < 0 < x. Dans ce cas la
perte absolue moyenne est la fonction de la probabilité¢ p donnée par (utiliser (2.5)):

flp) =M" = (1 =p)x=p(l —p) +ovp(l—-p).

Un calcul montre que f(p) est maximale lorsque

7*71 _ 13 *71 2 o
P=F _2{1 \/u2+02}7avecf(p)_z{“+v“ rort.

Par insertion dans (2.5) on vérifie que x* = —+/p? + 02, x* = /% + o2, ce qui acheve
la démonstration. O
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Remarques 2.1.
(i) Comme M~ = M™ — p par (1.4), le gain absolu moyen satisfait & 1’inégalité

M =Ex <o {ViFt o —p}, (2.6')
dont 1’égalité est également atteinte par la perte financiere diatomique donnée en (B).
(ii) Originalement Bowers (1969) a donné cette inégalité lorsque X = S —d, avec S les
sinistres d’un portefeuille d’assurances, d un déductible de réassurance. Dans ce cas la
perte absolue X, = (S — d), représente une réassurance stop-loss. Une interprétation
semblable peut &tre donnée pour les options financieres.
(iii) La meilleure borne supéricure (2.6) se généralise au cas ou la perte financiere X
est définie sur un intervalle [a,b] quelconque, un résultat plus significatif en pratique.
Comme illustration soit i, le taux d’intérét annuel technique d’une assurance vie et
I un taux d’intérét annuel stochastique. Empiriquement et sur de longues périodes, [
ne peut devenir négatif et est sujet 4 une limite supérieure, ainsi 0 < [ < i, 11
suit que le gain financier G = I — ij, qui représente 1’excédent du taux d’intérét par
rapport au taux technique et sur lequel les compagnies d’assurance basent leurs décisions
quant a la participation aux bénéfices, ne peut prendre des valeurs que dans I’intervalle
[a,b] = [—io,imax — o). De méme la perte financiere X = —G est définie sur un
intervalle [ip — imax, io]. Donnons sans preuve la meilleure borne supérieure de la perte
absolue moyenne lorsque X prend ses valeurs dans I'intervalle [a,5], a < 0 < b. Pour
cela rappelons que (2.3) définit les valeurs a,b par les équations de la variance, soient
(@—p)-(u—a) =02 (b—p) (u—0b) = o> On alespérance maximale

<u—a> - (a), lorsque 0 € {u,%(anw?)} )

—a

Bl

1 1
M™ =E[X}]| = %(\/u“ra“ru), lorsque 0 € [E(quﬁ)i(ber)} . (27)

b—p 1 -
——}-(b), lorsque 0 € |=(b+b),b
(=5 ) @) torsawe 0 |30+ 8).)
et est atteinte par une perte financiere diatomique X* = {x*,x*} telle que

1
a, lorsque 0 € {a7§(a+ﬁ)} 5

x* ={ — /12 + 02, lorsque 0 € E(Lﬂrﬁ), %(bJrE)} . (28)

b, lorsque 0 € B(bJrl;),b} y

Ce résultat important, qui se généralise dans diverses directions, fait 1’objet de nom-
breuses études récentes en science actuarielle. Pour une preuve, qui dépasse le cadre de
cet exposé, on peut consulter De Vylder et Goovaerts (1982), Jansen et al. (1986) et Kaas
et al. (1994), chap. X. Le cas limite 2 — —oo, b — oo n’est autre que la Proposition 2.1
obtenue dans le contexte de la réassurance stop-loss par Bowers (1969).
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3 Réassurance stop-loss et fonctions extrémales

Considérons de plus pres le cas intéressant de la réassurance stop-loss, respectivement
options financi¢res. Mathématiquement cette situation est modelée par la suite de va-
riables aléatoires X(d) = S —d, d € R, S une variable aléatoire de moyenne ps et
variance o3. Par la suite notons 7w (d) = E[X(d);] = E[(S — d),] I'espérance ma-
thématique d’une réassurance stop-loss, respectivement d’une call-option financi¢re de
type européen. Lorsque S prend ses valeurs dans (—oo,00), on a par application de la
Proposition 2.1 'inégalité

) < o) = 3 {0 = s+ 08— (0= )}, 6

atteinte par la variable $*(d) = d + X*(d) diatomique de support {s*(d),s*(d)} tel que

s'd) =d—\/(d —ps) +o5, §7(d) =d+/(d—ps)*+03. (3.2)

Malheureusement la borne supéricure est atteinte pour une variable aléatoire qui dépend
du parameétre d représentant le déductible, respectivement le prix d’exercice. Dans les
applications d’un niveau plus avancé, cela complique les calculs. Une illustration typique
est un probleme de Schmitter (p.ex. Brockett et al. (1991), Kaas (1991), Kaas et al.
(1994), chap. XI).

