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Kryptographie und elliptische Kurven

Willi Meier und Othmar Staffelbach

Willi Meier wurde 1948 geboren. Er studierte Mathematik an der ETH Ziirich, wo
er 1975 promovierte. Bis 1984 forschte er an verschiedenen Universititen auf dem
Gebiet der algebraischen Topologie. Seit 1985 ist er Dozent fur Mathematik und
Informatik an der Hoheren Technischen Lehranstalt Brugg-Windisch.

Othmar Staffelbach wurde 1952 geboren. Er studierte Mathematik an der ETH
Zirich, wo er 1983 auf dem Gebiet der algebraischen Topologie promovierte. Von
1983 bis 1994 arbeitete er als Kryptologe bei der Firma Gretag in Regensdorf. Seit
1994 ist er in der Sektion Kryptologie im Generalstab der Schweizer Armee tatig.

1 Einleitung

Die urspriingliche Aufgabe der Kryptographie war die Geheimhaltung von Information.
Im Laufe der Zeit, aber vor allem in den letzten Jahrzehnten, hat sich ihr Anwendungs-
bereich erweitert. Eine neuere Aufgabe der Kryptographie ist zum Beispiel der Schutz
von Information vor nicht autorisierter Verinderung oder die Erzeugung von digita-
len Unterschriften. Bei digitalen Unterschriften geht es darum, fiir Dokumente, die in
elektronischer Form vorliegen, eine Unterschrift in elektronischer Form zu berechnen.

Vor ziemlich genau 20 Jahren haben Whitfield Diffic und Martin Hellman dic Ent- |
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Eine solche von einem Computer erzeugte Unterschrift soll dabei die gleichen Kriterien
erfiillen wie eine Handunterschrift. Insbesondere muss sie falschungssicher und leicht ve-
rifizierbar sein. Fiir die Losung derartiger Aufgaben haben sich Methoden und Resultate
der Zahlentheorie als grundlegend erwiesen.

In der klassischen Kryptographie wird eine Meldung einer schliisselabhéngigen Trans-
formation unterworfen, um ihre Geheimhaltung sicherzustellen. Dabei ist der Schliissel
nur dem Sender und dem rechtméssigen Empfinger bekannt. Der Schliissel erméglicht
sowohl das Ausfithren der Transformation, der Chiffrierung, als auch ihrer Inversen, der
Dechiffrierung. Bis vor etwa zwanzig Jahren wurde hauptsichlich diese Art der Kryp-
tographie betrieben, und zwar fast ausschliesslich in militdrischen und diplomatischen
Kreisen. Dabei wurde das zum Entwurf kryptographischer Algorithmen notwendige Wis-
sen weitgehend geheim gehalten.

Im Jahre 1976 haben Whitfield Diffie und Martin Hellman in ihrer beriihmten Arbeit
“New Directions in Cryptography” [2] eine vollig neuartige Idee entwickelt, welche eine
sichere Dateniibermittlung ermdglicht, ohne dass ein geheimer Schliissel ausgetauscht
werden muss. Diese Arbeit bildete den Anstoss zur Public-Key Kryptographie. Etwa
zur selben Zeit begann die Kryptographie vermehrt auch Gegenstand der 6ffentlichen
Forschung zu werden. Dabei kamen verschiedene Beziehungen der Kryptographie zur
Mathematik zum Vorschein. In dieser Arbeit wird auf eine dieser Beziehungen niher
eingegangen, nimlich die Anwendung elliptischer Kurven iiber endlichen Korpern auf
die Public-Key Kryptographie.

2 Klassische Kryptographie

Ein klassisches kryptographisches System besteht aus einer durch den Schliissel para-
metrisierten Familie von Transformationen, welche eine gegebene Klartextmenge in eine
entsprechende Chiffriertextmenge tiberfiihrt. Es sei & die Menge der Klartexte, Y die
Menge der Chiffriertexte und & die Schliisselmenge. In dieser Bezeichnung ist ein kryp-
tographisches System gegeben als Familie E; : & — ¥, mit z € ¥ als Parameter. Es
bezeichne D, : ¥ — % dic entsprechende Familie der inversen Transformationen.

In der praktischen Anwendung zur Ubermittlung von vertraulichen Daten wird die Klar-
textmeldung des Senders mittels E,, chiffriert und vom Empfinger mittels D, dechiffriert.
In der klassischen Kryptographie wird derselbe Parameter z als Schliissel fiir Chiffrierung
und Dechiffrierung verwendet. Dieser wird deshalb als geheim vorausgesetzt. Bevor eine
chiffrierte Ubermittlung von Daten stattfinden kann, muss der Schliissel dem Sender und
dem Empfianger auf sichere Weise bekannt gemacht werden.

Bei der Ubemlittlung der chiffrierten Daten muss davon ausgegangen werden, dass diese
fiir jedermann zugénglich sind. Ausserdem wird angenommen, dass die mathematische
Beschreibung der Chiffriertransformation allgemein verfiigbar ist. Das Chiffrierverfahren
muss deshalb kryptologisch stark genug sein, dass die Sicherheit des Chiffriersystems
allein durch die Geheimhaltung des Schliissels gewéhrleistet ist.

Das Ziel eines potenticllen Gegners ist es, trotz Chiffrierung an Information iiber den
Klartext zu gelangen. In diesem Zusammenhang sind verschiedene Szenarien denkbar.
Diese unterscheiden sich in der Kenntnis iiber die Struktur des Klartextes, die man vom
Gegner voraussetzt. Kennt er lediglich die Struktur der Sprache im weitesten Sinne,
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zum Beispiel Sprachregeln, so spricht man von einer “Ciphertext-Only Attacke”. In
gewissen Fillen konnte er sogar an Teile des Klartextes gelangen, die zu einem be-
stimmten Chiffriertext gehdren. Man spricht dann von einer “Known-Plaintext Attacke”.
Mit dieser Information kann er entweder direkt versuchen, weitere mit diesem Schliissel
chiffrierte Klartexte zu bestimmen, oder den Schlissel selbst zu ermitteln, um damit
samtliche Chiffriertexte zu entschliisseln.

