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Best Lower and Upper Approximates
to Irrational Numbers

Clark Kimberling

Clark Kimberling received his Ph.D. in 1970 from the Illinois Institute of Technology.
Aside from number theory, his interests include triangle geometry, playing musical

instruments, and composing.

Wherever fractional notation of the form p/q occurs in this paper, p and q denote
relatively prime positive integers. The rational number p/q is a best approximate to a (e.g.,

Lang [L]) if for every b/c having denominator c < q,

\qa-p\<\ca-b\. (1)

These conditions imply q\a —p/q\ < c\a - b/c\ < q\a - b/c\, so that

a-p/q\<\a-b/c\, (2)

which is to say that p/q is nearer a than any b/c having c < q. However, (1) is

stronger than (2), as exemplified by (a,p/q, b/c) (1,3/5,1/2); in other words "best

approximate" is "better" than "nearest approximate".

Given a positive irrational number a, the principal convergents Pi/qi to a. are well known
to be the best approximates to a; this theorem lends itself to a lemma proved in [L]:

Lemma 1 Suppose po/qo,p\/q\, • • • are the principal convergents to a positive irrational
number a. If b/c satisfies \ca — b\ < \qta — pt\, then c > q-l+\.

Die Approximation irrationaler Zahlen durch rationale Zahlen spielt in der Zahlcnthco-
rie eine grosse Rolle. Erinnert sei zum Beispiel an den berühmten Salz von Liouvillc:
er liefert die Möglichkeit, die Transzendenz einer reellen Zahl mit Hilfe ihrer rationalen

Approximationen zu beweisen. Clark Kimberling konstruiert im vorliegenden Beitrag
auf einfache Weise beste untere und obere rationale Approximationen und setzt sie in
Beziehung zu den bereits von Perron eingeführten "besten" und "nächsten Näherungen"
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We modify inequality (1), calling p/q a best lower approximate to a if p/q < a and for
every b/c < a having c < q,

qa - p < ccx - b; (IL)
and calling p/q a best upper approximate to a if p/q > a and for every b/c < a having
c <q,

p - qa <b - ccx. (1U)

Before solving for p/q in these cases, we note that the analogous problem for "nearest"
lower and upper approximates is solved in Perron [P, pp. 55-63], where, ironically, they
are called "beste Näherungen". Perron's solutions are the same as those obtained below
— a surprise in view of the aforementioned nonequivalence of "nearest" and "best".

For irrational x, let |x| denote the distance from x to the integer nearest to x. Let [xj
denote the greatest integer < x, and define ((x)), the fractional part of x, by ((x)) x- |_xj.

Then
f ((x)) if ((x)) < 1/2

11" \ 1 - ((x)) otherwise,
y '

and (1) can be written as \\qa\\ < \\ca\\.

Next we recall some basics about continued fractions, principal convergents, and

intermediate convergents. Suppose a has continued fraction [ao,öi,ö2, • • •], and let

P-2 o, p-i i, pi mpi-i + pi-2
and q-2 1, q~\ 0, qr mqi-i + qr-2

for i > 0. The principal convergents of a are the rational numbers Pi/qi for i > 0.

Now for all nonnegative integers i and j, define

Pi,, jPi+i + Pi and qh] jql+l + q;.

The fractions
h± &»+*, l<;<«r+2-l, (4)

are the i-th intermediate convergents of a. As proved in [L, p. 16],

EiEMEMlEi^. if fis even, (5)<<<<<<<qi qi,j qi,;+\ qi+2

...>PL>...>Pil>PLh±>...>Pin>... if fiS odd, (6)
qi qr,; qi,}+\ qi+2

and pi,j-\qij - pi;qij-\ (-1); for f 0,1,2,... and j 1,2,... ,al+2 - 1. If the

range of j in (4) is extended to 0 < j < al+2 - 1, then the principal convergents are
included among the intermediate convergents. We shall refer to both kinds as simply
convergents, those in (5) as even-indexed convergents, and those in (6) as odd-indexed

convergents.

Suppose now that q > 1. Taking x qa in (3) gives \\qa\\ \qa - p\, where

B fW if (MX 1/2 f ((qa)) if((^))<l/2
I L^^J + otherwise, In " [ 1 - ((^a)) otherwise.
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Lemma 2 Ifpl/ql are the principal convergents to a positive irrational number a and
i is even, then ((ql+2a)) < 1/2 < ((q>{

((jql+la)) j((ql+la)) - j + 1, (7)

and

;a))>l (8)

for j 1,2, ...,fl{+2 - 1.

Proo/ The first assertion merely expresses the fact that the integer nearest qta is p, for
even i > 0, and that the integer nearest ql+\o. is pi + 1. Continuing, it is well known
([L, p. 8]) that

< l/qi+2,

so that (((Ji+i«)) > 1 - l/qi+2- Now a!+2 < al+2ql+i + qi ql+2, whence

0 < iiqi+ia)) - j + 1< 1 for 1 < ; < al+2 - I.

