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Kryptographie und elliptische Kurven

Willi Meier und Othmar Staffelbach

Willi Meier wurde 1948 geboren. Er studierte Mathematik an der ETH Zürich, wo
er 1975 promovierte. Bis 1984 forschte er an verschiedenen Universitäten auf dem
Gebiet der algebraischen Topologie. Seit 1985 ist er Dozent für Mathematik und
Informatik an der Höheren Technischen Lehranstalt Brugg-Windisch.

Othmar Staffelbach wurde 1952 geboren. Er studierte Mathematik an der ETH
Zürich, wo er 1983 auf dem Gebiet der algebraischen Topologie promovierte. Von
1983 bis 1994 arbeitete er als Kryptologe bei der Firma Gretag in Regensdorf. Seit
1994 ist er in der Sektion Kryptologie im Generalstab der Schweizer Armee tätig.

1 Einleitung
Die ursprüngliche Aufgabe der Kryptographie war die Geheimhaltung von Information.
Im Laufe der Zeit, aber vor allem in den letzten Jahrzehnten, hat sich ihr Anwendungsbereich

erweitert. Eine neuere Aufgabe der Kryptographie ist zum Beispiel der Schutz

von Information vor nicht autorisierter Veränderung oder die Erzeugung von digitalen

Unterschriften. Bei digitalen Unterschriften geht es darum, für Dokumente, die in
elektronischer Form vorliegen, eine Unterschrift in elektronischer Form zu berechnen.

Vor ziemlich genau 20 Jahren haben Whitficld DilTic und Mariin Hclhnan die
Entwicklung neuartiger Verschlüsse!ungsvcrfalrrcn angeregt, die effiziente Lösungen für
viele wichtige kryptographischc Probleme der elektronischen Kommunikation ermöglichen.

Gewisse dieser Verfahren basieren auf der Tatsache, dass die Faktorisierung einer

grossen ganzen Zahl in Primfaktoren ausserordenllieh aufwendig ist. Andere wiederum
beruhen darauf, dass die Inversion der Exponenlialion modulo einer grossen Primzahl

schwierig isi. In der kurzen Zeil seit ihrer Entdeckung haben diese Verfahren, und
damit letztlich auch die Theorie der Primzahlen, viele und weitgespannte Anwendungen
gefunden. Die Kryptographie hat auch Verallgemeinerungen hervorgebracht. Sie bestehen,

grob gesprochen darin, dass stall der natürlichen Zahlen eine endliche abclschc

Gruppe zugrunde gelegt wird. Verwendet werden hier vor allem die abcischen Gruppen,

die zu elliptischen Kurven gehören. Willi Meier und Othmar Slaffclbach geben
im vorliegenden Beitrag einen Überblick über die neueren Methoden der Kryptographie

und über die Rolle, welche elliptische Kimen in diesem neuen malhenialischcn
Fnchuebiel spielen n\i. n///. m
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Eine solche von einem Computer erzeugte Unterschrift soll dabei die gleichen Kriterien
erfüllen wie eine Handunterschrift. Insbesondere muss sie fälschungssicher und leicht
verifizierbar sein. Für die Lösung derartiger Aufgaben haben sich Methoden und Resultate
der Zahlentheorie als grundlegend erwiesen.

In der klassischen Kryptographie wird eine Meldung einer schlüsselabhängigen
Transformation unterworfen, um ihre Geheimhaltung sicherzustellen. Dabei ist der Schlüssel

nur dem Sender und dem rechtmässigen Empfänger bekannt. Der Schlüssel ermöglicht
sowohl das Ausführen der Transformation, der Chiffrierung, als auch ihrer Inversen, der

Dechiffrierung. Bis vor etwa zwanzig Jahren wurde hauptsächlich diese Art der
Kryptographie betrieben, und zwar fast ausschliesslich in militärischen und diplomatischen
Kreisen. Dabei wurde das zum Entwurf kryptographischer Algorithmen notwendige Wissen

weitgehend geheim gehalten.

Im Jahre 1976 haben Whitfield Diffie und Martin Hellman in ihrer berühmten Arbeit
"New Directions in Cryptography" [2] eine völlig neuartige Idee entwickelt, welche eine
sichere Datenübermittlung ermöglicht, ohne dass ein geheimer Schlüssel ausgetauscht
werden muss. Diese Arbeit bildete den Anstoss zur Public-Key Kryptographie. Etwa
zur selben Zeit begann die Kryptographie vermehrt auch Gegenstand der öffentlichen
Forschung zu werden. Dabei kamen verschiedene Beziehungen der Kryptographie zur
Mathematik zum Vorschein. In dieser Arbeit wird auf eine dieser Beziehungen näher

eingegangen, nämlich die Anwendung elliptischer Kurven über endlichen Körpern auf
die Public-Key Kryptographie.

2 Klassische Kryptographie
Ein klassisches kryptographisches System besteht aus einer durch den Schlüssel para-
metrisierten Familie von Transformationen, welche eine gegebene Klartextmenge in eine

entsprechende Chiffriertextmenge überführt. Es sei % die Menge der Klartexte, ^ die

Menge der Chiffriertexte und % die Schlüsselmenge. In dieser Bezeichnung ist ein
kryptographisches System gegeben als Familie Ez : % —> 6D, mit z e % als Parameter. Es

bezeichne Dz : ^J —> % die entsprechende Familie der inversen Transformationen.

In der praktischen Anwendung zur Übermittlung von vertraulichen Daten wird die

Klartextmeldung des Senders mittels Ez chiffriert und vom Empfänger mittels Dz dechiffriert.
In der klassischen Kryptographie wird derselbe Parameter z als Schlüssel für Chiffrierung
und Dechiffrierung verwendet. Dieser wird deshalb als geheim vorausgesetzt. Bevor eine

chiffrierte Übermittlung von Daten stattfinden kann, muss der Schlüssel dem Sender und
dem Empfänger auf sichere Weise bekannt gemacht werden.

