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Fonctions extrémales et gain financier

Werner Hürlimann

Werner Hürlimann, ne en 1953, a étudié les mathématiques et la physique à l'Ecole
Federale de Zürich, où il a obtenu son doctorat en 1980. Après des séjours à

l'Université de Yale et Bonn, il est devenu collaborateur scientifique à la Win-
terthour-Vie en 1984. Il a ete professeur visiteur associé en science actuarielle à

l'Université de Toronto durant l'année 1988-89. Il a écrit de nombreux travaux de

mathématiques pures et appliquées, notamment en algèbre et théorie des nombres,
calcul des probabilités et statistiques, et science actuarielle et financière. Ses passe-
temps incluent le jeu du tennis, la musique, la numérologie et la philatélie.

Introduction
Un bon nombre de facteurs, qui jouent un rôle important dans le domaine des

assurances et de la finance, sont de nature stochastique, par exemple la durée de vie d'un
individu ou le cours d'une action à la bourse. Il en résulte que le gain financier produit

par les institutions financières est a priori une grandeur aléatoire. Souvent la forme
exacte du processus, qui engendre le gain financier, mathématiquement sa fonction de

répartition, n'est connu que de façon incomplète. Cela signifie que seul un nombre
restreint de caractéristiques de sa fonction de répartition peuvent être estimées comme par
exemple sa moyenne, son écart-type et son domaine de variation. Sous ces conditions,
de quelle manière le gain financier peut-il varier, et comment les agents du marché
financier peuvent-ils optimer leurs propres gains financiers? Cette simple question pose
un problème scientifique fondamental, dont dépend en partie le bon fonctionnement de

Die nuilhemalische Ökonomie und die Fiiian/mnlhcmalik haben im Laufe der Icl/-
ten zwanzig Jahren stark an Bedeutung gewonnen. Neue theoretische Ansätze wurden
entwickelt und haben zu praktischen Erkenntnissen geführt, die von Banken und Versi-

cherungen in ihrem täglichen Gcschäfts\erhalten berücksichtigt werden. Nicht zuletzt

wegen dieser Entwicklung sind die Banken heule zu einem wichtigen Arbeitgeber
von Mathematikerinnen und Mathematikern geworden. — Werner Hürlimann gibt im
vorliegenden Beitrag eine Einführung in das Gebiet der Rnanzmalhematik. Er konzentriert

sich dabei vor allem auf Aussagen über den Envartungswcrl und die Varianz der
Gewinne und Verluste von Finanzinslrunicnlcn. wenn gewisse unvollständige Informationen

über die Wahrscheinlichkeitsverteilung dieser Gewinne vorliegen, ust
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l'économie. La branche qui s'occupe de tels problèmes est l'économie financière, une

discipline bien établie dont l'origine principale remonte à Markowitz (1952/59/87),
fondateur de la théorie moderne des portefeuilles et l'un des trois lauréats du prix Nobel
1990 en économie (les deux autres étant Miller et Sharpe).

Depuis le début des années 1970, les marchés financiers ont introduits peu à peu de

nouveaux instruments financiers comme les options, contrats futurs, etc., connus sous le nom
de "produits dérivés". L'existence de ces instruments financiers pose le problème crucial
de l'évaluation et l'optimisation des gains financiers en leur présence. Du à une
contribution séminale par Black et Scholes (1973) (le décès en août 1995 du premier auteur
est profondémment ressenti par les adeptes mêmes des mathématiques pures comme le

suggère l'article de Chichilnisky (1996)), l'économie financière a connu un essor formidable

durant les vingt dernières années. Cependant il ne semble pas qu'à l'heure actuelle

une méthodologie générale ait été développée et unanimement acceptée pour résoudre
les problèmes mentionnés.

Cet article a pour objet d'introduire le mathématicien à quelques aspects élémentaires
du problème ci-dessus, qui ont attirés l'attention de l'auteur ces dernières années. Etant
donné le bagage traditionnel d'un mathématicien typique, la tâche posée par un tel projet
demande des efforts assez divers. Il s'agit de décrire les termes financiers courants,

d'expliquer et d'introduire leur modélisation par les mathématiques, et de présenter des

résultats non triviaux, dont leurs dérivations restent accessibles pour un cercle de lecteurs
aussi large que possible. Pour un livre de langue française, qui décrit les principaux
outils mathématiques appliqués dans la théorie financière moderne, on peut consulter

Roger (1991). En particulier nous renvoyons un lecteur non familier avec les notions

mathématiques de cet article au chapitre 2 de cet ouvrage.

En ce qui concerne les termes financiers, nous utilisons la notion de gain financier,
respectivement perte financière, dans son sens intuitif commun comme différence entre
recettes (ou actifs) et dépenses (ou passifs), resp. différence entre dépenses et recettes.