Since ((jqi+\aj) is an irrational number having the same fractional part as /
y'+l, identity (7) is proved. Continuing,

Pj+2^+1 - qi+2Pi+\ -1 < 0 pi+2qi+2 - qi+2pi+2,

so that
Pi+2 Pi+2 - Pi+1

<Jî+2 (Jî+2 - (Jî + 1

Then a{al+2ql+\ + q, - qt+\) > al+2pl+\ +p, - p,+\, which implies

— > ö;2 i
Pî + 1 - (\l + \OL

Thus for 0 < 7 < flî+2 - 1, we have

so that

7fei«)) -7 + 1 + {{qia)) > 1,

and (8) follows from (7). D

Lemma 3 //"P?; /^'; are ^e convergents to a positive irrational number a and i is even,
then

iqioa)) > ((qua)) > ((qt2a)) > ¦¦¦> ((qt,a,+2-ia)) > 1 - ((q;+ifia)) > ((ql+2fia)).
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Proof When j 0, we are dealing with principal convergents, hence best approximates
to a, so that

WqioOij > \\qi+i,oa\\ > \\qi+2fla\\,

or equivalently,
((qioa)) > 1 - ((qi+i,oa)) > ((ql+2fia)).

Next, using Lemma 2, we find for ; 0,1,... ,al+2 - 2 that

((jqi+io)) i((ql+\a)) - j + I > (j + l)((q;+la)) - (j + 1) + 1 (((; + %+ia)),
so that ((qqa)) > ((qh]+ia)). Finally,

1 - ((qt+ia)) pi+i - ql+ia < l/ql+2 < l/al+2,

whence al+2((ql+ia)) > al+2 - 1, and

Theorem 1 The best lower approximates to a positive irrational number a are the

even-indexed convergents to a.

Proof. Suppose qt] is an even-indexed convergent, and c is a positive integer such that
((ca)) < ((qija)). We wish to show that c > ql}. By Lemma 3, ((ca)) < ((qra)), so that
\\ca\\ < \\qia\\, which by Lemma 1 implies c > ql+\. If c ql+\, then ((ca)) ((ql+\a)),
which by Lemma 3 implies

((ca)) > 1 - ((qi;a)) > ((qi;a)),

a contradiction. Also, clearly, c ^ ql]7 so it remains to consider the possibility that

ql+i < c < qt]; write c mql+\ + h, where 1 < h < ql+ï and 1 < m < j. Then

((ca)) ((mqt+ia + ha)),

and, using Lemma 2,

((mql+la)) + ((ha)) - 1 ((ca)) < ((qt,a)) ((jqt+1a +qta)) ((jqi+ia)) + ((qta)) - 1,

so that
((ha)) < ((jqi+ia)) - ((mql+la)) + ((qta)).

Identity (7) easily gives ((jql+\a)) < ((mqi+\a)), so that ((ha)) < ((qta)), and by Lemma

l,h> qi+\, a contradiction. D

Lemma 4 Let pi/qx denote the principal convergents to a positive irrational number

a [fl0, d\, d2, • • •], and let p'Jq[ denote the principal convergents to the number a!
Oo + 1 — a. If a - fl0 < 1/2, then p!0/q0 0/1, p[/q[ 1/1, and

P; (fl0 + 1)<Ji-i —Pi-\

for i 2,3,.... Ifa - a0 > 1/2, then ax 1, p'0/q0 0/1, p[/q[ l/(a2 + 1), and

p\

for i 2,3,....
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Proof. It is easy to verify that

3, l,fli - 1,02,03, «4, • • •] ifcc—«o<l/2
3,fl2 + 1,03,04,-••] ifa-flo>l/2.

The rest of the proof is routine and omitted. D

Theorem 2 TTze èerf upper approximates to a positive irrational number a are the

odd-indexed convergents to a.

Proof. Suppose pij/qij is an odd-indexed convergent to a. Suppose also, contrary to

(1U), that there exists b/c, with denominator c < ql]7 such that

Pi) -%¦(* >b-ca.

Substituting a0 + 1 - a' for a and using principal convergents, we then have

(jpi+i +Pi) - (jqi+i + %)(a0 + \-a')>b- c(a0 + 1 - a'),

{jqi+i +qi)a' - (j((a0 + l)q,+i -pf+i) + («o + 1)^ ~Pi) > col - (ca0 + c - b).

(9)
If a - fl0 < 1/2, then by Lemma 4, inequality (9) can be written as

(H+2 + q'i+i)a>- Up'+2 + p'+i) >ca' - (cflo + c-b),

so that

contrary to Theorem 1, since p'+i,;/V+i,; is an even-indexed convergent to a' and

c < % jtfi+i,} +qi jq'i+2,) + q'i+i Im,;-

On the other hand, if a - a0 > 1/2, then (9) can be written as

iH + q'i-i)a'-üp'i+Pi-i) >ca'-(cflo + c-b),

so that

<fi-i,)a' ~ Pi-i,j > ca' - (Cflo +C-b),
contrary to Theorem 1. D
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