
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 52 (1997)

Artikel: Mannigfaltige Geometrien

Autor: Geiges, Hansjörg

DOI: https://doi.org/10.5169/seals-2664

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-2664
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


© Birkhäuser Verlag, Basel, 1997
Elem. Math. 52 (1997) 93-107
0013-6018/97/030093-15 $1.50+0.20/0 I Elemente der Mathematik

Mannigfaltige Geometrien

Hansjörg Geiges

Dem Andenken an meinen Vater Leif Geiges (1915-1990) gewidmet.

Hansjörg Geiges wurde 1966 in Basel als Sohn des Fotografen Leif Geiges und
Urenkel des Freiburger Künstlers Fritz Geiges geboren, dessen Glasfenster und
Mosaike die bedeutendsten Kathedralen Deutschlands, wie die Dome von Köln und

Trier und das Freiburger Münster, schmücken. Er studierte an den Universitäten

Göttingen, Cambridge, Zürich und Bonn. Nach der Promotion 1992 in Cambridge
bei C.B. Thomas war er zwei Jahre als Szegö Assistant Professor an der Stanford

University tätig. Danach verbrachte er ein akademisches Jahr als Research Fellow
am Queens' College der University of Cambridge, und seit 1995 ist er Assistenz-

Professor an der ETH Zürich. Seine Forschungsinteressen liegen in der Kontaktgeometrie

und der geometrischen Topologie. Seiner Mutter verdankt er die Schweizer
und seinem Vater die deutsche Staatsbürgerschaft, aber wie dieser fühlt er sich
zuallererst als Alemanne und Europäer.

Wenn wir kein Verhältnis zur Geometrie haben,
haben wir kein Weltverständnis

Thomas Bernhard

1 Einleitung
Das erstmalige Aufstellen der These, die Erde sei eine Kugel, wird traditionell Par-
menides von Elea (um 500 v.Chr.) zugeschrieben. Als sicher kann gelten, daß diese

Kugelgestalt die Schulmeinung der Pythagoräer darstellte und zur Zeit des Aristoteles
(384-322 v.Chr.) unter den griechischen Philosophen als offensichtliche Tatsache

akzeptiert wurde. Zu dieser Entdeckung gelangte man allerdings nicht durch geometrische
Beobachtungen auf der Erde, sondern über das Studium der Veränderungen am
Nachthimmel und im Gang der Sonne in Abhängigkeit von der geographischen Position des

Beobachters, genauer: der geographischen Breite. Tatsächlich ließen sich viele dieser

Veränderungen auch mit einer zylindrischen Erdgestalt erklären, wie dies etwa von Ana-
ximander (ca. 610-540 v.Chr.) vorgeschlagen wurde. Von Aristoteles wurde weiter die

Kreisförmigkeit des Erdschattens bei Mondfinsternissen als Indiz für die Kugelgestalt
der Erde vorgebracht; auch diese Argumentation beruht also auf einer Beobachtung im
dreidimensionalen Raum und ist noch dazu unschlüssig.

In der Tat ist es nicht verwunderlich, daß es nicht Beobachtungen auf der Erde selbst

waren, die zur Entdeckung ihrer Kugelgestalt führten. Denn die Oberfläche einer Kugel
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Die gcomclrischen Vorslcllungcn über den Raum, in dem wir leben, werden durch
die direkt zugänglichen lokalen Gegebenheiten geprägt Erkenntnisse, die darüber
hinausgehen und die globale Geometrie betreffen, liegen in aller Regel wesentlich tiefer,
denn nicht seilen scheinen sie der naiven (eben lokalen!) Siclii der Dinge zu
widersprechen. So setzte sich seinerzeit selbst in der Wissenschaft die Erkenntnis, dass wir
auf der Oberfläche einer Kugel leben, gegen die lokale ebene Erfahrung nur mühsam

durch. In jenem Erkcnnlnisschritl spielte die Mathematik ohne Zweifel eine massgeb-
lichc Rolle. Als abstrakte Wissenschaft kann sich die Mathematik anschlicssend die