Bei der Übermittlung der chiffrierten Daten muss davon ausgegangen werden, dass diese

für jedermann zugänglich sind. Ausserdem wird angenommen, dass die mathematische

Beschreibung der Chiffriertransformation allgemein verfügbar ist. Das Chiffrierverfahren
muss deshalb kryptologisch stark genug sein, dass die Sicherheit des Chiffriersystems
allein durch die Geheimhaltung des Schlüssels gewährleistet ist.

Das Ziel eines potentiellen Gegners ist es, trotz Chiffrierung an Information über den

Klartext zu gelangen. In diesem Zusammenhang sind verschiedene Szenarien denkbar.
Diese unterscheiden sich in der Kenntnis über die Struktur des Klartextes, die man vom
Gegner voraussetzt. Kennt er lediglich die Struktur der Sprache im weitesten Sinne,
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zum Beispiel Sprachregeln, so spricht man von einer "Ciphertext-Only Attacke". In
gewissen Fällen könnte er sogar an Teile des Klartextes gelangen, die zu einem
bestimmten Chiffriertext gehören. Man spricht dann von einer "Known-Plaintext Attacke".
Mit dieser Information kann er entweder direkt versuchen, weitere mit diesem Schlüssel

chiffrierte Klartexte zu bestimmen, oder den Schlüssel selbst zu ermitteln, um damit
sämtliche Chiffriertexte zu entschlüsseln.

In einer Known-Plaintext Attacke besteht das Problem der Bestimmung des Schlüssels

z in der Lösung der Gleichung Ez(x) y, für ein oder mehrere gegebene Paare

(x,y) G *% x <ty. Die Sicherheit der Chiffrierung beruht auf der Hypothese, dass die

Lösung dieser Gleichung ein mathematisch schwieriges Problem ist. In den meisten Fällen

ist die Lösung z durch relativ wenige Paare (x,y) schon eindeutig bestimmt. Da
die Schlüsselmenge endlich ist, kann die Gleichung prinzipiell mit einer vollständigen
Suche über alle Werte von z gelöst werden. Dies ist jedoch praktisch unmöglich, wenn
der Schlüsselraum genügend gross gewählt wurde. Zusätzlich sollte sichergestellt werden,

dass keine signifikant schnelleren analytischen Verfahren zur Lösung der Gleichung
existieren. Wenn diese beiden Bedingungen erfüllt sind, spricht man von einem System
mit praktischer Sicherheit.

In den meisten Fällen ist ein konkreter Beweis der praktischen Sicherheit nicht möglich.
In der Praxis wird deshalb ein System so entworfen, dass es sich gegen alle bekannten
Attacken als sicher erweist. Damit ist aber noch nicht sichergestellt, dass es auch Attacken
standhält, die möglicherweise erst in Zukunft gefunden werden.

Auf der anderen Seite ist bemerkenswert, dass es kryptographische Systeme mit perfekter
Sicherheit gibt. Nach C. E. Shannon [10] ist ein Systemperfekt sicher, wenn der Chiffriertext

keine Information über den Klartext enthält. Dies ist äquivalent zur Aussage, dass

Klartext und Chiffriertext, als Zufallsvariablen betrachtet, statistisch unabhängig sind.

Das wichtigste Beispiel eines perfekten Chiffriersystems ist das sogenannte "One-Time
Pad", das von G. Vernam 1917 erfunden wurde. In diesem System wird angenommen,
dass der Klartext in digitaler Form vorliegt, d.h. als Folge von Zahlen 0 oder 1, bzw.
als Folge von Bits. Der Schlüssel besteht in einer ebenso langen Bit-Folge, welche von
einer echten Zufallsquelle erzeugt wurde. Zur Erzeugung des Chiffriertextes werden die
Bits der Zufallsfolge (d.h. des Schlüssels) zu den Bits des Klartextes modulo 2 addiert.

Für die Dechiffrierung muss der Schlüssel dem Empfänger vorgängig auf sichere Weise

bekannt gemacht werden. Um den Klartext zurückzugewinnen, muss der Empfänger die

Schlüsserfolge bitweise modulo 2 vom Chiffriertext subtrahieren.

Die Sicherheit des One-Time Pads beruht darauf, dass es zu einem beobachteten Chiffriertext

und jedem beliebigen Klartext gleicher Länge einen Schlüssel gibt, der den Klartext
in den gegebenen Chiffriertext überführt. Da der Schlüssel als echte Zufallsfolge erzeugt
wird, kann gezeigt werden, dass die bedingte Wahrscheinlichkeitsverteilung für den Klartext

nach Beobachtung des Chiffriertextes mit der a priori Wahrscheinlichkeitverteilung
des Klartextes übereinstimmt.

Das One-Time Pad ist zwar perfekt sicher, hat aber für den praktischen Einsatz gravierende

Nachteile. Einerseits stellt die Tatsache, dass der Schlüssel gleich lang sein muss

wie der Klartext, ein ernsthaftes Problem für die Schlüsselverteilung dar. Andererseits
ist die Sicherheit nur dann gewährleistet, wenn derselbe Schlüssel kein zweites Mal ver-
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wendet wird. Kennt man zum Beispiel korrespondierenden Klartext und Chiffriertext für
einen bestimmten Schlüssel, so können die entsprechenden Bits des Schlüssels bestimmt
werden. Bei Wiederverwendung eines solchen Schlüssels ist eine neue Meldung deshalb

nicht mehr geschützt.

Als eine praktische Alternative zum One-Time Pad haben sich die Stream Ciphers
herausgebildet. Wie beim One-Time Pad wird der Klartext mittels Addition einer Bitfolge
transformiert. Diese wird aber nicht von einer echten Zufallsquelle erzeugt, sondern

von einem Pseudozufallsgenerator. Dies ist ein endlicher Automat, der in Abhängigkeit

seines internen Zustandes jeweils ein Outputbit produziert und gleichzeitig in einen

neuen Zustand übergeht. Die dabei erzeugte Folge ist keine echte Zufallsfolge - sie ist
deterministisch bestimmt durch den Initialzustand des Automaten - hat aber gewisse
Eigenschaften einer echten Zufallsfolge. Die Sicherheit einer Stream Cipher beruht darauf,
dass es rechnerisch unmöglich sein soll, mit der Kenntnis eines Teils der Folge auf
andere Teile der Folge zu schliessen. Diese Eigenschaft ist von entscheidender Bedeutung
für kryptographische Anwendungen. Viele für numerische Simulationen in der Praxis
verwendete Pseudozufallsgeneratoren erfüllen diese Bedingung nicht.