In einer Known-Plaintext Attacke besteht das Problem der Bestimmung des Schliis-
sels z in der Losung der Gleichung E.(x) = y, fiir ein oder mehrere gegebene Paare
(x,y) € £ x Y. Die Sicherheit der Chiffriecrung beruht auf der Hypothese, dass die
Losung dieser Gleichung ein mathematisch schwieriges Problem ist. In den meisten Fil-
len ist die Losung z durch relativ wenige Paare (x,y) schon cindeutig bestimmt. Da
die Schliisselmenge endlich ist, kann die Gleichung prinzipiell mit einer vollstindigen
Suche iiber alle Werte von z geldst werden. Dies ist jedoch praktisch unméglich, wenn
der Schliisselraum geniigend gross gewéhlt wurde. Zusitzlich sollte sichergestellt wer-
den, dass keine signifikant schnelleren analytischen Verfahren zur Losung der Gleichung
existieren. Wenn diese beiden Bedingungen erfiillt sind, spricht man von einem System
mit praktischer Sicherheit.

In den meisten Féllen ist ein konkreter Beweis der praktischen Sicherheit nicht méglich.
In der Praxis wird deshalb ein System so entworfen, dass es sich gegen alle bekannten
Attacken als sicher erweist. Damit ist aber noch nicht sichergestellt, dass es auch Attacken
standhalt, die méglicherweise erst in Zukunft gefunden werden.

Auf der anderen Seite ist bemerkenswert, dass es kryptographische Systeme mit perfekter
Sicherheit gibt. Nach C. E. Shannon [10] ist ein System perfekt sicher, wenn der Chiffrier-
text keine Information iiber den Klartext enthilt. Dies ist Aquivalent zur Aussage, dass
Klartext und Chiffriertext, als Zufallsvariablen betrachtet, statistisch unabhingig sind.
Das wichtigste Beispiel eines perfekten Chiffriersystems ist das sogenannte “One-Time
Pad”, das von G. Vernam 1917 erfunden wurde. In diesem System wird angenommen,
dass der Klartext in digitaler Form vorliegt, d.h. als Folge von Zahlen 0 oder 1, bzw.
als Folge von Bits. Der Schliissel besteht in einer ebenso langen Bit-Folge, welche von
einer echten Zufallsquelle erzeugt wurde. Zur Erzeugung des Chiffriertextes werden die
Bits der Zufallsfolge (d.h. des Schliissels) zu den Bits des Klartextes modulo 2 addiert.
Fiir die Dechiffrierung muss der Schliissel dem Empfianger vorgingig auf sichere Weise
bekannt gemacht werden. Um den Klartext zuriickzugewinnen, muss der Empféanger die
Schliisselfolge bitweise modulo 2 vom Chiffriertext subtrahieren.

Die Sicherheit des One-Time Pads beruht darauf, dass es zu einem beobachteten Chiffrier-
text und jedem beliebigen Klartext gleicher Lange einen Schliissel gibt, der den Klartext
in den gegebenen Chiffriertext iiberfithrt. Da der Schliissel als echte Zufallsfolge erzeugt
wird, kann gezeigt werden, dass die bedingte Wahrscheinlichkeitsverteilung fiir den Klar-
text nach Beobachtung des Chiffriertextes mit der a priori Wahrscheinlichkeitverteilung
des Klartextes iibereinstimmt.

Das One-Time Pad ist zwar perfekt sicher, hat aber fiir den praktischen Einsatz gravie-
rende Nachteile. Einerseits stellt die Tatsache, dass der Schliissel gleich lang sein muss
wie der Klartext, ein ernsthaftes Problem fiir die Schliisselverteilung dar. Andererseits
ist die Sicherheit nur dann gewahrleistet, wenn derselbe Schliissel kein zweites Mal ver-
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wendet wird. Kennt man zum Beispiel korrespondierenden Klartext und Chiffriertext fiir
einen bestimmten Schliissel, so konnen die entsprechenden Bits des Schliissels bestimmt
werden. Bei Wiederverwendung eines solchen Schliissels ist eine neue Meldung deshalb
nicht mehr geschiitzt.

Als eine praktische Alternative zum One-Time Pad haben sich die Stream Ciphers her-
ausgebildet. Wie beim One-Time Pad wird der Klartext mittels Addition einer Bitfolge
transformiert. Diese wird aber nicht von einer echten Zufallsquelle erzeugt, sondern
von einem Pseudozufallsgenerator. Dies ist ein endlicher Automat, der in Abhingig-
keit seines internen Zustandes jeweils ein Outputbit produziert und gleichzeitig in einen
neuen Zustand iibergeht. Die dabei erzeugte Folge ist keine echte Zufallsfolge — sie ist
deterministisch bestimmt durch den Initialzustand des Automaten — hat aber gewisse Ei-
genschaften einer echten Zufallsfolge. Die Sicherheit einer Stream Cipher beruht darauf,
dass es rechnerisch unméglich sein soll, mit der Kenntnis eines Teils der Folge auf an-
dere Teile der Folge zu schliessen. Diese Eigenschaft ist von entscheidender Bedeutung
fiir kryptographische Anwendungen. Viele fiir numerische Simulationen in der Praxis
verwendete Pseudozufallsgeneratoren erfiillen diese Bedingung nicht.

Damit der Empféanger erfolgreich dechiffrieren kann, muss ihm nur der Initialzustand des
Generators auf geheimem Weg bekannt gemacht werden. Unabhédngig von der Lange des
Klartextes wird der Initialzustand durch eine beschrinkte Anzahl von Bits beschrieben.
Der Initialzustand kann im eingangs beschriebenen Modell als Schliissel z aufgefasst
werden. Eine gebriuchliche Grosse fiir einen solchen Schliissel ist 128 Bit.