Au vu de ces difficultés, on peut se demander s’il existe une fonction de répartition pour
laquelle 1"égalité est atteinte dans (3.1), et qui ne dépend pas du paramétre d.

Proposition 3.1. (Hirlimann (1993b)). Soit D := D(ug, os;(—00,0)) I’ensemble des
variables aléatoires S définies sur I’intervalle (—oo,o0), d’espérance mathématique yig
et de variance o2, et de fonction de répartition absolument continue, ¢’est-a-dire tel que
F(s) = fioof(t)dt. Alors IsneaB({E [(§ —d)i]} = 7*(d) est atteint par la fonction de

répartition continue

1 (s — ps)
(s — ps)? + 0}

5 € (—00,00). (3.3)

Démonstration. De fagon générale, on a par intégration partielle

") = E[S -] = [ T(s— Wf(s)ds
* (3.4)

— L(1—F()- (-1 + /00(1 _ F(s)ds = /Oo(l _ E(s))ds.

La derni¢re égalité suit puisque lim F(s) = 1. Par différentiation de la relation (3.4) on
5—00
obtient
7'(x) = —(1=F(x)), x€ (—00,00). (3.5)
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En fait (3.4) et (3.5) montrent que F(s) et sa transformée “stop-loss”™ =w(x) sont en
correspondance biunivoque. Si F(s) est donné, on obtient 7(x) par intégration. Récipro-
quement si 7(x) est donné, on obtient F (x) par différentiation. Si I’on applique cette cor-
respondance 2 la transformée extrémale 7 (x) = 2{4/(x — ps)> + 0% — (x — pus)}, don-
née ci-dessus en (3.1), on obtient par différentiation F *(x) comme dans (3.3). On vérifie
que la fonction extrémale F*(s) est une fonction de répartition, ¢’est-a-dire elle satisfait
aux propriétés lim F*(s) =0, lim F*(s) = 1, et F*(s) est monotone croissante dans
5——00 5—00
I'intervalle (—o0, 00). De plus on a la représentation intégrale 7*(x) = [ (1—F*(s))ds
par (3.4), ce qui acheve la démonstration. O

Remarques 3.1.

(1) Contrairement aux variables diatomiques de support (3.2), la fonction extrémale (3.3)
n’appartient pas a I'ensemble D(us,os;(—00,00)). Son espérance mathématique est
bien us, mais sa variance est infinie. En effet, soit S* une variable aléatoire de fonction
de répartition F*(x), et soit f*(x) sa densité de probabilit¢ donnée par la formule

, X € (—00,00). (3.6)

Avec la transformation standardisée z = (x — ps)/os, le calcul intégral fournit les
caractéristiques désirées comme suit. Pour la moyenne, on a

o [ 1 [ (s +os2)dz /00 psdz

*:ES — d — — Rl iy~ —_— e ,

par = B /_ooxf(x)x 2/_00 Q+2F S Q23 °
(3.7)

ou la derniere égalité suit par la formule (24) tirée de Rottmann(1960), p. 157. De méme
le calcul de la variance donne

* (0sz)?dz

2 * 2 i 2 *
oc. = E[(S* — us :/ X — 1s EZX—/ — 3.8
S =ES" sl = | -psff = | R G8)
Puisque la derni¢re intégrale diverge, on obtient que la variance est infinie.

(ii) A nouveau la Proposition 3.1 se généralise au cas des variables aléatoires S définies
sur un intervalle [a, b]. A partir de (2.7), la généralisation de (3.1) devient, en remplacant
X par la translation S — x:

{mff;f)z wira) (et ) relogea)

{ 2toi—(x—p }7 xeB(aJrﬁ),%(ber)y (3.9)

1
2
{ —usz+a } EB(bH?),bJ.
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Par différentiation (correspondance biunivoque), on obtient la fonction extrémale

07 xXe (—00761)7

o3
(ns —ap + o7

x e {a%(zﬁLﬁ)},

1w L xe[l(a+ﬁ)7%(b+b)7 (3.10)

1
2 (x — ps)* + o2 2

(b= ps)? L. 5
T mpier *€ [E(bqtb),b),

1, xelboo).