Damit der Empfänger erfolgreich dechiffrieren kann, muss ihm nur der Initialzustand des

Generators auf geheimem Weg bekannt gemacht werden. Unabhängig von der Länge des

Klartextes wird der Initialzustand durch eine beschränkte Anzahl von Bits beschrieben.

Der Initialzustand kann im eingangs beschriebenen Modell als Schlüssel z aufgefasst
werden. Eine gebräuchliche Grosse für einen solchen Schlüssel ist 128 Bit.

Spezifisch für diese Art Stream Cipher ist, dass eine Meldung Bit für Bit abgearbeitet
wird. Es gibt jedoch in der klassischen Kryptographie noch andere Verfahren, die
sogenannten Block Ciphers, in welchen der Klartext in Blöcke einer festen Länge (z.B. 64

Bit) aufgeteilt wird und die Blöcke individuell in Abhängigkeit vom Schlüssel transformiert

werden. Der bekannteste Algorithmus dieser Art ist der "Data Encryption Standard"
DES.

3 Public-Key Kryptographie
Im Jahre 1976 haben W Diffie und M. Hellman in ihrer berühmten Arbeit "New
Directions in Cryptography" [2] eine völlig neuartige Idee entwickelt, welche eine sichere

Datenübermittlung ermöglicht, ohne dass ein geheimer Schlüssel ausgetauscht werden

muss. Solche Verfahren beruhen auf sogenannten Einwegfunktionen. Unter einer
Einwegfunktion versteht man eine Funktion /, deren Funktionswerte y f(x) leicht berechnet
werden können, wogegen die Berechnung von x f^1 (y) für fast alle y praktisch
unmöglich ist. Ein Beispiel einer solchen Funktion ist die Exponentiation modulo einer
geeignet gewählten grossen Primzahl p,

f(x) ax modp, (1)

wobei 1 < a < p ein bestimmtes Erzeugendes der multiplikativen Gruppe der
Restklassen modulo p ist, und die Argumente für x im Bereich 0 < x < p - 1 liegen.
Die Umkehrung dieser Funktion nennt man das diskrete Logarithmusproblem, welches
als schwierig bekannt ist. Basierend auf der Exponentiation modulo p haben Diffie und
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Hellman ein Protokoll zur Vereinbarung eines gemeinsamen Schlüssels entwickelt, in
welchem keine geheimen Informationen ausgetauscht werden müssen. Bei diesem
Verfahren wählen zwei Benutzer A und B eine feste Primzahl p und ein Erzeugendes a
modulo p, welche nicht geheim gehalten werden müssen. Die Vereinbarung eines geheimen

Schlüssels geschieht in folgenden Schritten:

1. A wählt eine zufällige ganze Zahl x,l < x <p — l, und berechnet ax mod p. Ebenso

wählt B eine zufällige ganze Zahl y, 1 < y < p - 1, und berechnet ay mod p.

2. A sendet das Resultat ax seiner Berechnung an B und behält x geheim. Entsprechend
sendet Ba'anA und behält y geheim.

3. A und B berechnen beide den Wert k axy mod p, welchen A durch Berechnung
von (apy und B durch Berechnung von (axy erhält.

Den Wert k können nur A und B mit Kenntnis ihrer geheimen Parameter x und y
berechnen. Diesen Wert verwenden sie dann als geheimen Schlüssel in einem klassischen

Chiffriersystem.

Beim beschriebenen Diffie-Hellman-Verfahren werden keine geheimen Informationen
übermittelt. Ein möglicher Gegner sieht nur die ausgetauschten Werte ax und ay. Die
Sicherheit beruht darauf, dass es für ihn schwierig ist, axy mit der Kenntnis von ax und o)>

zu berechnen. Das beste bis heute bekannte Verfahren zur Bestimmung von axy beruht auf
der Berechnung von x oder y, d. h. auf der Lösung des diskreten Logarithmusproblems.
Die Schwierigkeit des Logarithmusproblems hängt von der Wahl der Primzahl p ab. Diese

muss insbesondere genügend gross sein und gewisse andere Eigenschaften erfüllen, auf
die wir später noch eingehen werden.

Da beim Diffie-Hellman-Verfahren zur Schlüsselvereinbarung keine geheimen Informationen

übermittelt werden, wird es zu den sogenannten Public-Key Systemen gezählt.
Für die eigentliche Chiffrierung kommt jedoch immer noch ein klassisches Verfahren

zur Anwendung. In einer Weiterentwicklung ihrer Idee schlagen Diffie und Hellman

vor, die Daten direkt mittels einer Einwegfunktion zu chiffrieren. Dies bedingt, dass

der rechtmässige Empfänger in der Lage sein muss, die Einwegfunktion zu invertieren.
Zur Realisierung dieser Idee ist eine spezielle Klasse von Einwegfunktionen notwendig,
die sogenannten "trapdoor one-way functions". Die Trapdoor (deutsch: Falltüre) besteht

in einer Zusatzinformation zur Einwegfunktion, die nur dem rechtmässigen Empfänger
bekannt ist und ihm erlaubt, die Funktion zu invertieren.

Formal ausgedrückt sind Trapdoor-Einwegfunktionen definiert als Elemente einer para-
metrisierten Familie von umkehrbaren Funktionen fz : D(fz) —> W(/z), so dass

i) es für jedes gegebene z einfach ist, Algorithmen Ez und Dz zu finden, welche für
alle x e D(fz) eine einfache Berechnung von y fz(x), und für alle y e W(/z) eine
einfache Berechnung von x fz~l (y) ermöglichen.

ii) für praktisch alle z und für praktisch alle y G W (fz die Berechnung von x fz
1

(y)
unmöglich ist, wenn Ez, nicht aber z bekannt ist.