Spezifisch fiir diese Art Stream Cipher ist, dass eine Meldung Bit fiir Bit abgearbeitet
wird. Es gibt jedoch in der klassischen Kryptographie noch andere Verfahren, die soge-
nannten Block Ciphers, in welchen der Klartext in Blocke einer festen Linge (z.B. 64
Bit) aufgeteilt wird und die Blocke individuell in Abhéingigkeit vom Schliissel transfor-
miert werden. Der bekannteste Algorithmus dieser Art ist der “Data Encryption Standard”
DES.

3 Public-Key Kryptographie

Im Jahre 1976 haben W. Diffie und M. Hellman in ihrer berithmten Arbeit “New Di-
rections in Cryptography™ [2] eine v6llig neuartige Idee entwickelt, welche eine sichere
Dateniibermittlung erméglicht, ohne dass ein geheimer Schliissel ausgetauscht werden
muss. Solche Verfahren beruhen auf sogenannten Einwegfunktionen. Unter einer Einweg-
funktion versteht man eine Funktion f, deren Funktionswerte y = f(x) leicht berechnet
werden konnen, wogegen die Berechnung von x = f~!(y) fiir fast alle y praktisch un-
méglich ist. Ein Beispiel einer solchen Funktion ist diec Exponentiation modulo einer
geeignet gewdhlten grossen Primzahl p,

f(x) = o mod p, ()

wobei 1 < a < p ein bestimmtes Erzeugendes der multiplikativen Gruppe der Rest-
klassen modulo p ist, und die Argumente fir x im Bereich 0 < x < p — 1 liegen.
Die Umkehrung dieser Funktion nennt man das diskrete Logarithmusproblem, welches
als schwierig bekannt ist. Basierend auf der Exponentiation modulo p haben Diffie und
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Hellman ein Protokoll zur Vereinbarung eines gemeinsamen Schliissels entwickelt, in
welchem keine geheimen Informationen ausgetauscht werden miissen. Bei diesem Ver-
fahren wiihlen zwei Beniitzer A und B eine feste Primzahl p und ein Erzeugendes o
modulo p, welche nicht geheim gehalten werden miissen. Die Vereinbarung eines gehei-
men Schliissels geschieht in folgenden Schritten:

1. A wihlt eine zufillige ganze Zahl x, 1 < x < p—1, und berechnet o* mod p. Ebenso
wiihlt B eine zuféllige ganze Zahl i, 1 <y < p — 1, und berechnet o mod p.

2. A sendet das Resultat o* seiner Berechnung an B und behélt x geheim. Entsprechend
sendet B of an A und behilt y geheim.

3. A und B berechnen beide den Wert k = o mod p, welchen A durch Berechnung
von (o¥)* und B durch Berechnung von («*)¥ erhalt.

Den Wert k konnen nur A und B mit Kenntnis ihrer geheimen Parameter x und y
berechnen. Diesen Wert verwenden sie dann als geheimen Schliissel in einem klassi-
schen Chiffriersystem.

Beim beschriebenen Diffie-Hellman-Verfahren werden keine geheimen Informationen
iibermittelt. Ein méglicher Gegner sicht nur die ausgetauschten Werte o* und oY, Die
Sicherheit beruht darauf, dass es fiir ihn schwierig ist, o™ mit der Kenntnis von o* und ¥
zu berechnen. Das beste bis heute bekannte Verfahren zur Bestimmung von e beruht auf
der Berechnung von x oder y, d. h. auf der Losung des diskreten Logarithmusproblems.
Die Schwierigkeit des Logarithmusproblems héngt von der Wahl der Primzahl p ab. Diese
muss insbesondere geniigend gross sein und gewisse andere Eigenschaften erfiillen, auf
die wir spéter noch eingehen werden.

Da beim Diffie-Hellman-Verfahren zur Schliisselvereinbarung keine geheimen Informa-
tionen iibermittelt werden, wird es zu den sogenannten Public-Key Systemen gezihit.
Fiir die eigentliche Chiffrierung kommt jedoch immer noch ein klassisches Verfahren
zur Anwendung. In einer Weiterentwicklung ihrer Idee schlagen Diffie und Hellman
vor, die Daten direkt mittels einer Einwegfunktion zu chiffrieren. Dies bedingt, dass
der rechtméissige Empfinger in der Lage sein muss, die Einwegfunktion zu invertieren.
Zur Realisierung dieser Idee ist eine spezielle Klasse von Einwegfunktionen notwendig,
die sogenannten “trapdoor one-way functions”. Die Trapdoor (deutsch: Falltiire) besteht
in einer Zusatzinformation zur Einwegfunktion, die nur dem rechtmissigen Empfinger
bekannt ist und ihm erlaubt, die Funktion zu inverticren.

Formal ausgedriickt sind Trapdoor-Einwegfunktionen definiert als Elemente einer para-
metrisierten Familie von umkehrbaren Funktionen f, : D(f.) — W (f.), so dass

i) es fiir jedes gegebene z einfach ist, Algorithmen E, und D, zu finden, welche fiir
alle x € D(f.) eine einfache Berechnung von y = f.(x), und fiir alle y € W(f.) eine
cinfache Berechnung von x = £, '(y) erméglichen.

ii) fiir praktisch alle z und fiir praktisch alle y € W (f.) die Berechnung von x = £, (y)
unmoglich ist, wenn E,, nicht aber z bekannt ist.

Eine Trapdoor-Einwegfunktion kann wie folgt fiir ein Verschliisselungsverfahren in ei-
nem Netzwerk von mehreren Beniitzern angewandt werden:
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1. Jeder Beniitzer i wihlt einen zufilligen Wert 2;, den er geheim halt.

2. Beniitzer i bildet die Algorithmen E; = E,, und D; = D, wobei er E; in einem
offentlichen Verzeichnis ablegt und D; als Schliissel geheimhlt.

Falls ein anderer Beniitzer j im Netz dem Beniitzer i eine zu chiffrierende Meldung x
senden will, holt er den 6ffentlichen Schliissel E; von i aus dem Verzeichnis, berechnet
y = E;(x) und sendet den Chiffriertext y an i. Beniitzer i dechiffriert die Meldung mit
seinem geheimen Schliissel, indem er x = D;(y) berechnet.