Frage vorlegen, ob neben der Kugclobcrllächc noch andere geschlossene Flächen
existieren, die lokal wie ein Ebenenstück aussehen, denn solche Flächen sind prinzipiell
mit unserer lokalen Erfahrung vereinbar und deshalb als globale Geometrie unseres
zweidimensionalen Anschauungsraumes denkbar. Diese abstrakte Frage ist seit langem
Nollständig beantwortet, die Mathematik kennt sogar eine erschöpfende Aufzählung
aller solchen Möglichkeiten. - Ähnliches wie oben über die zweidimensionale
Kugeloberfläche lässl sich auch über das Dreidimensionale berichten. Das Weltall erscheint

uns lokal, zum Beispiel in unserem Planetensystem, als dreidimensionaler euklidischer
Raum, Im Grossen allerdings ist seine Struktur auch heute noch nicht geklärt. Und auch
die Mathematik kennt noch keine definitive Übersicht über die prinzipiell überhaupt in
Frage kommenden dreidimensionalen Mannigfaltigkeiten, Zu diesen kosmologischen
und mathematischen Problemen gibt es erst Vermutungen. Zur mathematischen Seile
hat Thurslon vor einigen Jahren eine Vermutung formuliert: sie ist zwar noch nicht
bewiesen, es spricht aber heule vieles für ihre Richtigkeit. Hansjörg Geiges berichtet
über dreidimensionale Mannigfaltigkeiten und die vielen interessanten Beziehungen.
die sich hier ergeben: zur Kosmologie, zu Dante zu Klein und Riemann und - last but
not least - /w Thurslon ii\i

oder eines Zylinders und auch die Kreisscheibe der vorgriechischen Weltsicht haben
eines gemeinsam: Im Lokalen sehen sie alle so aus wie ein Teil der euklidischen Ebene,
das heißt lokal kann man auf diesen Flächen ein zweidimensionales Koordinatennetz

einführen, wie dies für die Erdoberfläche auf jeder Landkarte zu sehen ist.

Von der Beobachtung der lokalen Euklidizität der beschriebenen Flächen gelangt man
durch Abstraktion zum Begriff der Mannigfaltigkeit beliebiger Dimension, der auf Rie-

manns berühmte Habilitations-Vorlesung in Göttingen von 1854 zurückgeht. Wir werden

uns hier allerdings nur mit zwei- und dreidimensionalen Mannigfaltigkeiten beschäftigen.

Ein topologischer Raum soll also 2-Mannigfaltigkeit oder Fläche heißen, wenn er
lokal so aussieht wie die euklidische Ebene, und 3-Mannigfaltigkeit, wenn er im Kleinen
aussieht wie der dreidimensionale euklidische Raum unserer Anschauung, in anderen

Worten, wenn sich Punkte in kleinen Umgebungen in einem solchen Raum durch zwei
bzw. drei Koordinaten eindeutig charakterisieren lassen.

Wir werden implizit annehmen, daß alle berücksichtigten Mannigfaltigkeiten orientierbar
sind, ohne diesen Begriff hier weiter zu vertiefen. Außerdem interessieren wir uns in
erster Linie für geschlossene Mannigfaltigkeiten. Dies bedeutet anschaulich, daß sich in
einem solchen Raum (nach Einführung eines Abstandsbegriffes) ein Lichtstrahl (geometrisch:

eine Geodätische) unendlich fortsetzen läßt, aber die Entfernung je zweier Punkte



Elem. Math. 52 (1997) 95

eine bestimmte endliche Schranke nicht überschreitet. (Es ist durchaus erlaubt, daß sich
ein Lichtstrahl selbst kreuzt oder gar in sich selbst zurückläuft.) Die euklidische Ebene
selbst oder eine offene Kreisscheibe wären Beispiele für offene Mannigfaltigkeiten.

Mit Mitteln der Algebraischen Topologie oder der Differentialtopologie kann man eine

vollständige Klassifikation von geschlossenen Flächen erreichen (Abb. 1). Neben der

2-Sphäre S2 gibt es den 2-Torus T2, die Oberfläche eines "doughnut"; die sogenannte
Fläche vom Geschlecht zwei, S2; und weiter Flächen mit einer zunehmenden Anzahl von
"Henkeln". Von allen diesen Flächen können wir uns ein globales Bild machen, indem
wir sie "von außen" im dreidimensionalen Raum bettachten, wie eben auch bei den
Griechen Beobachtungen im dreidimensionalen Raum zur Entdeckung der Sphärizität
der Erde führten.

etc.

S2 T2 Z2

Abb. 1 Geschlossene 2-Mannigfaltigkeiten.

Eine ähnlich globale Vorstellung von 3-Mannigfaltigkeiten könnte man sich also nur
in der vierten oder einer höheren Dimension machen. Es soll aber in diesem Artikel
anhand einiger Beispiele gezeigt werden, wie man durch rein dreidimensionale
Vorstellungen, also gewissermaßen "von innen", zu einem globalen Verständnis von 3-

Mannigfaltigkeiten gelangen kann, und es soll auch kurz die Bedeutung einiger der
beschriebenen 3-Mannigfaltigkeiten für die Kosmologie diskutiert werden. In den zwei
letzten, etwas technischer gehaltenen Abschnitten geben wir einen Abriß von Thurstons

Geometrisierungs-Programm für 3-Mannigfaltigkeiten. In [9] werden ähnliche Ideen wie
in dem vorliegenden Artikel behandelt.