On vérifie que F*(x) est une fonction de répartition continue. Cependant une fonction de
densité f*(x), qui correspond & F*(x), n’est continue qu’au cas limite de la Proposition
3.1. Pour compléter les formules, la fonction de probabilité extrémale

o3
(s —ap o2 © "
1 ol 1 1 =
e 5'{(x—us)32+a§}%7 xe|s@ta), 50+, G11)
o L
(b—ps)P 107 ’
0, sinon,

posséde deux atomes de masses non-nulles, placés sur les bornes de I'intervalle [a, b], est
continue sur un sous-intervalle, et nulle sinon. Il semble que la fonction extrémale (3.10)
a fait sa premicre apparition dans un article peu connu de Stoyan (1973). Sa dérivation
originale semble moins élémentaire. On peut également montrer que la moyenne d’une
variable aléatoire S* de fonction de probabilité f*(x) est s et que sa variance satisfait

ag*:E[(s*—us)z]:ag.<1+%ln{w» > ot (3.12)

g3

L’inégalit¢ provient du fait que le maximum de la variance d’une variable aléa-
toire quelconque a valeurs dans [a,b], lorsque la moyenne est connue, est égal a
(b — ps) (pus — a) (voir par exemple Jansen et al. (1986)).

(iii) A part son utilit¢ actuarielle (p.ex. Hiirlimann (1993b/95a/95b)), la méthode des
fonctions extrémales est également d’un intérét en finance mathématique. Ainsi, tenant
compte des conditions de non-arbitrage, il est possible de déterminer le prix extrémal de
certaines options financiéres.
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4 Inégalités sur la variance de la perte financiére absolue

Un probléme intéressant et utile consiste a généraliser les résultats précédents a des
moments partiels d’ordre supéricur. Sans exhauster le sujet, nous présentons de nouvelles
preuves plus élémentaires d’inégalités récemment introduites en science actuarielle. On
note F(0) = P(X < 0) la probabilit¢ d’un gain absolu et F(0) = P(X > 0) =1—F(0)
la probabilité d’une perte absolue. On suppose que X est une variable aléatoire définie
sur (—o0,00) de moyenne y et de variance o2,

Proposition 4.1. (Hirlimann (1993a)) Si la probabilité F(0) est inconnue, alors on a
les bornes supéricures

Vvt <o? —2M™M ™, (4.1)
Ve <o -2M"M".

Démonstration. Comme la fonction variance est non-négative, cela suit immédiatement
de la troisi¢me identité dans (1.4). O

Proposition 4.2. (Kremer (1990), Hiirlimann (1994)) Si la probabilité F (0) est connue,
alors on a les inégalités

F(0) 2 o« it < o2 - _ FO —)2
F(O) . _ __F(0)

Démonstration. (Les notions de lois et moments conditionnels sont introduites et ex-
pliquées dans Roger (1991), chapitre 2, paragraphe 6.) Considérons les moments par-
tiels conditionnels m™ = E[X|X > 0], my = E[X?*|X > 0], m~ = E[G|X < 0],
m, = E[G?|X < 0], et les variances partielles conditionnelles v™ = Var[X|X > 0] =
my — (m")?, v- = Var|G|X < 0] = m; — (m)* Ces caractéristiques sont liées aux
caractéristiques non conditionnelles par les relations

Mt =F(0)-m*, M =F(0)-mf, M~ =F©)-m~, M, =F(0) -m;. (45)

On en déduit que
1 (M™)?
ca g L N2 M+_ . 4.6
ot =t = = o+ (m - ) (46)
Comme la fonction variance est non-négative, on a M; > (]FVI(B;Z. Par conséquent on
obtient
+ + +\2 F(O) +1\2
L L s TRR (+7)

qui est la borne inférieure dans (4.3). La borne inférieure de (4.4) se montre de facon
semblable. Les bornes supérieures sont une conséquence des bornes inférieures et de la
troisi¢éme identité dans (1.4). O
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Remarques 4.1.