Es ist bis heute ungeklart, ob Trapdoor-Einwegfunktionen (oder Einwegfunktionen iiber-
haupt) im streng mathematischen Sinne existieren. Diffie und Hellman konnten in ihrer
Arbeit [2] keine konkrete Trapdoor-Einwegfunktion zur Realisierung ihrer Idee angeben.
Im Jahr 1978 entdeckten Rivest, Shamir und Adleman einen aussichtsreichen Kandi-
daten fiir eine Trapdoor-Einwegfunktion, bzw. fiir die Realisierung eines Public-Key
Kryptosystems [9]. Dieses Chiffrierverfahren wird nach ihren Erfindern als RSA-System
bezeichnet. Es ist bis heute eines der ganz wenigen Verfahren geblieben, die praktisch
angewendet werden.

Dieses Verfahren stiitzt sich auf die Zahlentheorie, insbesondere auf den Satz von Fermat-
Euler. Dieser Satz besagt, dass fiir eine gegebene natiirliche Zahl 7, jede zu n teilerfremde
Zahl x die Kongruenz x*™ = 1 (mod n) erfiillt. Dabei bezeichnet ¢(1n) die Anzahl
der zu n teilerfremden Restklassen modulo 7.
Beim RSA-Verfahren erzeugt jeder Beniitzer ein Paar grosser Primzahlen p und g,
p # . und berechnet das Produkt n = pg. Im weiteren erzeugt er eine zufillige zu
¢(n) = (p —1)(q — 1) teilerfremde Zahl e und berechnet 4, mit der Eigenschaft, dass
die Kongruenz

ed=1 (mod ¢(n)), (2)

erfiillt ist. Als Chiffrierfunktion wird die Abbildung
y=E(x)=x*modn (3)

verwendet, wobei der Klartext als Zahl (oder als Folge von Zahlen) 0 < x < n codiert
ist. Zur Berechnung der Inversen D = E~! wird die Kenntnis der Faktoren von n
verwendet. Diese Kenntnis beinhaltet die Trapdoor-Information, welche es erlaubt, die
Gleichung (2) fiir 4 zu 16sen. Die Dechiffrierfunktion D ist dann durch die Formel

x = D(y) = i mod n (4)

gegeben. Dies folgt im wesentlichen aus dem Satz von Fermat-Euler: Die Gleichung (2)
lasst sich schreiben in der Form ed = 1 + k¢(n) fiir eine gewisse ganze Zahl k. Somit
gilt, (x°)7 = x = x1+k60) — x(x¢@)Y* = x  (mod n). Die letzte Kongruenz gilt fiir
zu n teilerfremde x nach dem Satz von Fermat-Euler. Die Kongruenz gilt aber auch aus
anderen Griinden fiir Vielfache von p und g. Somit folgt, dass D gemdss (4) zu E invers
ist. Die Zahlen # und e beinhalten den offentlichen Schliissel und d den dazugehorigen
Geheimschliissel.
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Das RSA-Verfahren hat die wichtige FEigenschaft, dass es zur Erzeugung digitaler Un-
terschriften verwendet werden kann. Zur Signierung einer Meldung x, codiert als Zahl,
0 < x < n, wird mit dem geheimen Schliissel d die Signatur s = x? mod 1 berechnet.
Die Verifikation der Signatur erfolgt mit dem 6ffentlichen Schliissel durch Priifen der
Gleichung s° = x mod 7. Dieses Signierverfahren ist filschungssicher. Jemand, der ohne
Kenntnis von d die Signatur einer gefilschten Meldung x’ erzeugen mochte, miisste
hierzu die e-te Wurzel von ¥’ modulo # berechnen, damit die gefilschte Signatur ' die
Gleichung (s')* = x’ mod » erfiillt. Dies bedeutet, dass er die RSA-Chiffrierfunktion
invertieren kann.

Die Sicherheit des RSA-Systems beruht auf der Tatsache, dass es schwierig ist, grosse
Zahlen zu faktorisieren. Falls ein Gegner n faktorisieren kann, ist es ihm méoglich, die
Inverse von E via Losung der Gleichung (2) zu bestimmen. Hingegen ist nicht bekannt,
ob die Faktorisierung von 7 fiir die Berechnung von D notwendig ist.

Es ist bemerkenswert, dass die schnellsten heute bekannten Algorithmen zur Faktori-
sierung grosser Zahlen dhnliche asymptotische Laufzeiten aufweisen wie die schnell-
sten Algorithmen zur Losung des diskreten Logarithmusproblems. Der bis vor kurzem
schnellste Algorithmus zur Faktorisierung grosser Zahlen » ist das sogenannte Multiple
Polynomial Quadratic Sieve (MPQS) und hat eine asymptotische Laufzeit von

1/2

o) (E ¢ (log 1)/ (log log 1)

); (5)

mit ¢ =~ 1. Ein neuer Algorithmus ist das Number Field Sieve (NFS), das eine asympto-

tische Laufzeit von s e
O(ec(logn) (log log 1)/ )7 (6)

hat, wobei ¢ etwas grosser als 1.9 ist. Fiir Zahlen mit etwa 100 Dezimalstellen haben
sich die beiden Algorithmen bei praktischen Experimenten als ungefihr gleichwertig
erwiesen, obwohl das Number Field Sieve asymptotisch schneller ist. Diese Algorith-
men sind insofern die schnellsten, wenn man keine besonderen Eigenschaften der Zahl
n voraussetzt. Hingegen sind Klassen von Zahlen bekannt, fir welche es schnellere
Verfahren gibt, zum Beispiel fiir Zahlen der Form n = pg, wo p — 1 und g — 1 in
lauter kleine Faktoren zerfallen. Fiir die Anwendung im RSA-Verfahren wird man ver-
suchen, solche Zahlen zu vermeiden, und man wird Zahlen verwenden, von denen man
annimmt, dass sie schwierig zu faktorisieren sind. Die Firma RSA Data Security Inc.
hat eine Liste solcher Zahlen verschiedener Grosse publiziert, mit der Herausforderung
diese zu faktorisieren. Die grosste dieser Zahlen, welche bisher faktorisiert wurden, hat
130 Dezimalstellen.") Die Faktorisierung wurde mit dem NFS mit Hilfe von mehreren
hundert weltweit vernetzten Rechnern in 4 Monaten durchgefiihrt. Diese Tatsache zeigt,
dass mit sehr grossen Zahlen gearbeitet werden muss, um eine hinreichende Sicherheit
gewiahrleisten zu konnen.