Le gain absolu, resp. la perte absolue, représente le gain financier, resp. la perte financière,

lorsque celui-ci est non-négatif, resp. celle-ci strictement positive. Des situations

particulières importantes, qui résultent de ces concepts incluent les notions de contrat
forward et contrat futur, Adoption (financière), et de (réassurance) stop-loss. Un contrat
forward est un arrangement entre deux partenaires à une date initiale pour la livraison
d'un actif (p. ex. une action) à une date ultérieure T contre paiement du prix du contrat
spécifié à la date initiale. La livraison de l'actif se fait contre paiement au temps T et,

contrairement au contrat futur, aucun paiement intermédiaire n'a lieu. Le partenaire, qui
a l'obligation d'acheter l'actif au temps T contre paiement du prix du contrat, occupe une

position longue. Alors l'autre partenaire occupe une position courte et il a l'obligation
de livrer l'actif au prix de livraison égal au prix du contrat. La valeur à la date initiale
d'un contrat forward norme, qui ne prévoit aucun paiement initial, est nulle. Le prix
du contrat correspondant est appelé prix forward. Pour une étude détaillée et des

références à ce sujet, le lecteur intéressé peut consulter Merton (1990), p. 347-349, ainsi

que Elton et Gruber (1991), chapitre 21. Une option est un contrat qui donne le droit
et non l'obligation d'acheter ou de vendre, durant ou à la fin d'une période déterminée,

un certain bien spécifié par le contrat, d'habitude un actif financier. La date spécifiant
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la limite de validité de l'option est appelée date d'expiration. Une option est du type
européen si elle ne peut être exercée qu'à la date d'expiration tandis qu'elle est du type
américain si elle peut être exercée à n'importe quelle date de la durée du contrat. Une

call-option donne le droit à l'acheteur d'acquérir l'actif à un prix spécifié par le contrat,

appelé prix d'exercice. Une put-option donne le droit à l'acheteur de l'option de

vendre l'actif sous-jacent au prix d'exercice. L'acheteur d'une option occupe la position
longue du contrat et le vendeur, aussi appelé souscripteur ("writer" pour la littérature
anglaise), occupe la position courte. Un contrat (de réassurance) stop-loss est l'analogue
actuariel d'une call-option. Son prix d'exercice est appelé déductible sur les marchés
de la (ré)assurance. Il existe déjà quelques ouvrages entièrement dédiés à l'étude des

options et instruments dérivés, entre autres MacMillan (1980), Jarrow et Rudd (1983),
Cox et Rubinstein (1985), Hull (1989), Gemmill (1992), Wilmott et al. (1993/95). Une
illustration concrète de ces notions est présentée dans nos exemples 1.1.

Une modélisation mathématique (minimale) du gain financier, qui n'utilise que les
notions de base de la théorie des probabilités, est présentée en tant que préliminaire dans

la section 1. Il est important de remarquer que nous nous occupons pour ainsi dire pas
du prix des instruments financiers, qui est un sujet déjà suffisamment établi et développé
dans la literature. Notre intérêt se concentre sur les variations extrémales possibles de

l'espérance mathématique et de la variance des gains et pertes absolues de ces instruments,

étant donné une information incomplète de la fonction de répartition des gains
financiers. A notre avis la connaissance de bonnes bornes (meilleures bornes si possible)
est primordial à l'étude du problème général d'évaluation et d'optimisation des gains
financiers en présence des instruments financiers dérivés.

Donnons encore un résumé des résultats obtenus. A la section 2 nous déterminons le
maximum de la perte financière absolue moyenne lorsque l'espérance mathématique
et la variance sont connues. Il s'avère que celui-ci est atteint par une perte financière

diatomique. Il s'agit en fait d'une version plus moderne d'une inégalité originalement
proposée par Bowers (1969) dans le cadre de la réassurance stop-loss. Nous mentionnons

également la généralisation de ce résultat au cas où la perte financière ne varie que dans

un intervalle fermé, et expliquons pourquoi ce dernier résultat est plus significatif dans

les applications. A la section 3 nous montrons que le maximum ci-dessus est également
atteint par une variable aléatoire de fonction de répartition continue (en général de type
mixte discret et continu). Ce résultat est utile pour la modélisation de la solvabilité des

compagnies d'assurance (voir l'auteur (1993b)), et sa généralisation permet en particulier
d'obtenir de "bonnes" bornes analytiques pour les primes nettes d'une réassurance stop-
loss d'un portefeuille d'assurances (voir l'auteur (1995b)). Ainsi le contenu des sections
2 et 3 constitue en quelque sorte une introduction d'un niveau élémentaire aux travaux
plus avancés dans ce domaine. Dans le même esprit, nous présentons à la section 4

quelques inégalités sur la variance du gain et de la perte financière absolue, et obtenons
à la section 5 des situations simples pour lesquelles ces inégalités sont atteintes. Certains
de ces derniers résultats ont été utilisés dans divers travaux, dont les plus accessibles

sont Hürlimann (1994/95c).

Finalement le lecteur appréciera peut-être qu'il existe aussi une certaine esthétique
mathématique dans les applications. Ainsi toutes les inégalités par Bowers (1969), Kremer
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(1990), Hürlimann (1993a/94) et Birkel (1994) découlent d'un même principe, à savoir
la propriété de non-négativité de certaines fonctions variance. De plus les inégalités sur
la variance satisfont à une propriété de dualité obtenue par une opération de conjugaison,
analogue de la conjugaison en théorie des nombres complexes (voir les remarques 4.1),
ce qui simplifie considérablement la compréhension et la mémorisation des formules.