Eine Trapdoor-Einwegfunktion kann wie folgt für ein Verschlüsselungsverfahren in
einem Netzwerk von mehreren Benutzern angewandt werden:
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1. Jeder Benutzer i wählt einen zufälligen Wert z,, den er geheim hält.

2. Benutzer i bildet die Algorithmen E, EZi und D, DZi, wobei er E, in einem
öffentlichen Verzeichnis ablegt und D, als Schlüssel geheimhält.

Falls ein anderer Benutzer j im Netz dem Benutzer i eine zu chiffrierende Meldung x
senden will, holt er den öffentlichen Schlüssel E, von i aus dem Verzeichnis, berechnet

y E,(x) und sendet den Chiffriertext y an i. Benutzer i dechiffriert die Meldung mit
seinem geheimen Schlüssel, indem er x D, (y) berechnet.

Es ist bis heute ungeklärt, ob Trapdoor-Einwegfunktionen (oder Einwegfunktionen
überhaupt) im streng mathematischen Sinne existieren. Diffie und Hellman konnten in ihrer
Arbeit [2] keine konkrete Trapdoor-Einwegfunktion zur Realisierung ihrer Idee angeben.
Im Jahr 1978 entdeckten Rivest, Shamir und Adleman einen aussichtsreichen Kandidaten

für eine Trapdoor-Einwegfunktion, bzw. für die Realisierung eines Public-Key
Kryptosystems [9]. Dieses Chiffrierverfahren wird nach ihren Erfindern als RSA-System
bezeichnet. Es ist bis heute eines der ganz wenigen Verfahren geblieben, die praktisch
angewendet werden.

Dieses Verfahren stützt sich auf die Zahlentheorie, insbesondere auf den Satz von Fermat-
Euler. Dieser Satz besagt, dass für eine gegebene natürliche Zahl n, jede zu n teilerfremde
Zahl x die Kongruenz x^"' 1 (mod n) erfüllt. Dabei bezeichnet <f>{ri) die Anzahl
der zu n teilerfremden Restklassen modulo n.

Beim RSA-Verfahren erzeugt jeder Benutzer ein Paar grosser Primzahlen p und q,

p ^ q, und berechnet das Produkt n pq. Im weiteren erzeugt er eine zufällige zu
4>{n) (p - l)(q - 1) teilerfremde Zahl e und berechnet d, mit der Eigenschaft, dass

die Kongruenz
ed \ {moA <t>{n)), (2)

erfüllt ist. Als Chiffrierfunktion wird die Abbildung

y E(x) Xe modn (3)

verwendet, wobei der Klartext als Zahl (oder als Folge von Zahlen) 0 < x < n codiert
ist. Zur Berechnung der Inversen D E~l wird die Kenntnis der Faktoren von n
verwendet. Diese Kenntnis beinhaltet die Trapdoor-Information, welche es erlaubt, die

Gleichung (2) für d zu lösen. Die Dechiffrierfunktion D ist dann durch die Formel

x D(y) xf mod n (4)

gegeben. Dies folgt im wesentlichen aus dem Satz von Fermat-Euler: Die Gleichung (2)
lässt sich schreiben in der Form ed 1 + k4>{n) für eine gewisse ganze Zahl k. Somit

gilt, (xe)d xed x1+^(") x(x^"))fc x (mod n). Die letzte Kongruenz gilt für
zu n teilerfremde x nach dem Satz von Fermat-Euler. Die Kongruenz gilt aber auch aus

anderen Gründen für Vielfache von p und q. Somit folgt, dass D gemäss (4) zu E invers
ist. Die Zahlen n und e beinhalten den öffentlichen Schlüssel und d den dazugehörigen
Geheimschlüssel.
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Das RSA-Verfahren hat die wichtige Eigenschaft, dass es zur Erzeugung digitaler
Unterschriften verwendet werden kann. Zur Signierung einer Meldung x, codiert als Zahl,
0 < x < n, wird mit dem geheimen Schlüssel d die Signatur s xd mod n berechnet.

Die Verifikation der Signatur erfolgt mit dem öffentlichen Schlüssel durch Prüfen der

Gleichung se x mod n. Dieses Signierverfahren ist fälschungssicher. Jemand, der ohne

Kenntnis von d die Signatur einer gefälschten Meldung x' erzeugen möchte, müsste
hierzu die e-te Wurzel von x' modulo n berechnen, damit die gefälschte Signatur s' die

Gleichung (s')e x' mod n erfüllt. Dies bedeutet, dass er die RSA-Chiffrierfunktion
invertieren kann.

Die Sicherheit des RSA-Systems beruht auf der Tatsache, dass es schwierig ist, grosse
Zahlen zu faktorisieren. Falls ein Gegner n faktorisieren kann, ist es ihm möglich, die
Inverse von E via Lösung der Gleichung (2) zu bestimmen. Hingegen ist nicht bekannt,
ob die Faktorisierung von n für die Berechnung von D notwendig ist.

Es ist bemerkenswert, dass die schnellsten heute bekannten Algorithmen zur Faktorisierung

grosser Zahlen ähnliche asymptotische Laufzeiten aufweisen wie die schnellsten

Algorithmen zur Lösung des diskreten Logarithmusproblems. Der bis vor kurzem
schnellste Algorithmus zur Faktorisierung grosser Zahlen n ist das sogenannte Multiple
Polynomial Quadratic Sieve (MPQS) und hat eine asymptotische Laufzeit von

O(ec(log")1/2(loglog")1/2) (5)

mit c « 1. Ein neuer Algorithmus ist das Number Field Sieve (NFS), das eine asymptotische