Fiir das diskrete Logarithmusproblem in GF(p) fiir eine Primzahl p kann eine Variante
des Number Field Sieve erfolgversprechend angewandt werden. Das bis anhin schnellste

1) Stand August 1996
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Verfahren fiir eine allgemeine Primzahl p von beliebiger Grosse hat eine asymptotische
Laufzeit von

O(e¢ toep)(loglogp)'y (7)
mit ¢ =~ 1, welche mit (5) iibereinstimmt. In den frithen Achtzigerjahren wurde fiir
das Diffie-Hellman-Verfahren vorgeschlagen, den Galois-Korper GF(2") anstelle von
GF(p) zu verwenden, weil die Arithmetik in GF(2") effizienter implementiert werden
kann als in GF(p). So entspricht zum Beispiel das Quadrieren in einer geeigneten Basis
von GF(2") iiber GF(2) einer Bit-Schiebeoperation. Bereits 1984 hat D. Coppersmith
entdeckt, dass das Logarithmicren in GF(2") viel einfacher ist als in GF(p) ([1]). Der
von ihm entwickelte Algorithmus hat eine asymptotische Laufzeit von

Ofee™"loen™), (8)

fiir eine kleine Konstante ¢. Diese Laufzeit entspricht der Formel (6) fiir das Number Field
Sieve, aber mit einer anderen Konstante ¢. Mithilfe des Algorithmus von Coppersmith
ist das Logarithmieren in GF(2") fiir # =~ 500 moglich, wihrend das Logarithmieren in
GF(p) fiir p ~ 2°° um einiges schwieriger ist.

Die obigen Verfahren zum Logarithmieren machen ausgiebigen Gebrauch von den Struk-
tureigenschaften des Korpers GF(p) oder GF(2"), wéhrend zur Ausfithrung des Diffie-
Hellman-Verfahrens lediglich die Multiplikation im betreffenden Korper benutzt wird.
Zur Realisierung des Diffie-Hellman-Verfahrens muss nur e¢ine endliche abelsche Gruppe
zugrunde gelegt werden, in welcher die Gruppenoperation effizient berechnet werden
kann. Es liegt deshalb nahe, auch andere Gruppen in Betracht zu ziehen mit der Idee,
dass fiir diese Gruppen keine dhnlich effizienten Logarithmieralgorithmen existieren.

Fiir das Diffie-Hellman-Verfahren in einer beliebigen (multiplikativ geschriebenen) abel-
schen Gruppe G ist zunichst ein Element § € G von geniigend grosser Ordnung
N = ord(g) zu wihlen. Zwei Beniitzer A und B wihlen, jeder fiir sich, zufillige Zahlen
xund y, 1 < x,y < N. Sie berechnen dann die Gruppenelemente ¢*, ¢¥, und den gemein-
samen Schliissel k = g = (¢¥)* = (¢*)¥ wie im klassischen Diffie-Hellman-Verfahren.
Hierbei wird angenommen, dass das Gruppenelement k in geeigneter Weise als Zahl
codiert ist. Die Sicherheit des Verfahrens beruht darauf, dass das diskrete Logarithmus-
problem in der Gruppe G schwierig ist, d.h. dass es schwierig ist, aus der Kenntnis des
Resultates ¢* den Exponenten x zu bestimmen.

Das schnellste bekannte Verfahren zur Berechnung diskreter Logarithmen in einer allge-
meinen endlichen abelschen Gruppe ist der Algorithmus von Shanks. Zur Berechnung
von x aus y = ¢* wird eine Darstellung von x in der Form x = gD +r gesucht, wobei D
eine geeignet gewdhlte Konstante ist. Die gesuchten Zahlen g und # liegen im Bereich
0 < g < |N/D|und 0 < r < D. Fiir ein gegebenes D ist die Gleichung y = g%+
dquivalent zu yg~ " = ¢". Zur Losung dieser Gleichung werden zunéichst alle Werte
yg P fir 0 < i < |[N/D]| berechnet und in einer Tabelle geordnet abgelegt. Sodann
werden die Werte ¢/ fiir 0 < j < D berechnet bis eine Ubereinstimmung yg~"” = ¢/ in
der Tabelle gefunden wird. Die Zahlen i und j entsprechen dann den gesuchten Werten
g und r in der Darstellung x = gD +r.
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Der Aufwand zur Berechnung und Speicherung der Tabelle ist proportional zu |[N/D|,
und der Aufwand zur Bestimmung aller Werte ¢/ ist proportional zu D. Das Maximum
der beiden Werte ist am kleinsten, wenn D moglichst nahe bei +/N gewihlt wird. Somit
ist der Gesamtaufwand des Algorithmus von Shanks proportional zu v/N. Der Algorith-
mus von Shanks ist daher fiir Gruppen mit Ordnung N > 2'°° nicht mehr anwendbar.
Hingegen lésst sich der Algorithmus mit der Methode von Pohlig und Hellman ([8])
verfeinern. Diese Verfeinerung hat eine asymptotische Laufzeit von O(,/p), wobei p der
grosste Primfaktor von N ist. Bei der Wahl der Gruppe ist deshalb darauf zu achten,
dass die Gruppenordnung mindestens einen grossen Primteiler enthalt.

4 Elliptische Kurven

Fiir die Implementierung des Diffie-Hellman-Verfahrens in abelschen Gruppen haben
N. Koblitz ([3, 4]) und V. Miller ([7]) elliptische Kurven iiber endlichen Korpern vor-
geschlagen, da elliptische Kurven in natiirlicher Weise mit der Struktur einer abelschen
Gruppe versehen sind. Eine Standardreferenz fiir elliptische Kurven ist das Buch von J.H.
Silverman ([11]), wo auch elliptische Kurven iiber Kérpern wie R, C, Q oder anderen
Erweiterungskorpern von Q studiert werden. In der Kryptographie stehen insbesondere
die Korper GF(p), p eine Primzahl, und GF(2") im Vordergrund.