1 Modélisation probabiliste du gain financier
Soit (Q,A,P) un espace probabilisé, où Q est l'ensemble des états de la nature ou
univers, A est la a-algèbre des événements de Q, et P la mesure de probabilité.
Considérons X : Q —s- R une variable aléatoire réelle définie sur cet espace. On fait l'hypothèse
suivante:

0<P(X>0),P(X<0)<l, (H)

c'est-à-dire X prend à la fois des valeurs positives et non-positives. Par interprétation
nous appelons X une perte financière. Le négatif de la perte financière, appelé gain
financier, est noté G -X. Pour un événement E de A notons I : E —s- {0,1} la
fonction indicatrice définie comme suit. Si w G Q est un événement élémentaire, alors

I(uj) 1 lorsque uj e E et I(w) 0 sinon. Associées aux variables aléatoires X et G,
nous aurons besoin des valeurs suivantes:

X+ X • J(X > 0) : la perte absolue,

G+ X_ (-X) • I(X < 0) : le gain absolu.

Bien sûr on a X X+ - X_, ou encore l'identité du gain financier

G + X+ G+, (1.1)

qui nous dit que le gain absolu est la somme du gain financier et de la perte absolue.
De façon plus générale on a pour n 1,2,...:

Gn + {-\f-lXn+=Gn+. (1.2)

La valeur absolue de la perte et du gain financier est définie par

|X| |G|=X+ + G+. (1.3)

Puisque {X > 0} et {X < 0} sont des événements complémentaires, le produit de

variables aléatoires X+ • G+ 0. Il suit que |X|2 |G|2 X2 G2, ce qui justifie

l'interprétation de (1.3) comme valeur absolue. Les identités (1.2) impliquent des

relations semblables sur les moments des quantités aléatoires, pour autant que ceux-ci
existent. En pratique on n'utilise souvent que les moments d'ordre un et deux, et parfois
ceux d'ordre trois et quatre. Considérons les moments d'ordre un et deux de la perte et
du gain absolus, qui sont des moments partiels de la perte et du gain financiers, soient
M+ E[X+], M" E[X_], M+ E[X\], M," E[X2_] E[G\], ainsi que les

variances partielles V+ Var[X+] M+ - (M+)2 et V~ Var[X_] A/f - (M")2.
Soit encore /x E[X] et a2 Var[X] la moyenne et la variance de la perte financière.
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En appliquant l'opération d'espérance mathématique aux relations (1.2) pour n 1,2,
on obtient les identités:

M+ -M~ =^
M+ + M- m2 + o2 (1.4)

V+ + V- =a2 - 2M+M"

Remarque 1.1. Il est possible de généraliser les notions ci-dessus (ainsi que les résultats

qui suivent) à une paire d'événements complémentaires E, E quelconques, et à des

partitions {Er}, i e N, de A telles que |J E; Q, E, f]Ej =0 pour i ^ j. Pour des
ieN

raisons de simplicité et une meilleure compréhension, cet article ne considère que la
situation la plus intuitive, qui donne lieu à la perte absolue et au gain absolu.

Exemples 1.1.

(i) Si P est la valeur des primes d'assurance à un instant futur donné, et si S est le

montant aléatoire des prestations d'assurance à cet instant, alors le gain financier G

P - S représente le résultat technique d'une compagnie d'assurance. Un réarrangement
de l'identité (1.1), à savoir

P + (S-P)+=S + (P-S) + (1.5)

montre que la somme des primes et des prestations d'une réassurance stop-loss de

déductible P suffit à financer avec certitude (c'est-à-dire avec probabilité un) le montant
des prestations d'assurance et une participation aux bénéfices de montant P - S lorsque
les sinistres n'excèdent pas les primes.

(ii) De façon semblable soit S la valeur aléatoire d'un titre financier (p.ex. action) à un
instant futur donné. Notons F le prix forward de ce titre au même instant, qui est connu
sur le marché financier lors d'un investissement dans ce titre. Alors le gain financier
G S -F d'une position longue dans un contrat forward satisfait l'identité

S + (F-S)+=F + (S-F)+. (1.6)

La somme d'une position longue dans un titre et d'une put-option de prix d'exercice
F suffit à financer le prix forward et le paiement qui résulte d'une call-option de prix
d'exercice F.