Laufzeit von
q/£c (logn)1/3(loglogn)2/i\ /ß\

hat, wobei c etwas grosser als 1.9 ist. Für Zahlen mit etwa 100 Dezimalstellen haben
sich die beiden Algorithmen bei praktischen Experimenten als ungefähr gleichwertig
erwiesen, obwohl das Number Field Sieve asymptotisch schneller ist. Diese Algorithmen

sind insofern die schnellsten, wenn man keine besonderen Eigenschaften der Zahl
n voraussetzt. Hingegen sind Klassen von Zahlen bekannt, für welche es schnellere
Verfahren gibt, zum Beispiel für Zahlen der Form n pq, wo p - 1 und q - 1 in
lauter kleine Faktoren zerfallen. Für die Anwendung im RSA-Verfahren wird man
versuchen, solche Zahlen zu vermeiden, und man wird Zahlen verwenden, von denen man
annimmt, dass sie schwierig zu faktorisieren sind. Die Firma RSA Data Security Inc.
hat eine Liste solcher Zahlen verschiedener Grosse publiziert, mit der Herausforderung
diese zu faktorisieren. Die grösste dieser Zahlen, welche bisher faktorisiert wurden, hat
130 Dezimalstellen.1' Die Faktorisierung wurde mit dem NFS mit Hilfe von mehreren
hundert weltweit vernetzten Rechnern in 4 Monaten durchgeführt. Diese Tatsache zeigt,
dass mit sehr grossen Zahlen gearbeitet werden muss, um eine hinreichende Sicherheit

gewährleisten zu können.

Für das diskrete Logarithmusproblem in GF(p) für eine Primzahl p kann eine Variante
des Number Field Sieve erfolgversprechend angewandt werden. Das bis anhin schnellste

1) Stand August 1996
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Verfahren für eine allgemeine Primzahl p von beliebiger Grosse hat eine asymptotische
Laufzeit von

Q/£c (logp)1/2(loglogp)1/2-j (j\

mit c « 1, welche mit (5) übereinstimmt. In den frühen Achtzigerjahren wurde für
das Diffie-Hellman-Verfahren vorgeschlagen, den Galois-Körper GF(2") anstelle von
GF(p) zu verwenden, weil die Arithmetik in GF(2") effizienter implementiert werden
kann als in GF(p). So entspricht zum Beispiel das Quadrieren in einer geeigneten Basis

von GF(2") über GF(2) einer Bit-Schiebeoperation. Bereits 1984 hat D. Coppersmith
entdeckt, dass das Logarithmieren in GF(2") viel einfacher ist als in GF(p) ([1]). Der
von ihm entwickelte Algorithmus hat eine asymptotische Laufzeit von

O(ec"1/3(logn)2/3), (8)

für eine kleine Konstante c. Diese Laufzeit entspricht der Formel (6) für das Number Field
Sieve, aber mit einer anderen Konstante c. Mithilfe des Algorithmus von Coppersmith
ist das Logarithmieren in GF(2") für n « 500 möglich, während das Logarithmieren in
GF(p) für p « 2500 um einiges schwieriger ist.

Die obigen Verfahren zum Logarithmieren machen ausgiebigen Gebrauch von den

Struktureigenschaften des Körpers GF(p) oder GF(2"), während zur Ausführung des Diffie-
Hellman-Verfahrens lediglich die Multiplikation im betreffenden Körper benutzt wird.
Zur Realisierung des Diffie-Hellman-Verfahrens muss nur eine endliche abelsche Gruppe

zugrunde gelegt werden, in welcher die Gruppenoperation effizient berechnet werden
kann. Es liegt deshalb nahe, auch andere Gruppen in Betracht zu ziehen mit der Idee,
dass für diese Gruppen keine ähnlich effizienten Logarithmieralgorithmen existieren.

Für das Diffie-Hellman-Verfahren in einer beliebigen (multiplikativ geschriebenen) abel-
schen Gruppe G ist zunächst ein Element g G G von genügend grosser Ordnung
N ord(g) zu wählen. Zwei Benutzer A und B wählen, jeder für sich, zufällige Zahlen
x und y, 1 < x, y < N. Sie berechnen dann die Gruppenelemente gx,g^/, und den gemeinsamen

Schlüssel k g*y (g^)x (g*y wie im klassischen Diffie-Hellman-Verfahren.
Hierbei wird angenommen, dass das Gruppenelement k in geeigneter Weise als Zahl
codiert ist. Die Sicherheit des Verfahrens beruht darauf, dass das diskrete Logarithmusproblem

in der Gruppe G schwierig ist, d.h. dass es schwierig ist, aus der Kenntnis des

Resultates g" den Exponenten x zu bestimmen.

Das schnellste bekannte Verfahren zur Berechnung diskreter Logarithmen in einer
allgemeinen endlichen abelschen Gruppe ist der Algorithmus von Shanks. Zur Berechnung
von x aus y gx wird eine Darstellung von x in der Form x qD + r gesucht, wobei D
eine geeignet gewählte Konstante ist. Die gesuchten Zahlen q und r liegen im Bereich
0 < q < [N/D\ und 0 < r < D. Für ein gegebenes D ist die Gleichung y giD+r
äquivalent zu yg

qD gr. Zur Lösung dieser Gleichung werden zunächst alle Werte

yg
lD für 0 < i < [N/D\ berechnet und in einer Tabelle geordnet abgelegt. Sodann

werden die Werte g] für 0 < j < D berechnet bis eine Übereinstimmung yg~lD g1 in
der Tabelle gefunden wird. Die Zahlen i und j entsprechen dann den gesuchten Werten

q und r in der Darstellung x qD + r.
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Der Aufwand zur Berechnung und Speicherung der Tabelle ist proportional zu [N/D\,
und der Aufwand zur Bestimmung aller Werte g> ist proportional zu D. Das Maximum
der beiden Werte ist am kleinsten, wenn D möglichst nahe bei VN gewählt wird. Somit
ist der Gesamtaufwand des Algorithmus von Shanks proportional zu VN. Der Algorithmus

von Shanks ist daher für Gruppen mit Ordnung N > 2100 nicht mehr anwendbar.

Hingegen lässt sich der Algorithmus mit der Methode von Pohlig und Hellman ([8])
verfeinern. Diese Verfeinerung hat eine asymptotische Laufzeit von O(-s/p), wobei p der

grösste Primfaktor von N ist. Bei der Wahl der Gruppe ist deshalb darauf zu achten,
dass die Gruppenordnung mindestens einen grossen Primteiler enthält.