Sei K ein endlicher Korper der Charakteristik verschieden von 2 und 3. Eine elliptische
Kurve iiber K, mit Koeffizienten a,b € K, ist definiert als die Menge der Punkte (x,y) €
K x K, welche die Gleichung

v=x+ax+b (9)

erfiillen, zusammen mit einem zusitzlichen Element O, dem sogenannten unendlich
fernen Punkt. Dabei wird vorausgesetzt, dass das Polynom x> 4 ax + b keine mehrfachen
Nullstellen besitzt. Uber einem Kémper der Charakteristik 3 ist eine elliptische Kurve
gegeben durch die Gleichung 1 = x> + ax? + bx + c.

Bevor wir auf elliptische Kurven iiber Kérpern der Charakteristik 2 eingehen, wollen
wir die Gruppenoperation, die iiblicherweise additiv geschricben wird, am Beispiel einer
Kurve iber R illustrieren. In Abbildung 1 ist die Kurve mit der Gleichung 17 = x> — x
skizziert.

Zur Addition der beiden Punkte P und Q auf der Kurve legt man eine Gerade durch
P und Q. Falls P und Q verschiedene x-Koordinaten haben, schneidet diese Gerade
die Kurve in einem dritten Punkt R. Das Spiegelbild dieses Punktes an der x-Achse ist
dic Summe P + Q dieser beiden Punkte. Die Existenz des Schnittpunktes R kann leicht
wie folgt eingesehen werden: Da P und Q verschiedene x-Koordinaten haben, kann die
Gleichung der Geraden durch P und Q geschrieben werden in der Form y = ax + 3. Die
Menge der Schnittpunkte der Geraden mit der Kurve ist bestimmt durch die Losungen
der Gleichung

Y- -ax—-b=(ax+p)? -2 —ax—-b=0. (10)

Da die x-Koordinaten von P und Q bereits zwei Losungen der Gleichung sind, muss
eine dritte reelle Losung der Gleichung existieren.
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/

P+Q

Abb. 1 Elliptische Kurve 17 = x> — x

Falls P und Q iibereinstimmen, ist zur Berechnung von P + Q = 2P die Tangente im
Punkt P an die Kurve zu legen. Wenn die y-Koordinate von P ungleich Null ist, ist die
Gleichung der Tangente wiederum von der Form y = ax + 3. Die x-Koordinate von
P ist dann eine doppelte Nullstelle der kubischen Gleichung (10). Deshalb ist die dritte
Nullstelle ebenfalls reell.

Haben P und Q dieselbe x-Koordinate, so ist die Gerade durch P und Q, bzw. die Tan-
gente in P = Q, parallel zur y-Achse. In diesem Fall hat die Gerade keinen weiteren
Schnittpunkt mit der Kurve und zeigt (aus projektiver Sicht) in Richtung des unendlich
fernen Punktes O. Es zeigt sich, dass die Festlegung von O als Summe von P und Q mit
den Gruppenaxiomen konsistent ist. Im weiteren stellt sich heraus, dass O das Neutral-
clement der Gruppe ist. Das Inverse —P eines Punktes P = (x,y) ist dann offensicht-
lich der an der x-Achse gespiegelte Punkt (x, —y). Dass diese Verkniipfungsvorschrift
auch das Assoziativgesetz erfiillt, kann aus tieferliegenden Resultaten der algebraischen
Geometrie abgeleitet werden. Eine elementare Verifikation ist prinzipiell méglich, aber
dusserst mithsam.

Bei elliptische Kurven iiber Kérpern der Charakteristik 2 sind zwei Félle zu unterschei-
den. Im ersten Fall ist die Kurve gegeben durch die Gleichung

v+ by =2+ ax +ao, (11)
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mit b; # 0, und im zweiten Fall durch
¥ xy =2 +ax’ +a, (12)

mit ag # 0 (siehe [11], p. 324). Grundsitzlich ist die Gruppenoperation (in geometrischer
Darstellung) gleich definiert wie in Abbildung 1 illustriert. Wegen der unterschiedlichen
Normalform gegeben durch (11), bzw. (12), ergeben sich formal andere Ausdriicke fiir die
Gruppenoperation. Zum Beispiel ist fiir eine Kurve mit der Gleichung (12) das Inverse
eines Punktes P = (x,y) gegeben durch —P = (x, —y — x) (siche [11], p. 58).

Man sagt, dass die Kurve iiber GF(g), dem Galois-Korper mit 4 Elementen, definiert ist,
wenn die Koeffizienten der Gleichung (11), bzw. (12), in GF(q) liegen. Es bezeichne
E, zusammen mit dem unendlich fernen Punkt O, die Menge der Losungen (x,y) der
Gleichung (11), bzw. (12), fiir welche x, y im Grundkorper GF(g) liegen. Als Losungen
konnen auch Punkte in Betracht gezogen werden, deren Koordinaten in Erweiterungskor-
pern von GF(q) liegen. Es sei also E,; die Kurve bestehend aus den Losungen von (11),
bzw. (12), mit Koordinaten im Erweiterungskorper GF(4"). In der Kryptographie sucht
man nach Kurven, deren Gruppenordnung, d.h. dic Anzahl der Punkte auf der Kurve,
gross ist und einfach berechnet werden kann.

