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Wherever fractional notation of the form p/g occurs in this paper, p and g denote rela-
tively prime positive integers. The rational number p/q is a best approximate to « (e.g.,
Lang [L]) if for every b/c having denominator ¢ < g,

lgo —pl < lca—b|. (1)
These conditions imply gla: —p/q| < ¢l — b/c| < gl — b/c|, so that

|l —p/ql <l —b/c], (2)

which is to say that p/q is nearer o than any b/c having ¢ < g. However, (1) is
stronger than (2), as exemplified by («,p/q,b/c) = (1,3/5,1/2); in other words “best
approximate” is “better” than “nearest approximate”.

Given a positive irrational number «, the principal convergents p; /¢; to o are well known
to be the best approximates to «; this theorem lends itself to a lemma proved in [L]:

Lemma 1 Suppose py/qo,p1/G1, - - - are the principal convergents to a positive irrational
number o. If b/c satisfies |cc — b| < |qic — pi|, then ¢ > git1.

])‘ ‘ Appmxlmamm 1rratmnal‘ ‘ Zahlen durch raunnale Zahlen‘spleh m‘ der Zalﬂentheo-‘;
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We modify inequality (1), calling p/g a best lower approximate to « if p/g < o and for
every b/c < o having ¢ < g,

go—p < ca — b, (1L)
and calling p/q a best upper approximate to « if p/q > « and for every b/c < o having
c<q,

p—ga<b—ca. (10)
Before solving for p/q in these cases, we note that the analogous problem for “nearest”
lower and upper approximates is solved in Perron [P, pp. 55-63], where, ironically, they
are called “beste Naherungen”. Perron’s solutions are the same as those obtained below
— a surprise in view of the aforementioned nonequivalence of “nearest” and “best”.

For irrational x, let |x| denote the distance from x to the integer nearest to x. Let x|
denote the greatest integer < x, and define ((xt)), the fractional part of x, by (x)) = x—|x].

e (@) <12
x x) <
Il = { 1—((x) otherwise, (3)
and (1) can be written as |go < |ce].

Next we recall some basics about continued fractions, principal convergents, and inter-
mediate convergents. Suppose « has continued fraction [ao,4;, 4, . . .], and let

p2=0, p1=1, pi=api1+pi2
and g—2>=1, g1=0, g=aigi+ g
for i > 0. The principal convergents of « are the rational numbers p;/g; for i > 0.
Now for all nonnegative integers i and j, define

pij = jpiv1 +p; and g ; = jgi1 +gi
The fractions

Poj TP TP < jcpy, 1, 4)
Gij  J4ia TG
are the i-th intermediate convergents of «. As proved in [L, p. 16],
B B (P PR i i even, (5)
i gij  Gijn Ji+2
B SB Pu S P2 o if s odd, (6)
i Jij  Gij+ Giv2

and pij1Gij — pijgij—1 = (1) fori =0,1,2,...and j = 1,2,...,4> — L. If the
range of j in (4) is extended to 0 < j < a;4» — 1, then the principal convergents are
included among the intermediate convergents. We shall refer to both kinds as simply
convergents, those in (5) as even-indexed convergents, and those in (6) as odd-indexed
convergents.

Suppose now that g > 1. Taking x = go in (3) gives |qo| = |go — p|, where

_ [ lgo] if (gor) <1/2 _ [ (ga) if (ga)) <1/2
P= { ch]aj +1 t)theqrwise, so that  go] = { 111_ (ge) othezwise.
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Lemma 2 [f'p;/q; are the principal convergents to a positive irrational number o and
i is even, then (it20c)) < 1/2 < (i),

(jginre)) = j(Gime) —j + 1, (7)
and
(100 + (ge) > 1 ®
Jor j=1,2,... .84, — 1.
Proof. The first assertion merely expresses the fact that the integer nearest g; o is p; for

even i > 0, and that the integer nearest g; 1o is p; + 1. Continuing, it is well known
(IL. p. 8]) that

Pit1 — Gipe < 1/gisa,

so that (i) > 1 —1/giy2. Now ai15 < 8i42Gi11 + §i = Gi2, whence
0<j(gna)—j+l<lforl<j<ay,—1

Since ((jgi+1¢v)) is an irrational number having the same fractional part as j((gi+10)) —
j + 1, identity (7) is proved. Continuing,

Pit2Giv1 — Gir2Pit1 = —1 <0 = pis2giva — GivaPiv2,
so that
o > P2 o Pir2 7Pt
Gi+2 GJi+2 — fi+1
Then a(aquHl + g — q1'+]) > @iyoPiv1 + Pi — Piv1, which implies