(iii) De façon plus générale, soient A et L des actifs et passifs financiers aléatoires

quelconques à un instant futur donné. Alors le gain financier G A - L satisfait à la
relation

(1.7)

qui montre que la somme des actifs A et d'une option d'échange A contre L suffit
à financer les passifs L et le paiement qui résulte d'une option d'échange L contre
A. Bien entendu (i) et (ii) sont des cas particuliers. Mentionnons encore deux autres
situations importantes. Si A d > 0 est la rétention d'un assureur et L S sont
les prestations aléatoires d'assurance, alors l'identité d + (S - d)+ S + (d - S)+
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généralise (1.5) à une réassurance stop-loss de déductible d quelconque. De même si

A S, L E > 0, on généralise (1.6) au cas des options financières de prix d'exercice
E quelconque. L'identité (1.7) est fondamentale à l'Assurance des Portefeuilles, qui a
été créée par Leland durant la nuit du 11 septembre 1976 (voir Luskin (1988)). Dans un
environnement économique incertain, pour lequel on suppose que seul la moyenne et la
variance jouent un rôle, les risques financiers extrêmes de la relation d'équilibre (1.7)
dépendent des bornes inférieures et supérieures des variances partielles V+, V pour
autant que les prix futurs des instruments dérivés M+ E[(L-A)+],M~ E[(A-L)+]
sont connus. Rappelons que le prix de l'option d'échange a été déterminé d'abord par
Margrabe (1978). Lorsque les actifs ou passifs sont des quantités déterministes, on est

ramené au cas des call- et put-options, dont les prix ont été déterminés par Black et
Scholes (1973).

2 Maximum de la perte financière absolue moyenne
II est bien connu en théorie des probabilités que les valeurs extrémales d'espérance
mathématique du type E[f(X)], /(x) une fonction continue, X une variable aléatoire
dont on connaît certaines caractéristiques, comme par exemple la moyenne et la variance,
sont sous certaines conditions atteintes par des variables aléatoires discrètes de support
fini. Il est moins connu que souvent il existe des variables aléatoires continues (plus
généralement de type mixte discret et continu) pour lesquelles ces valeurs extrémales
sont également atteintes. A la section 3, nous montrons comment de telles fonctions
extrémales peuvent être construites dans le cas particulier/(x) (x - d)+ représentant
le paiement d'une option ou d'un stop-loss. Déterminons d'abord le maximum de la
perte financière absolue moyenne.

Rappelons la forme des variables aléatoires diatomiques de support {xi,x2}, X\ < x2

et de probabilités {pi,p2} lorsque la moyenne /x et la variance a2 sont connues. Il faut
satisfaire les équations de la somme des probabilités, de la moyenne et de la variance:

Pl+P2= 1,

piXi +p2X2 /x, (2.1)

pi • (Xi - jj)2 +p2 ¦ (x2 - jj)2 a2.

Il suit des deux premières équations que les probabilités sont déterminées par le support
et la moyenne, soit

II reste à satisfaire l'équation de la variance. Tenu compte de (2.2) celle-ci devient
a2 (/x - X\ ¦ (x2 - /x). Ainsi il suffit de connaître un atome, par exemple X\, le second

est alors déterminé par

X2 j(xi) :=/i+——• (2.3)
/x - X\

On observe que l'application (2.3) est une involution (algébrique) dans le sens que

;2(xi) ;(x2) X\ pour tout Xi, c'est-à-dire;'2 est l'identité. Pour simplifier notons x
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/(x), qui suggère une opération de conjugaison analogue à l'opération familière de

conjugaison en théorie des nombres complexes. Alors l'ensemble D2 := D2(/x, a; (-00,00))
des variables diatomiques de caractéristiques /x, a, et à valeurs dans les nombres réels,
est décrit par une famille à un paramètre de supports {x,x} et probabilités {p,p\ tels

que
9 —

X — 7 X — Uj \~ X) — — X) — — X \z J\ I 2j t"/i-XX-XX-X
De façon équivalente, exprimons le support comme fonction de la probabilité p, à savoir

0 <p < 1. (2.5)

Après ces préliminaires, déterminons le maximum de la perte financière absolue

moyenne.

Proposition 2.1. (Inégalité de Bowers(1969)). Soit X une perte financière définie sur
l'intervalle (-00,00), d'espérance mathématique /x et de variance a2. Alors on a

(A) La perte absolue moyenne satisfait l'inégalité

'
(2-6)

(B) L'égalité est atteinte par une perte financière diatomique X* de support {x*,x*} tel

que x* -\/m2 +0"2, x* ^jj? + a2.

Démonstration.

(A) Montrons d'abord que l'inégalité (2.6) est satisfaite. D'après (1.3) la valeur absolue
de la perte financière est égale à |X| X+ + G+ et satisfait l'identité |X|2 X2. On a

Var[|X|] E[X2] - E[|X|]2 M2 + a2 - (M+ + M~)2.

Puisqu'une variance est toujours non-négative, on obtient l'inégalité

L'inégalité (2.6) suit par insertion de la relation M~ M+ - /x (voir (1.4)).

(B) La borne supérieure est atteinte par une perte financière diatomique du type (2.5).
Par l'hypothèse (H) du paragraphe 1, on a nécessairement x < 0 < x. Dans ce cas la
perte absolue moyenne est la fonction de la probabilité p donnée par (utiliser (2.5)):

/(p) =M+ (1 -p)x M(l -p)+ay/p(l-p).
Un calcul montre que f(p) est maximale lorsque

Par insertion dans (2.5) on vérifie que x*
la démonstration.

2 + a2, ce qui achève

D



Elem. Math. 52 (1997) 159

Remarques 2.1.