Fiir kleine Korper GF(g) ist die Bestimmung der Gruppenordnung von E einfach, indem
fiir jedes Paar (x,y) € GF(gq) x GF(q) getestet wird, ob es die Gleichung der Kurve
erfiillt. Fiir grossere Korper stiitzt sich die Berechnung der Ordnung von E, bzw. E,,
auf bemerkenswerte Resultate der algebraischen Geometrie. Zunichst folgt aus dem Satz
von Hasse, dass die Anzahl N der Punkte einer elliptischen Kurve E definiert iiber einem
beliebigen endlichen Kérper der Ordnung g eingeschrinkt ist durch

IN = (g +1)] <24 (13)

Somit lasst sich N schreiben als N = g 4 1 — a, wobei sich herausstellt, dass a =
a(E) € Z,|a| < 2,/7, ein kurvenspezifischer Parameter ist. Dieser Parameter spielt eine
wichtige Rolle in einem weiteren fundamentalen Resultat der algebraischen Geometrie,
nimlich der Weil-Vermutung, welche 1974 von P. Deligne vollstindig bewiesen wurde
(siehe [11], pp. 132). Mit der Weil-Vermutung 1asst sich die Anzahl N,, der Punkte auf
E,, exakt berechnen durch

Ny=144"—ao" - g", (14)

wobei o und 3 die beiden Wurzeln des Polynoms T2 —aT +¢ sind. Es zeigt sich, dass die
Kurven E mit der Gleichung (11) dadurch charakterisiert sind, dass ihr Parameter a(E)
gleich Null ist. Entsprechend ist 2(E) ungleich Null fiir alle Kurven mit der Gleichung
(12).

Bei Kurven vom Typ (11) ist die Addition von Punkten etwas einfacher zu implementie-
ren als bei Kurven vom Typ (12). Es hat sich aber gezeigt, dass sich das Logarithmus-
problem bei Kurven vom ersten Typ auf das klassische Logarithmusproblem in einem
Erweiterungskorper iiber GF(g") reduzieren lasst. Aus diesem Grunde werden in der
Kryptographie Kurven vom Typ (12) vorgezogen.

Bei der Anwendung elliptischer Kurven fiir das Diffie-Hellman-Verfahren ist zu bemer-
ken, dass die Gruppe nicht notwendigerweise zyklisch ist. Es ist deshalb ein Punkt P auf
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der Kurve zu wihlen, der eine moglichst grosse Untergruppe erzeugt. In der additiven
Schreibweise der Gruppenoperation berechnen zwei Benutzer A und B, jeder fiir sich
Vielfache aP, bzw. bP. Sie tauschen ihre Resultate aus und bestimmen den gemeinsa-
men geheimen Schliissel K = abP, den A mittels K = a(bP) und B mittels K = b(aP)
berechnet.

Die Berechnung cines Vielfachen aP fiir eine zufillig gewéhlte Zahl a erfordert im
Mittel (3/2) log,(a) Gruppenoperationen, wenn die sogenannte Double and Add Methode
angewendet wird. Diese Methode wird durch das folgende kleine Beispiel illustriert: Zur
Berechnung von 45P wird 45 bindr in der Form 45 = 1 + 4 + 8 + 32 dargestellt. Der
Wert von 45P ergibt sich dann als 45P = P 4 4P 4 8P + 32P. Dazu sind 8 Additionen
erforderlich, nimlich die Berechnung von 2P, 4P, 8P, 16P, 32P durch Verdoppelung und
drei weitere Additionen gemiss der bindren Darstellung von 45. Im allgemeinen Fall
ist die Anzahl der Verdoppelungen von der Grossenordnung log,(a), und die Anzahl
weiterer Additionen ist um Eins kleiner als die Anzahl der Einer in der Binirdarstellung
von 4.

Die Addition zweier beliebiger Punkte auf der Kurve erfordert im Normalfall zwei Mul-
tiplikationen und eine Division im zugrundeliegenden Kérper. Dabei ist vor allem die
Division zeitaufwendig. Es ist naheliegend, spezielle Kurven zu finden, bei denen der
Aufwand fiir eine Addition etwas geringer ausfillt. Die zuerst vorgeschlagenen Kurven
waren alle vom Typ (11), wo sich herausstellte, dass das Logarithmusproblem, wie be-
reits erwahnt, einfacher zu 16sen ist. Als mogliche Kurven vom Typ (12) hat N. Koblitz
sogenannte anomale Kurven vorgeschlagen ([5]). Dies sind Kurven mit dem Parameter
a(E) = 1. Die Anzahl Punkte auf einer solchen Kurve ist gleich der Ordnung 4 des
zugrundeliegenden Korpers. Die charakteristische Gleichung dieser Kurven ist gegeben
durch T> = T + g = 0.

Wie bereits in Abschnitt 3 erwihnt, lassen sich die arithmetischen Operationen in Kor-
pern der Charakteristik 2 einfacher implementieren. Diese Korper stehen deshalb auch
hier im Vordergrund. Die einzige anomale Kurve iiber dem Grundkérper GF(2) der
Charakteristik 2 ist gegeben durch die Gleichung.

Vraxy=x+x*+1. (15)

Die Anzahl der Punkte auf dieser Kurve ist tatsachlich 2, denn sie enthalt nur den unend-
lich fernen Punkt und den Punkt (0, 1). Von besonderem Interesse ist diese Kurve, wenn
man sie iber Erweiterungskorpern GF(2") betrachtet, d.h. als Menge E,, der Losungen
(x,y) der Gleichung (15) mit Koordinaten in GF(2"). Die Anzahl N, der Punkte auf
E, lasst sich berechnen mit der Weil-Vermutung (14), wobei o = (1 + +/=7)/2 und
3= (1—-+/=7)/2 diec Wurzeln der charakteristischen Gleichung T> — T + 2 = 0 sind.