(1) 11 existe une propri¢té de dualité¢ qui relie toutes ces inégalités, et qui permet une
mémorisation facile de ces formules. Pour passer d’une inégalit¢ a I’autre, il suffit de
considérer les pertes absolues (signe positif) comme conjuguées des gains absolus (signe
négatif). De plus la barre “algébrique™ sur les probabilités reflete le fait que les événe-
ments E = {X > 0} et E = {X < 0} sont complémentaires. De facon formelle,
définissons une opération “barre” de conjugaison telle que M~ = M*, V- = VT,
F(x) =1—F(x). Cette opération est ¢également une involution, c’est-a-dire itérée deux
fois elle donne 1’identité. Si I’on pose par convention M= M, W e VT, Flel (x),
o = o, i = —pu, alors les paires (4.3), (4.4) sont conjuguées, alors que les paires (4.1),
(4.2) sont auto-conjuguées.

(ii) Lorsque X = S —d, d € R, est une translation, I’inégalité (4.1) a ét¢ mentionnée
également par Birkel (1994), Hesselager (1993), Sundt (1993), Exercice 10.1.

(iii) Birkel (1994) considere une perte financicre X = S — ¢(S), S les prestations
d’assurance, ¢ une fonction non-négative, et interpréte la perte absolue X, comme
paiement d’un contrat de réassurance plus général qu’un stop-loss (cas particulier ¢ (s) =
d constant). Lorsque ¢(s) n’est pas constant, on peut écrire la variance de X de deux
manigres, soient

o? = Var[S] — 2Cov[S, ©(S)] + Var[p(S)] (48)

= Var[S] — 2Cov[S — ¢(S5), ¢(S)] — Var[¢(S)]. ‘
Si ¢ (s) et la fonction f(s) = s — ¢(s) sont non-décroissantes, on a Cov[f(S),¢(S)] > 0
puisque la paire (S, S) est positive quadrante dépendante. (Pour cette derniére propriété
consulter un livre de Statistique Moderne ou “I’Encyclopedia of Statistical Sciences” de
Johnson et Kotz (1982/88)). La deuxieme égalité dans (4.8) implique o* < Var[S]. Si
seulement (s) est non-décroissante, on a Cov|[S, (S)] > 0 par le méme argument, et
la premiére égalité dans (4.8) implique o2 < Var[S]+ Var[¢(S)]. Par insertion dans (4.1)
et (4.3), on obtient les inégalités de Birkel (1994).

5 Variances extrémales du gain financier absolu

Nous explicitons des variables aléatoires a structure de perte financiere pour lesquelles
les inégalités sur la variance de la perte et du gain absolus sont atteintes, et déterminons
les valeurs extrémales de ces variances lorsque la moyenne i, la variance o et la perte
absolue Mt sont connues.

Lemme 5.1. Soit D;F = DyF(p,0;(—00,00)) C Dy = Dy, 0;(—00,0)) len-
semble des variables aléatoires diatomiques de support {x,x} et probabilités {p,p}
comme dans (2.5), et qui sont munies d’une structure de perte financicre telle que
I’hypotheése (H) soit satisfaite, ¢’est-a-dire x < 0 < x. Alors on a les égalités simul-
tanées suivantes:

V= (1%) (MR, V= <lr%p> (MY (5.1)
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Démonstration. Comme x < 0 < xona M™ = (1 —p)x, M, = (1 —p)(x)%, VT =
p(1 — p) (x)?, d’ou Iégalit¢ V" = (1‘in> - (M™)2. L’autre égalité suit de la méme
maniere. O
Ce résultat montre que les égalités dans (4.3), (4.4) sont atteintes par des variables aléa-

toires A structure de perte financiere. Quelles sont les bornes extrémales? En général
elles dépendent des caractéristiques supposées connues.

Proposition 5.1. Soit DF := DF(u,0,M™; (—00,00)) I'ensemble des variables aléa-
toires & structure de perte financiére définies sur (—oo,00) et telles que w, 0, M™ sont
connus, et D,F le sous-ensemble correspondant des variables diatomiques. Alors les
variances extrémales sont déterminées comme suit:

(A) Lorsque M > 0 la variance maximale de la perte absolue et minimale du gain
absolu, soient

ma (V) = % {07~ MM 1 o/o? —4MM- | (5.2)

XeDF
min {V"} = - {02 “IMTM™ — ov/o? — 4M+M*} (5.3)
xeDF 2 ’

sont atteintes par une perte financiére X € D,F de support {x,x} et probabilités {p,p}
telle que x = p — o/ 1—;2, ou la probabilit¢ p = F(0) est déterminée par

1 o2 =2MtM~ +o0vVo?2 —4M+M—
<L> - . (5.4)

1-p (M*)?