(i) Comme M~ M+ - i par (1.4), le gain absolu moyen satisfait à l'inégalité
1

M" (2.6')

dont l'égalité est également atteinte par la perte financière diatomique donnée en (B).

(ii) Originalement Bowers (1969) a donné cette inégalité lorsque X S —d, avec S les

sinistres d'un portefeuille d'assurances, d un déductible de réassurance. Dans ce cas la

perte absolue X+ (S — d)+ représente une réassurance stop-loss. Une interprétation
semblable peut être donnée pour les options financières.

(iii) La meilleure borne supérieure (2.6) se généralise au cas où la perte financière X
est définie sur un intervalle [a, b] quelconque, un résultat plus significatif en pratique.
Comme illustration soit i0 le taux d'intérêt annuel technique d'une assurance vie et

I un taux d'intérêt annuel stochastique. Empiriquement et sur de longues périodes, I
ne peut devenir négatif et est sujet à une limite supérieure, ainsi 0 < I < imax. Il
suit que le gain financier G I - i0, qui représente l'excédent du taux d'intérêt par
rapport au taux technique et sur lequel les compagnies d'assurance basent leurs décisions

quant à la participation aux bénéfices, ne peut prendre des valeurs que dans l'intervalle
[a,b] [—iojimax - î'o]- De même la perte financière X -G est définie sur un
intervalle [i0 - îmax,îo]. Donnons sans preuve la meilleure borne supérieure de la perte
absolue moyenne lorsque X prend ses valeursdans l'intervalle [a, b], a < 0 < b. Pour
cela rappelons que (2.3) définit les valeurs a, b par les équations de la variance, soient
(a — fx) ¦ (fj, — a) a2, (b — fj.) ¦ (fj, — b) a2. On a l'espérance maximale

(ô), lorsque 0 G a,-(

- (Vm2 + cr2 + m) lorsque 0 G -(fl + fl), -{b + b) \ (2.7)

lorsque 0 G \\{b + b),b

et est atteinte par une perte financière diatomique X* {x*,x*} telle que

a, lorsque 0 g a, -(a+ ô)|

i2 + a2, lorsque 0 g -(a + ïï),-(b + b)\ (2.8)

b, lorsque 0 g

Ce résultat important, qui se généralise dans diverses directions, fait l'objet de

nombreuses études récentes en science actuarielle. Pour une preuve, qui dépasse le cadre de

cet exposé, on peut consulter De \ylder et Goovaerts (1982), Jansen et al. (1986) et Kaas

et al. (1994), chap. X. Le cas limite a —*¦ -oo, b —> oo n'est autre que la Proposition 2.1

obtenue dans le contexte de la réassurance stop-loss par Bowers (1969).
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3 Réassurance stop-loss et fonctions extrémales

Considérons de plus près le cas intéressant de la réassurance stop-loss, respectivement
options financières. Mathématiquement cette situation est modelée par la suite de

variables aléatoires X(d) S - d, d G R, S une variable aléatoire de moyenne /xg et
variance aj. Par la suite notons ir(d) E[X(d)+] E[(S - d)+] l'espérance
mathématique d'une réassurance stop-loss, respectivement d'une call-option financière de

type européen. Lorsque S prend ses valeurs dans (-00,00), on a par application de la
Proposition 2.1 l'inégalité

J (3.1)

atteinte par la variable S*(d) d + X*(d) diatomique de support {s*{d),s*{d)} tel que

(3.2)

Malheureusement la borne supérieure est atteinte pour une variable aléatoire qui dépend
du paramètre d représentant le déductible, respectivement le prix d'exercice. Dans les

applications d'un niveau plus avancé, cela complique les calculs. Une illustration typique
est un problème de Schmitter (p.ex. Brockett et al. (1991), Kaas (1991), Kaas et al.

(1994), chap. XI).

Au vu de ces difficultés, on peut se demander s'il existe une fonction de répartition pour
laquelle l'égalité est atteinte dans (3.1), et qui ne dépend pas du paramètre d.

Proposition 3.1. (Hürlimann (1993b)). Soit D := D(/xs, os; (-00,00)) l'ensemble des

variables aléatoires S définies sur l'intervalle (-00,00), d'espérance mathématique /xs

et de variance aj, et de fonction de répartition absolument continue, c'est-à-dire tel que
F (s) fLoofitydt. Alors max{E[(S - d)+}} ir*(d) est atteint par la fonction de

répartition continue

F*(s) Ul+ (S Ms)
}, s G (-00,00). (3.3)

2 J(s-^s)2+aj

Démonstration. De façon générale, on a par intégration partielle

r°°
tt(x) E[(S -x)+] / (s-x)f(s)ds

Jx
(3.4)

-(1 -F(s)) • (s - x)\? + I (1 -F(s)ds / (1 - F(s))ds.