(gic) g —pi
1= (i) piy1 — ginc

= ﬂj+2 - 1

Thus for 0 < j <a;4» — 1, we have

J(=(gina)) < (ge),

so that
j(@e)) = j+1+ (ga) > 1,
and (8) follows from (7). O

Lemma 3 Ifp;;/qi; are the convergents to a positive irrational number o and i is even,
then

(q0e)) > (gne) > (qa)) > -+ > (Giga—12) > 1 = (Gi+1,00) > (Gi+2,00)-
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Proof: When j = 0, we are dealing with principal convergents, hence best approximates
to «, so that
Igiocd > lgir10al > 1gis200l,
or equivalently,
(goa)) > 1 = (Gi+100)) > (Gis200))-
Next, using Lemma 2, we find for j = 0,1,...,4;1, — 2 that

(jgirre) = j(ginc) = j+1> G+ D(4i1e) =G+ 1) + 1= ((j + Dginr12)),
so that ((gic)) > ((g,j+1 ). Finally,

1 = (gi+10)) = pir1 — G < 1/gia < 1/ai42,
whence a;.5(git1)) > 842 — 1, and

(Far219) = (@2 = D(gi10)) — (@2 = D + 1> 1= (gine). O

Theorem 1 The best lower approximates to a positive irrational number o are the
even-indexed convergents to c.

Proof. Suppose ¢;; is an even-indexed convergent, and ¢ is a positive integer such that
(ca)) < ((gijr)). We wish to show that ¢ > g;;. By Lemma 3, (ca)) < ((g;c)), so that
lea| < |gir|, which by Lemma 1 implies ¢ > gi11. If ¢ = gi11, then (ca)) = (gi110),
which by Lemma 3 implies

(ca)) > 1= ((gij)) > (g5,
a contradiction. Also, clearly, ¢ # g, so it remains to consider the possibility that
Gir1 < ¢ < gyj; write ¢ = mgiy1 +h, where 1 <h < g1 and 1 <m < j. Then
(ca)) = (mgi11004 har)),
and, using Lemma 2,

(mgipr0)) + (ha)) = 1 = ((ca)) < (g;j) = (jgirra+ qia)) = (jgine)) + (ge) — 1,
so that

(ha)) < (jgi+10) — (MGiy10)) + (i)
Identity (7) easily gives ((jgi+1c)) < (mgiz1cr)), so that (ha)) < (giv)). and by Lemma
1, 1 > gi11, a contradiction. O

Lemma 4 Let p;/q; denote the principal convergents to a positive irrational number
a = [ag,a1,8z,...], and let p./q! denote the principal convergents to the number o/ =
o+ 11— Ifoa—ay < 1/2 then p) /g, =0/1, pi/q, = 1/1, and

pi _ (a0 + 1)gi1 —pia
% Gi-1

Jori=273,. . Ifa—ay>1/2 thena, =1, p;/q, =0/1, p}/q; = 1/(a2 + 1), and
pi (a0 + 1)1 — pin

g Ji+1

fori=273, ...
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Proof. Tt is easy to verify that

;- H0717ﬂ1—176{2,5{37614,...]] ifa'—ﬁo<1/2
N [[07a2+17a37a4,...]] ifa—ao>l/2.

The rest of the proof is routine and omitted. O

Theorem 2 The best upper approximates to a positive irrational number o are the
odd-indexed convergents to c.

Proof. Suppose p;j/q;; is an odd-indexed convergent to o. Suppose also, contrary to
(1U), that there exists b/c, with denominator ¢ < g;;, such that

Pij — qi]'oz Z b — CQ.
Substituting 4o + 1 — o’ for o and using principal convergents, we then have
(jpis1 +pi) — (jgim + )@ +1—0') > b—clao + 1 —a),

(jqi+1 +g:)o’ — (f((ﬂo + Dgiy1 — pis1) + (@0 + Dgi —pi) > ca’ — (cap+c—b).
9)
If &« —ag < 1/2, then by Lemma 4, inequality (9) can be written as
(]'1]1'/+2 + q{+1)a/ - (]'P1/’+2 +P1{+1) > co — (cap +c—b),
so that
‘11'/+1,10/ - pz/'+l,j > ca’ — (cap + ¢ — D),

contrary to Theorem 1, since p; Y /i +1,j 1s an even-indexed convergent to o' and

¢ <Gij = jGiv1; + G = ]"11(+2,j + 4= ’11{+1,;'~
On the other hand, if o —ay, > 1/2, then (9) can be written as
(Jai + i)’ = (jpi +pi_1) = co/ — (cao +¢ = b),
so that
§_1,j¢ —pi_1j; 2 ca’ = (cao +¢ —b),
contrary to Theorem 1. O
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