4 Elliptische Kurven
Für die Implementierung des Diffie-Hellman-Verfahrens in abelschen Gruppen haben

N. Koblitz ([3, 4]) und V Miller ([7]) elliptische Kurven über endlichen Körpern
vorgeschlagen, da elliptische Kurven in natürlicher Weise mit der Struktur einer abelschen

Gruppe versehen sind. Eine Standardreferenz für elliptische Kurven ist das Buch von J.H.
Silverman ([II]), wo auch elliptische Kurven über Körpern wie R, C, Q oder anderen

Erweiterungskörpern von Q studiert werden. In der Kryptographie stehen insbesondere

die Körper GF(p), p eine Primzahl, und GF(2") im Vordergrund.

Sei K ein endlicher Körper der Charakteristik verschieden von 2 und 3. Eine elliptische
Kurve über K, mit Koeffizienten ö,kK, ist definiert als die Menge der Punkte (x, y) e

KxK, welche die Gleichung

f x3 + ax + b (9)

erfüllen, zusammen mit einem zusätzlichen Element O, dem sogenannten unendlich

fernen Punkt. Dabei wird vorausgesetzt, dass das Polynom x3 +ax + b keine mehrfachen
Nullstellen besitzt. Über einem Körper der Charakteristik 3 ist eine elliptische Kurve
gegeben durch die Gleichung y2 x3 + ax2 + bx + c.

Bevor wir auf elliptische Kurven über Körpern der Charakteristik 2 eingehen, wollen
wir die Gruppenoperation, die üblicherweise additiv geschrieben wird, am Beispiel einer
Kurve über R illustrieren. In Abbildung l ist die Kurve mit der Gleichung y2 x3 - x
skizziert.

Zur Addition der beiden Punkte P und Q auf der Kurve legt man eine Gerade durch
P und Q. Falls P und Q verschiedene x-Koordinaten haben, schneidet diese Gerade
die Kurve in einem dritten Punkt R. Das Spiegelbild dieses Punktes an der x-Achse ist
die Summe P + Q dieser beiden Punkte. Die Existenz des Schnittpunktes R kann leicht
wie folgt eingesehen werden: Da P und Q verschiedene x-Koordinaten haben, kann die

Gleichung der Geraden durch P und Q geschrieben werden in der Form y ax + ß. Die
Menge der Schnittpunkte der Geraden mit der Kurve ist bestimmt durch die Lösungen
der Gleichung

y2 - x3 - ax - b (ax + ß)2 - x3 - ax - b 0. (10)

Da die x-Koordinaten von P und Q bereits zwei Lösungen der Gleichung sind, muss
eine dritte reelle Lösung der Gleichung existieren.
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Abb. 1 Elliptische Kurve y1 x3 — x

Falls P und Q übereinstimmen, ist zur Berechnung von P + Q 2P die Tangente im
Punkt P an die Kurve zu legen. Wenn die y-Koordinate von P ungleich Null ist, ist die

Gleichung der Tangente wiederum von der Form y ax + ß. Die x-Koordinate von
P ist dann eine doppelte Nullstelle der kubischen Gleichung (10). Deshalb ist die dritte
Nullstelle ebenfalls reell.

Haben P und Q dieselbe x-Koordinate, so ist die Gerade durch P und Q, bzw. die

Tangente in P Q, parallel zur y-Achse. In diesem Fall hat die Gerade keinen weiteren
Schnittpunkt mit der Kurve und zeigt (aus projektiver Sicht) in Richtung des unendlich
fernen Punktes O. Es zeigt sich, dass die Festlegung von O als Summe von P und Q mit
den Gruppenaxiomen konsistent ist. Im weiteren stellt sich heraus, dass O das Neutralelement

der Gruppe ist. Das Inverse -P eines Punktes P (x,y) ist dann offensichtlich

der an der x-Achse gespiegelte Punkt (x, —y). Dass diese Verknüpfungsvorschrift
auch das Assoziativgesetz erfüllt, kann aus tieferliegenden Resultaten der algebraischen
Geometrie abgeleitet werden. Eine elementare Verifikation ist prinzipiell möglich, aber
äusserst mühsam.

Bei elliptische Kurven über Körpern der Charakteristik 2 sind zwei Fälle zu unterscheiden.

Im ersten Fall ist die Kurve gegeben durch die Gleichung

y2 (11)
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mit b\ ^ 0, und im zweiten Fall durch

y2 + xy=x3 +a2x2 +a0, (12)

mit «0^0 (siehe [11], p. 324). Grundsätzlich ist die Gruppenoperation (in geometrischer
Darstellung) gleich definiert wie in Abbildung 1 illustriert. Wegen der unterschiedlichen
Normalform gegeben durch (11), bzw. (12), ergeben sich formal andere Ausdrücke für die

Gruppenoperation. Zum Beispiel ist für eine Kurve mit der Gleichung (12) das Inverse
eines Punktes P (x,y) gegeben durch -P (x, -y - x) (siehe [11], p. 58).

Man sagt, dass die Kurve über GF(q>), dem Galois-Körper mit q Elementen, definiert ist,

wenn die Koeffizienten der Gleichung (11), bzw. (12), in GF(q>) liegen. Es bezeichne

E, zusammen mit dem unendlich fernen Punkt O, die Menge der Lösungen (x,y) der

Gleichung (11), bzw. (12), für welche x,y im Grundkörper GF(q>) liegen. Als Lösungen
können auch Punkte in Betracht gezogen werden, deren Koordinaten in Erweiterungskörpern

von GF(q>) liegen. Es sei also E„ die Kurve bestehend aus den Lösungen von (11),
bzw. (12), mit Koordinaten im Erweiterungskörper GF(q>"). In der Kryptographie sucht

man nach Kurven, deren Gruppenordnung, d.h. die Anzahl der Punkte auf der Kurve,
gross ist und einfach berechnet werden kann.