Bekanntlich ist die Abbildung x — x? ein Kérperautomorphismus von GF(2") (der aus-
serdem die Galoisgruppe von GF(2") iiber GF(2) erzeugt). Erfiillt ein Punkt (x,y) die
Gleichung (15), so gilt dies auch fiir den Bildpunkt (x?,1?). Somit induziert der Kor-
perautomorphismus eine Abbildung ¢ : E,, — E,, ¢(x,y) = (x%,17), welche Frobenius-
Abbildung genannt wird. Es ist bemerkenswert, dass diese Abbildung mit der Grup-
penoperation auf E, vertriglich, d.h. ein Gruppenhomomorphismus der Kurve E,, ist.
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Ausserdem erfiillt ¢ die charakteristische Gleichung der Kurve,
P —p+2=0. (16)

Diese Gleichung impliziert, dass die Verdoppelung von Punkten auf E,, durch ¢ aus-
gedriickt werden kann: 2P = ¢(P) — ¢?(P), fiir alle Punkte P auf E,. In [5] wurde
vorgeschlagen, Vielfache mP als Linearkombinationen von Potenzen von ¢ darzustel-
len, da diese mittels iteriertem Quadricren leicht berechnet werden kénnen. Zur schnellen
Berechnung von mP ist eine solche Darstellung besonders interessant, wenn sie nur we-
nige Summanden enthilt. In dieser Richtung wurden in [5] ausgehend von (16) die
folgenden Darstellungen hergeleitet:

4=2p—¢") =202 = (6~ ¢")¢ — 20" = —¢" = ¢’

8=4-2=(-¢" - )¢ -¢")=—¢ +¢’

16 =42 = ¢° + 26" + ¢" = 6" + (9= ¢")¢" + ¢* = =47 + 26" + ¢'
=—¢ + (¢ + ¢ =¢" ¢

Diese Gleichungen gelten unabhingig vom zugrundeliegenden Erweiterungskdrper
GF(2"). Mit diesen Darstellungen ist die Berechnung von 4P, 8P, 16P jeweils mit einer
einzigen Addition, bzw. Subtraktion, méglich, wihrend zum Beispiel zur Berechnung
von 16P mittels Verdoppelung 4 Additionen notwendig wéren. Entsprechend lassen sich
auch hohere Zweierpotenzen mittels ¢ ausdriicken, und ebenso beliebige Vielfache mP
mit Hilfe der Binirdarstellung von m. Eine einfache Berechnung von mP erlauben diese
Darstellungen jedoch nur dann, wenn sie wenige Summanden enthalten. Es ist nicht von
vornherein klar, dass jedes Vielfache m eine kurze ¢-Darstellung mit kleinen Koeffi-
zienten wie +1 besitzt. So kann zum Beispiel eine ¢-Darstellung von 32 mittels der
Entwicklung von 32 als 2 - 16 oder 4 - 8 erhalten werden. Die Darstellung hat aber
in beiden Féllen schon 4 Summanden. Noch mehr Summanden sind zu erwarten fiir
hohere Zweierpotenzen oder fiir ein allgemeines m, wenn zur Berechnung von mP zu-
satzlich noch die Bindrdarstellung von m herangezogen werden muss. In [5] wurden
¢-Entwicklungen fiir beliebige m hergeleitet, die im Mittel doppelt soviele Summanden
enthalten wie die bindre Darstellung von m. In [6] wurde der folgende Satz bewiesen,
der zeigt, dass, abhingig vom Grad n des Erweiterungskorpers, kiirzere Darstellungen
existieren.

Satz. Fir die anomale Kurve E : y* + xy = x* + X + 1 definiert iiber GF(2) sei E,, die
Kurve betrachtet iiber dem Erweiterungskorper GF(2"). Dann kann die Multiplikation
auf E, mit einer natiirlichen Zahl m ausgedriickt werden durch

n—1
m=y ¢, (17)
i=0

mit ¢; € {0,+1}.
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In [6] wurde auch ein effizienter Algorithmus zur Berechnung solcher ¢-Entwicklungen
hergeleitet. Ebenso wird in [6], aufgrund der Herleitung des Algorithmus, plausibel ge-
macht, dass im Mittel die Hilfte der Koeffizienten gleich Null sind.

Da der Aufwand zur Berechnung von ¢/ vernachlissigbar ist, erlaubt die ¢-Entwicklung
von m die Berechnung von mP fiir einen beliebigen Punkt P auf E, mit ungefahr 71/2
Additionen, wogegen die Berechnung mittels Double and Add 3n/2 Additonen erfordert.
Somit fiihrt die ¢-Entwicklung zu einer Beschleunigung der Berechnung von mP um
den Faktor 3.

Fiir die praktische Implementierung sind Kurven zu finden, fiir welche die Gruppenord-
nung einen grossen Primfaktor enthilt. Als Beispiel erwihnen wir die Kurve mit der
Gleichung 1 + xy = x* + x> + 1, die wir iber dem Erweiterungskorper GF(2") mit
1 = 181 betrachten. Die Faktorisierung der Gruppenordnung Nig; lautet

Nigi = 2122719 - 23531 - 530697483168464396730940889115599370835266943,

und hat einen Primfaktor mit 45 Dezimalstellen. Der Aufwand des Algorithmus von Poh-
lig und Hellman fiir das diskrete Logarithmusproblem auf dieser Kurve ist deshalb von
der Grossenordnung O(v/'10%). Zur Beurteilung der Sicherheit des klassischen Diffie-
Hellman-Verfahrens in GF(p) muss das viel effizientere Number Field Sieve beriicksich-
tigt werden. Ein konkreter Vergleich zeigt, dass Kérper GF(p) mit p ~ 10" verwendet
werden miissen, um eine vergleichbare Sicherheit wie auf der betrachteten Kurve E
zu erreichen. Dies bedeutet, dass mit elliptischen Kurven schnellere und kompaktere
praktische Realisierungen des Diffie-Hellman Schliisselaustausches méglich sind.

Fiir das Diffie-Hellman-Verfahren stehen natiirlich nicht nur die hier betrachteten son-
dern eine Vielzahl weiterer elliptischer Kurven zur Verfiigung. Hardware-Komponenten,
welche auf dieser Technologie beruhen, werden bereits kommerziell angeboten. Aus-
serdem beschrinkt sich die Bedeutung elliptischer Kurven fiir die Kryptographie nicht
nur auf das Diffie-Hellman-Verfahren, sondern erstreckt sich zum Beispiel auch auf das
Faktorisieren grosser Zahlen. Wie die aktuelle Forschung zeigt, bleibt die Anwendung
elliptischer Kurven auf die Kryptographie auch weiterhin ein wichtiges Thema.
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