(B) Lorsque M~ > 0 la variance maximale du gain absolu et minimale de la perte
absolue, soient

max{V~} = % {02 —2M*M™ +ovo? — 4M+M*} (5.5)

XeDF
X%%{V(E)}fz{a “OIMTM™ —o\/o? — 4M'M } (5.6)

sont atteintes par une perte financiere X € D,F de support {x,x} et probabilités {p,p}
telle que x = o — o /=2, ot la probabilité p = F (0) est déterminée par

(5.7)

1—p 1 02 —2MTM~ + 002 — 4M+M~—
2 (M~)? '
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Démonstration. Par symmétrie (dualité exprimée aux remarques 4.1), il suffit de montrer
Paffirmation (A). La troisiéme relation dans (1.4) et la Proposition 4.2 montrent que la
quantité¢ V* = 02 —2M*M~ —V~ est maximale sur 1’ensemble DF lorsque la condition
suivante est satisfaite:

(C) La borne inférieure V~ > )
Soit X € D,F tel que p = F(0). Par le lemme 5.1, la borne inféricure dans (C)
est atteinte. Comme fonction de ({—P>, la premicre quantité¢ dans (5.1) est monotone
croissante, et la deuxiéme monotone décroissante. Par conséquent V™ est maximale pour

|~ [

0)

- (M™)? est atteinte et cette quantité est minimale.

la plus grande valeur de (1—6—’9), qui est solution de la troisiéme relation dans (1.4):

(1%) (MY (%) (MY =0 —2MTM~. (5.8)

Si Mt = 0 alors la variance V~ = ¢ est maximale, ce qui contredit (C). Ainsi
I’hypothése M™ > 0 est nécessaire. En multipliant (5.8) par (l—i’—p), on obtient une équa-
tion quadratique, dont la plus grande solution est déterminée par (5.4). Par la Proposition
2.1, ona M* < 3(+/p2 + 0% + p). Utilisant la relation M~ = M* — ;i de (1.4), on
remarque que 4MTM~ < o2, ce qui garantit I’existence d’une solution réelle dans (5.4).

11 reste a montrer que X € D,F, ¢’est-a-dire qu'on a E[X ] = MT. Comme x <0 < x
il faut vérifier que

E[Xi] = p(l —p)+oy/p(l—p) =M". (5.9)

Or par la premiére relation de (1.4), ceci est équivalent a
pM* 4 (1 = p)M~ = a+/p(1 —p). (5.10)
Elevant au carré p est effectivement solution de 1’équation (5.8). (I

Un résultat semblable est valable pour les inégalités de la Proposition 4.1.

Proposition 5.2. Soit DF := DF (p,0;(—00,00)) I’ensemble des variables aléatoires
a structure de perte financiere définies sur (—oo,00) et telles que p, o sont connus, et
D, F le sous-ensemble correspondant des variables diatomiques. Les égalités dans (4.1),
(4.2) sont atteintes comme suit:

(A) La variance maximale de la perte absolue est égale & V' = o et est atteinte par
X € D,F de support {076} et probabilité p = MJTZUZ De plus on a nécessairement
M- =0MT=p>0etV- =0.

(B) La variance maximale du gain absolu est €gale & V=~ = o? et est atteinte par
G € D,F de support {0,—0} et probabilité p = De plus on a nécessairement
MF=0M =-pu>0ectV"=0.

— O
e

Démonstration. 11 suffit de montrer (A). Par I'inégalité (4.3), la borne supérieure de (4.1)
est atteinte seulement si M~ = 0. La perte financi¢re extrémale X € D,F est obtenue
de I’affirmation (A) de la Proposition 5.1. O
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Remarques 5.1.

(i) Dans le cas limite M™ — 0, mais MT n’atteint pas zéro, laffirmation (A) de la
Proposition 5.1 reste valable. On obtient une perte financiére extrémale X € D,F de
support {x, x} et probabilités {p,p} telle que x — p(< 0), ¥ — o0, p — 1, max{V '} —
o2, min{V~} — 0. D’autre part I’affirmation (A) de la Proposition 5.2 montre que
V+t = o2 est atteint de fagon exacte lorsque 2 > 0. Dans ce cas x = 0, ce qui est un
peu pathologique, mais satisfait I’hypothé¢se (H) de notre modélisation financi¢re. Des
remarques semblables sont valables pour les affirmations (B).

(i1) Les résultats de ce paragraphe ont été inspirés par une communication personnelle
de Schmitter (1993), qui a obtenu le maximum (5.2) pour les translations X = S — 4,
d € R, mais de maniére plus obscure.
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