La dernière égalité suit puisque lim F (s) 1. Par differentiation de la relation (3.4) on
s—>oo

obtient
tt'(x) -(1-F(x)), x G (-00,00). (3.5)
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En fait (3.4) et (3.5) montrent que F (s) et sa transformée "stop-loss" ir(x) sont en

correspondance biunivoque. Si F (s) est donné, on obtient ir(x) par intégration. Réciproquement

si tt(x) est donné, on obtient F (x) par differentiation. Si l'on applique cette

correspondance à la transformée extrémale tt*(x) \\ -/xs)2 + o-| -(x-/iS)}, donnée

ci-dessus en (3.1), on obtient par differentiation F*(x) comme dans (3.3). On vérifie
que la fonction extrémale F*(s) est une fonction de répartition, c'est-à-dire elle satisfait

aux propriétés lim F*(s) 0, lim F*(s) 1, et F*(s) est monotone croissante dans
s—> — oo s—>oo

l'intervalle (-oo, oo). De plus on a la représentation intégrale tt*(x) J^°(l—F*(s))ds
par (3.4), ce qui achève la démonstration. D

Remarques 3.1.

(i) Contrairement aux variables diatomiques de support (3.2), la fonction extrémale (3.3)
n'appartient pas à l'ensemble D(ns,&s', (-00,00)). Son espérance mathématique est

bien /xs, mais sa variance est infinie. En effet, soit S* une variable aléatoire de fonction
de répartition F*(x), et soit /*(x) sa densité de probabilité donnée par la formule

/*(x)=F*'(x) -- — —y, X G (-OO,OO). (3.6)

Avec la transformation standardisée z (x - ns)/&s, le calcul intégral fournit les

caractéristiques désirées comme suit. Pour la moyenne, on a

1

MS.=E[S*]=/ xf*(x)dx - (us + asz)dz

(3.7)
où la dernière égalité suit par la formule (24) tirée de Rottmann(1960), p. 157. De même

le calcul de la variance donne

=E[(S*-MS)2]= (3.8)

Puisque la dernière intégrale diverge, on obtient que la variance est infinie.

(ii) A nouveau la Proposition 3.1 se généralise au cas des variables aléatoires S définies

sur un intervalle [a, b]. A partir de (2.7), la généralisation de (3.1) devient, en remplaçant
X par la translation S - x:

7T*(X)

(ps - a)2

s - a)2 + al - a
x xg a,-([2

,i, (3.9)

(b-x), xg
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Par differentiation (correspondance biunivoque), on obtient la fonction extrémale

'0, X G (-oo,fl),

i

F*(x)

2, xg «,-(

(3.10)

,1, xe[b,oo).

On vérifie que F * (x) est une fonction de répartition continue. Cependant une fonction de

densité /*(x), qui correspond à F*(x), n'est continue qu'au cas limite de la Proposition
3.1. Pour compléter les formules, la fonction de probabilité extrémale

/*«

- fl)2 + o"|
x a,

Tl^jt{(x-Ms)2+a2}2 2 5.11)

0, sinon,

possède deux atomes de masses non-nulles, placés sur les bornes de l'intervalle [fl, b], est

continue sur un sous-intervalle, et nulle sinon. Il semble que la fonction extrémale (3.10)
a fait sa première apparition dans un article peu connu de Stoyan (1973). Sa dérivation
originale semble moins élémentaire. On peut également montrer que la moyenne d'une
variable aléatoire S* de fonction de probabilité f*(x) est /xg et que sa variance satisfait

s* =E[(S* -us) } =<?s
vs -a)

(3.12)

L'inégalité provient du fait que le maximum de la variance d'une variable aléatoire

quelconque à valeurs dans [fl, b], lorsque la moyenne est connue, est égal à

(b - us) (ms - «) (voir par exemple Jansen et al. (1986)).

(iii) A part son utilité actuarielle (p.ex. Hürlimann (1993b/95a/95b)), la méthode des

fonctions extrémales est également d'un intérêt en finance mathématique. Ainsi, tenant

compte des conditions de non-arbitrage, il est possible de déterminer le prix extremal de

certaines options financières.



Elem. Math. 52 (1997) 163

4 Inégalités sur la variance de la perte financière absolue

Un problème intéressant et utile consiste à généraliser les résultats précédents à des

moments partiels d'ordre supérieur. Sans exhauster le sujet, nous présentons de nouvelles

preuves plus élémentaires d'inégalités récemment introduites en science actuarielle. On
note F(0) P(X < 0) la probabilité d'un gain absolu et F(0) P(X > 0) 1 -F(0)
la probabilité d'une perte absolue. On suppose que X est une variable aléatoire définie

sur (-00,00) de moyenne /x et de variance a2.