Für kleine Körper GF(q>) ist die Bestimmung der Gruppenordnung von E einfach, indem
für jedes Paar (x,y) G GF(q) x GF(q) getestet wird, ob es die Gleichung der Kurve
erfüllt. Für grössere Körper stützt sich die Berechnung der Ordnung von E, bzw. E„,
auf bemerkenswerte Resultate der algebraischen Geometrie. Zunächst folgt aus dem Satz

von Hasse, dass die Anzahl N der Punkte einer elliptischen Kurve E definiert über einem

beliebigen endlichen Körper der Ordnung q eingeschränkt ist durch

|N-(<7+l)|<2v^. (13)

Somit lässt sich N schreiben als N q + 1 - a, wobei sich herausstellt, dass a

fl(E) g Z, \a\ < 2^/q, ein kurvenspezifischer Parameter ist. Dieser Parameter spielt eine

wichtige Rolle in einem weiteren fundamentalen Resultat der algebraischen Geometrie,
nämlich der Weil-Vermutung, welche 1974 von P. Deligne vollständig bewiesen wurde

(siehe [11], pp. 132). Mit der Weil-Vermutung lässt sich die Anzahl Nn der Punkte auf
E„ exakt berechnen durch

Nn=l + qn-an-ßn, (14)

wobei a und ß die beiden Wurzeln des Polynoms T2-aT+q sind. Es zeigt sich, dass die

Kurven E mit der Gleichung (11) dadurch charakterisiert sind, dass ihr Parameter a(E)
gleich Null ist. Entsprechend ist fl(E) ungleich Null für alle Kurven mit der Gleichung
(12).

Bei Kurven vom Typ (11) ist die Addition von Punkten etwas einfacher zu implementieren
als bei Kurven vom Typ (12). Es hat sich aber gezeigt, dass sich das Logarithmusproblem

bei Kurven vom ersten Typ auf das klassische Logarithmusproblem in einem

Erweiterungskörper über GF(qn) reduzieren lässt. Aus diesem Grunde werden in der

Kryptographie Kurven vom Typ (12) vorgezogen.

Bei der Anwendung elliptischer Kurven für das Diffie-Hellman-Verfahren ist zu bemerken,

dass die Gruppe nicht notwendigerweise zyklisch ist. Es ist deshalb ein Punkt P auf
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der Kurve zu wählen, der eine möglichst grosse Untergruppe erzeugt. In der additiven
Schreibweise der Gruppenoperation berechnen zwei Benutzer A und B, jeder für sich
Vielfache aP, bzw. bP. Sie tauschen ihre Resultate aus und bestimmen den gemeinsamen

geheimen Schlüssel K abP, den A mittels K a{bP) und B mittels K b{aP)
berechnet.

Die Berechnung eines Vielfachen aP für eine zufällig gewählte Zahl a erfordert im
Mittel (3/2) Iog2(fl) Gruppenoperationen, wenn die sogenannte Double andAdd Methode

angewendet wird. Diese Methode wird durch das folgende kleine Beispiel illustriert: Zur
Berechnung von 45P wird 45 binär in der Form 45= 1+4 + 8 + 32 dargestellt. Der
Wert von 45P ergibt sich dann als 45P P + 4P + 8P + 32P. Dazu sind 8 Additionen
erforderlich, nämlich die Berechnung von 2P, 4P, 8P, 16P, 32P durch Verdoppelung und
drei weitere Additionen gemäss der binären Darstellung von 45. Im allgemeinen Fall
ist die Anzahl der Verdoppelungen von der Grössenordnung Iog2(fl), und die Anzahl
weiterer Additionen ist um Eins kleiner als die Anzahl der Einer in der Binärdarstellung
von«.
Die Addition zweier beliebiger Punkte auf der Kurve erfordert im Normalfall zwei
Multiplikationen und eine Division im zugrundeliegenden Körper. Dabei ist vor allem die

Division zeitaufwendig. Es ist naheliegend, spezielle Kurven zu finden, bei denen der
Aufwand für eine Addition etwas geringer ausfällt. Die zuerst vorgeschlagenen Kurven
waren alle vom Typ (11), wo sich herausstellte, dass das Logarithmusproblem, wie
bereits erwähnt, einfacher zu lösen ist. Als mögliche Kurven vom Typ (12) hat N. Koblitz
sogenannte anomale Kurven vorgeschlagen ([5]). Dies sind Kurven mit dem Parameter

fl(E) 1. Die Anzahl Punkte auf einer solchen Kurve ist gleich der Ordnung q des

zugrundeliegenden Körpers. Die charakteristische Gleichung dieser Kurven ist gegeben
durch T2 - T + q 0.

Wie bereits in Abschnitt 3 erwähnt, lassen sich die arithmetischen Operationen in
Körpern der Charakteristik 2 einfacher implementieren. Diese Körper stehen deshalb auch
hier im Vordergrund. Die einzige anomale Kurve über dem Grundkörper GF(2) der
Charakteristik 2 ist gegeben durch die Gleichung.

y2 + xy=x3+x2 +1. (15)

Die Anzahl der Punkte auf dieser Kurve ist tatsächlich 2, denn sie enthält nur den unendlich

fernen Punkt und den Punkt (0,1). Von besonderem Interesse ist diese Kurve, wenn
man sie über Erweiterungskörpern GF(2") betrachtet, d.h. als Menge E„ der Lösungen

(x,y) der Gleichung (15) mit Koordinaten in GF(2"). Die Anzahl N„ der Punkte auf
E„ lässt sich berechnen mit der Weil-Vermutung (14), wobei a (1 + yf—ï)/2 und

ß (1 - y/-7)/2 die Wurzeln der charakteristischen Gleichung T2 - T + 2 0 sind.