Proposition 4.1. (Hurlimann (1993a)) Si la probabilité F(0) est inconnue, alors on a
les bornes supérieures

V+ <cr2-2M+M~, (4.1)

V~ <a2 -2M+M-. (4.2)

Démonstration. Comme la fonction variance est non-négative, cela suit immédiatement
de la troisième identité dans (1.4). D

Proposition 4.2. (Kremer (1990), Hurlimann (1994)) Si la probabilité F(0) est connue,
alors on a les inégalités

• (M+)2 < V+ < a2 - 2M+M- - M (M-)2 (4.3)

• (M-)2 < V- < a2 - 2M+M- - M • (M+)2 (4.4)

Démonstration. (Les notions de lois et moments conditionnels sont introduites et
expliquées dans Roger (1991), chapitre 2, paragraphe 6.) Considérons les moments
partiels conditionnels m+ E[X\X > 0], m+ E[X2\X > 0], m" E[G\X < 0],

m^ E[G2\X < 0], et les variances partielles conditionnelles v+ Var[X|X > 0]

m\ - (m+)2, v Var[G|X < 0] m^ - {mr)2. Ces caractéristiques sont liées aux
caractéristiques non conditionnelles par les relations

M+ F(0)-m+, M+ F(0)-m+, M-=F(0)-m", AÇ" F(0) • m^. (4.5)

On en déduit que

y+=M2+-(M+)2>|||.(M+)2, (4.7)

Comme la fonction variance est non-négative, on a M2+ > ^J-. Par conséquent on
obtient

|||
qui est la borne inférieure dans (4.3). La borne inférieure de (4.4) se montre de façon
semblable. Les bornes supérieures sont une conséquence des bornes inférieures et de la
troisième identité dans (1.4). D
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Remarques 4.1.

(i) II existe une propriété de dualité qui relie toutes ces inégalités, et qui permet une
mémorisation facile de ces formules. Pour passer d'une inégalité à l'autre, il suffit de

considérer les pertes absolues (signe positif) comme conjuguées des gains absolus (signe

négatif). De plus la barre "algébrique" sur les probabilités reflète le fait que les événements

E {X > 0} et E {X < 0} sont complémentaires. Defaçon formelle,
définissons une opération "barre" de conjugaison telle que M~ M+, V~ V+,
F(x) 1 - F(x). Cette opération est également une involution, c'est-à-dire itérée deux

—-|- —-|- —-|-

fois elle donne l'identité. Si l'on pose par convention M M+, V V+, F F (x),
a a, \i= —/z, alors les paires (4.3), (4.4) sont conjuguées, alors que les paires (4.1),
(4.2) sont auto-conjuguées.

(ii) Lorsque X S - d, d G R, est une translation, l'inégalité (4.1) a été mentionnée

également parBirkel (1994), Hesselager (1993), Sundt (1993), Exercice 10.1.

(iii) Birkel (1994) considère une perte financière X S - <f(S), S les prestations
d'assurance, <p une fonction non-négative, et interprète la perte absolue X+ comme
paiement d'un contrat de réassurance plus général qu'un stop-loss (cas particulier ip(s)
d constant). Lorsque ip(s) n'est pas constant, on peut écrire la variance de X de deux
manières, soient

a2=Var[S]-2Cov[S,^(S)]+Va%(S)]
Var[S]-2Cov[S-</s>(S),</s>(S)]-Var[</s>(S)].

'

Si ip(s) et la fonction /(s) s - ip(s) sont non-décroissantes, on a Cov[f(S),ip(S)] > 0

puisque la paire (S, S) est positive quadrante dépendante. (Pour cette dernière propriété
consulter un livre de Statistique Moderne ou "1 'Encyclopedia of Statistical Sciences" de

Johnson et Kotz (1982/88)). La deuxième égalité dans (4.8) implique a2 < Var[S]. Si
seulement <p(s) est non-décroissante, on a Cov[S, <p(S)] > 0 par le même argument, et
la première égalité dans (4.8) implique a2 < Var[S] + Var[y(S)]. Par insertion dans (4.1)
et (4.3), on obtient les inégalités de Birkel (1994).

5 Variances extrémales du gain financier absolu

Nous explicitons des variables aléatoires à structure de perte financière pour lesquelles
les inégalités sur la variance de la perte et du gain absolus sont atteintes, et déterminons
les valeurs extrémales de ces variances lorsque la moyenne /x, la variance a2 et la perte
absolue M+ sont connues.

Lemme 5.1. Soit D2F := D2F(/x,(t; (—00,00)) c D2 D2(/x, <r; (—00,00))
l'ensemble des variables aléatoires diatomiques de support {x,x} et probabilités {p,p}
comme dans (2.5), et qui sont munies d'une structure de perte financière telle que
l'hypothèse (H) soit satisfaite, c'est-à-dire x < 0 < x. Alors on a les égalités
simultanées suivantes:

v+
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Démonstration. Comme x < 0 < x on a M+ (1 - p)x, M2+ (1 — p) (x)2, V+

p(l - p) (x)2, d'où l'égalité V+ (y^) • (M+)2. L'autre égalité suit de la même

manière. D

Ce résultat montre que les égalités dans (4.3), (4.4) sont atteintes par des variables
aléatoires à structure de perte financière. Quelles sont les bornes extrémales? En général
elles dépendent des caractéristiques supposées connues.

Proposition 5.1. Soit DF := DF(/z, <r,M+; (-00,00)) l'ensemble des variables
aléatoires à structure de perte financière définies sur (-00,00) et telles que /^,a,M+ sont

connus, et D2F le sous-ensemble correspondant des variables diatomiques. Alors les

variances extrémales sont déterminées comme suit:

(A) Lorsque M+ > 0 la variance maximale de la perte absolue et minimale du gain
absolu, soient

max {V+} - (a2 - 2M+M" + a\Ja2 - 4M+M- (5.2)

} \{ljl ~ 2M+M" - a\J'a2 - 4M+M~ j (5.3)min

sont atteintes par une perte financière X e D2F de support {x,x} et probabilités {p,p\
telle que x /x - aJ1—^, où la probabilité p F(0) est déterminée par

p \ la2- 2M+M- + aVcr2 - 4M+M" N' - • (5-4)l-pj 2 (M+)2

(B) Lorsque M > 0 la variance maximale du gain absolu et minimale de la perte
absolue, soient

min

max{y-} - la2 - 2M+M- + aV<J2 - 4M+M-) (5.5)

- jcr2 - 2M+M~ - a^cr2 - 4M+M-} (5.6)

sont atteintes par une perte financière X g D2F de support {x,x} et probabilités {p,p}
telle que x \i- <?\r-^-, où la probabilité p F(0) est déterminée par

1 —p^ 1 a2 - 2M+M- + cryV2 - 4M+M-
p J 2 (M-
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Démonstration. Par Symmetrie (dualité exprimée aux remarques 4.1), il suffit de montrer
l'affirmation (A). La troisième relation dans (1.4) et la Proposition 4.2 montrent que la

quantité V+ a2 - 2M+M~ - V~ est maximale sur l'ensemble DF lorsque la condition
suivante est satisfaite:

(C) La borne inférieure V~ > pjS • (M~)2 est atteinte et cette quantité est minimale.

Soit X G D2F tel que p F(0). Par le lemme 5.1, la borne inférieure dans (C)

est atteinte. Comme fonction de (y^), la première quantité dans (5.1) est monotone

croissante, et la deuxième monotone décroissante. Par conséquent V+ est maximale pour
la plus grande valeur de (y^r), qui est solution de la troisième relation dans (1.4):

V ^-(M+)2+(-—v- -{M-f a2 -2M+M-. (5.8)i-pj ' >

v p

Si M+ 0 alors la variance V~ a2 est maximale, ce qui contredit (C). Ainsi

l'hypothèse M+ > 0 est nécessaire. En multipliant (5.8) par ^— j, on obtient une équation

quadratique, dont la plus grande solution est déterminée par (5.4). Par la Proposition
2.1, on a M+ < \(\J\i2 + a2 + jj). Utilisant la relation M~ M+ - \i de (1.4), on

remarque que 4M+M~ < a2, ce qui garantit l'existence d'une solution réelle dans (5.4).
Il reste à montrer que X e D2F, c'est-à-dire qu'on a E[X+] M+. Comme x < 0 < x
il faut vérifier que

E[X+] m(1 -p) +*Vp(l -p) =M+. (5.9)

Or par la première relation de (1.4), ceci est équivalent à

(5.10)

Elevant au carré p est effectivement solution de l'équation (5.8). D

Un résultat semblable est valable pour les inégalités de la Proposition 4.1.

Proposition 5.2. Soit DF := DF(/x, a; (-00,00)) l'ensemble des variables aléatoires
à structure de perte financière définies sur (-00,00) et telles que /x, a sont connus, et

D2F le sous-ensemble correspondant des variables diatomiques. Les égalités dans (4.1),
(4.2) sont atteintes comme suit:

(A) La variance maximale de la perte absolue est égale à V+ a2 et est atteinte par
X g D2F de support {0,0} et probabilité p 2a+(j2. De plus on a nécessairement

M- 0, M+ fj, > 0 et V~ 0.

(B) La variance maximale du gain absolu est égale à V~ a2 et est atteinte par
G G D2F de support {0, -0} et probabilité p 2a+(j2. De plus on a nécessairement

M+ 0, M- -fj, > 0 et V+ 0.

Démonstration. Il suffit de montrer (A). Par l'inégalité (4.3), la borne supérieure de (4.1)
est atteinte seulement si M~ 0. La perte financière extrémale X g D2F est obtenue
de l'affirmation (A) de la Proposition 5.1. D
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Remarques 5.1.

(i) Dans le cas limite M+ —> 0, mais M+ n'atteint pas zéro, l'affirmation (A) de la

Proposition 5.1 reste valable. On obtient une perte financière extrémale X g D2F de

support {x,x} et probabilités {p,v~} telle que x —> /x(< 0), x —> oo, p —> 1, max{y+} —s-

a2, min{y~} —s- 0. D'autre part l'affirmation (A) de la Proposition 5.2 montre que
V+ a2 est atteint de façon exacte lorsque /x > 0. Dans ce cas x 0, ce qui est un
peu pathologique, mais satisfait l'hypothèse (H) de notre modélisation financière. Des

remarques semblables sont valables pour les affirmations (B).

(ii) Les résultats de ce paragraphe ont été inspirés par une communication personnelle
de Schmitter (1993), qui a obtenu le maximum (5.2) pour les translations X S — d,
d G R, mais de manière plus obscure.
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