Bekanntlich ist die Abbildung ihi2 ein Körperautomorphismus von GF(2") (der aus-
serdem die Galoisgruppe von GF(2") über GF(2) erzeugt). Erfüllt ein Punkt (x,y) die

Gleichung (15), so gilt dies auch für den Bildpunkt (x2,!/2). Somit induziert der

Körperautomorphismus eine Abbildung <f> : En —> En,<j>(x,y) (x2,!/2), welche Frobenius-
Abbildung genannt wird. Es ist bemerkenswert, dass diese Abbildung mit der
Gruppenoperation auf E„ verträglich, d.h. ein Gruppenhomomorphismus der Kurve E„ ist.
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Ausserdem erfüllt <f> die charakteristische Gleichung der Kurve,

<P2 - <t> + 2 0. (16)

Diese Gleichung impliziert, dass die Verdoppelung von Punkten auf E„ durch <f>

ausgedrückt werden kann: IP <j>(P) - 4>2(P), für alle Punkte P auf E„. In [5] wurde

vorgeschlagen, Vielfache mP als Linearkombinationen von Potenzen von <f> darzustellen,

da diese mittels iteriertem Quadrieren leicht berechnet werden können. Zur schnellen

Berechnung von mP ist eine solche Darstellung besonders interessant, wenn sie nur
wenige Summanden enthält. In dieser Richtung wurden in [5] ausgehend von (16) die

folgenden Darstellungen hergeleitet:

4

8 4-2 {-4>3 - 4>2){4> - 4>2) -4>3 + 4>5

— th1 A- I'rh ii>2\ii>6 4- ii>4 — ii>4 r$

Diese Gleichungen gelten unabhängig vom zugrundeliegenden Erweiterungskörper
GF(2"). Mit diesen Darstellungen ist die Berechnung von 4P, 8P, 16P jeweils mit einer

einzigen Addition, bzw. Subtraktion, möglich, während zum Beispiel zur Berechnung
von 16P mittels Verdoppelung 4 Additionen notwendig wären. Entsprechend lassen sich
auch höhere Zweierpotenzen mittels <f> ausdrücken, und ebenso beliebige Vielfache mP
mit Hilfe der Binärdarstellung von m. Eine einfache Berechnung von mP erlauben diese

Darstellungen jedoch nur dann, wenn sie wenige Summanden enthalten. Es ist nicht von
vornherein klar, dass jedes Vielfache m eine kurze (/»-Darstellung mit kleinen
Koeffizienten wie ±1 besitzt. So kann zum Beispiel eine (/»-Darstellung von 32 mittels der

Entwicklung von 32 als 2 • 16 oder 4 • 8 erhalten werden. Die Darstellung hat aber

in beiden Fällen schon 4 Summanden. Noch mehr Summanden sind zu erwarten für
höhere Zweierpotenzen oder für ein allgemeines m, wenn zur Berechnung von mP
zusätzlich noch die Binärdarstellung von m herangezogen werden muss. In [5] wurden
(/»-Entwicklungen für beliebige m hergeleitet, die im Mittel doppelt soviele Summanden
enthalten wie die binäre Darstellung von m. In [6] wurde der folgende Satz bewiesen,
der zeigt, dass, abhängig vom Grad n des Erweiterungskörpers, kürzere Darstellungen
existieren.

Satz. Für die anomale Kurve E : y2 + xy X3 + X2 + 1 definiert über GF(2) sei E„ die

Kurve betrachtet über dem Erweiterungskörper GF(2n). Dann kann die Multiplikation
aufEn mit einer natürlichen Zahl m ausgedrückt werden durch

n-\
m y~"

;=o

mitCj e {0,±l}.
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In [6] wurde auch ein effizienter Algorithmus zur Berechnung solcher (/»-Entwicklungen
hergeleitet. Ebenso wird in [6], aufgrund der Herleitung des Algorithmus, plausibel
gemacht, dass im Mittel die Hälfte der Koeffizienten gleich Null sind.

Da der Aufwand zur Berechnung von <fri vernachlässigbar ist, erlaubt die (/»-Entwicklung
von m die Berechnung von mP für einen beliebigen Punkt P auf E„ mit ungefähr n/2
Additionen, wogegen die Berechnung mittels Double and Add 3n/2 Additonen erfordert.
Somit führt die (/»-Entwicklung zu einer Beschleunigung der Berechnung von mP um
den Faktor 3.

Für die praktische Implementierung sind Kurven zu finden, für welche die Gruppenordnung

einen grossen Primfaktor enthält. Als Beispiel erwähnen wir die Kurve mit der

Gleichung y2 + xy x3 + x2 + 1, die wir über dem Erweiterungskörper GF(2") mit
n 181 betrachten. Die Faktorisierung der Gruppenordnung Nisi lautet

Nisi 2•122719 • 23531 • 530697483168464396730940889115599370835266943,

und hat einen Primfaktor mit 45 Dezimalstellen. Der Aufwand des Algorithmus von Pohlig

und Hellman für das diskrete Logarithmusproblem auf dieser Kurve ist deshalb von
der Grössenordnung O(Vl045). Zur Beurteilung der Sicherheit des klassischen Diffie-
Hellman-Verfahrens in GF(p) muss das viel effizientere Number Field Sieve berücksichtigt

werden. Ein konkreter Vergleich zeigt, dass Körper GF(p) mit p « 10150 verwendet
werden müssen, um eine vergleichbare Sicherheit wie auf der betrachteten Kurve E181

zu erreichen. Dies bedeutet, dass mit elliptischen Kurven schnellere und kompaktere
praktische Realisierungen des Diffie-Hellman Schlüsselaustausches möglich sind.

Für das Diffie-Hellman-Verfahren stehen natürlich nicht nur die hier betrachteten
sondern eine Vielzahl weiterer elliptischer Kurven zur Verfügung. Hardware-Komponenten,
welche auf dieser Technologie beruhen, werden bereits kommerziell angeboten. Aus-
serdem beschränkt sich die Bedeutung elliptischer Kurven für die Kryptographie nicht
nur auf das Diffie-Hellman-Verfahren, sondern erstreckt sich zum Beispiel auch auf das

Faktorisieren grosser Zahlen. Wie die aktuelle Forschung zeigt, bleibt die Anwendung
elliptischer Kurven auf die Kryptographie auch weiterhin ein wichtiges Thema.
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