2 Sphärische Geometrie

In diesem und den folgenden zwei Abschnitten wollen wir eine alternative Beschreibung

von S2, T2 bzw. S2 geben und durch Analogie erste Beispiele von 3-Mannigfaltigkeiten
konstruieren.

Durch Projektion der nördlichen Hemisphäre von S2 auf die Äquatorebene erkennt man,
daß eine Hemisphäre topologisch äquivalent ist zu einer Kreisscheibe, allerdings wird
hier die Geometrie der Sphäre (d.h. Abstände und Winkel) sehr stark verzerrt. Da die

2-Sphäre durch Verkleben zweier Hemisphären entlang des Äquators entsteht, kann man
sich jedenfalls topologisch vorstellen, daß die 2-Sphäre durch Verkleben zweier
Kreisscheiben entlang ihres Randes gebildet wird (Abb. 2). Bei diesem Verkleben heben sich
die Ränder gewissermaßen gegenseitig auf; auf der 2-Sphäre ist der Äquator nur eine

gedachte Grenze. Das resultierende Objekt ist also endlich aber unbegrenzt - eben eine

geschlossene Fläche.
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Abb. 2 Die 2-Sphäre.

Bei diesem topologischen Bild geht aber ein wichtiger geometrischer Aspekt der 2-

Sphäre verloren. Man muß sich vorstellen (wie das bei der globalen Darstellung von S2

klar ist), daß S2 eine homogene Geometrie trägt, das heißt die Sphäre sieht von jedem
Punkt auf ihr betrachtet gleich aus.

Ganz analog dazu erhält man die 3-Sphäre S3, indem man zwei Vollkugeln entlang ihres
Randes (einer 2-Sphäre) miteinander verklebt (Abb. 3). Auch hier muß man sich aber

wieder vorstellen, daß das resultierende Objekt mit einer Geometrie versehen ist, die es

zu einem homogenen Raum macht.

S3

Abb. 3 Die 3-Sphäre.

Die 3-Sphäre ist demnach ebenfalls ein endlicher aber unbegrenzter Raum und außerdem
lokal dreidimensional, wie man sich in Analogie mit der 2-Sphäre leicht klar macht, also
eine geschlossene 3-Mannigfaltigkeit. Wir können uns zwar das konkrete Verkleben der
beiden Vollkugeln nicht mehr vorstellen, da dies nur im vierdimensionalen Raum möglich
ist. Man kann sich aber ein Bild davon machen, wie man von der linken Vollkugel in
die rechte gelangt, indem man den Punkt P passiert, der mit P' identifiziert ist. Dabei
überschreitet man nur einen imaginären Äquator, der hier eine 2-Sphäre ist.

In seiner Probevorlesung wies Riemann ausdrücklich darauf hin, daß die 3-Sphäre ein
geometrisches Modell für ein endliches aber dennoch unbegrenztes Universum liefert. Es

ist aber faszinierend festzustellen, daß dieses Modell bereits mehr als fünfhundert Jahre

früher in der Literatur Erwähnung findet, nämlich in Dantes Göttlicher Komödie (Abb. 4).

Hier stellt die eine Vollkugel das beobachtbare Universum da, das vom Kristallhimmel
(Primum Mobile) begrenzt ist. Als Dante jedoch in diesen Kristallhimmel aufsteigt,
stößt er nicht etwa an die Grenze des Universums, sondern blickt in das Empyreum
oder Reich Gottes, in dem die Hierarchien der Engel ganz ähnlich auf Kugelschalen
aufgereiht sind wie die Planeten und Sterne im beobachtbaren Universum. Auch hier muß

man sich die beiden Vollkugeln entlang ihres Randes, des Kristallhimmels, miteinander
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identifiziert vorstellen, das resultierende Universum ist also die beschriebene 3-Sphäre.
Eine detaillierte Analyse des Danteschen Universums vom geometrischen Standpunkt
aus mit Verweisen auf konkrete Textstellen findet der Leser in [5], vergl. auch [4].

Abb. 4 Das Universum bei Dante.

4 Euklidische Geometrie
Betrachten wir als nächstes den 2-Torus T2. Diesen kann man konstruieren, indem man in
einem Rechteck in der euklidischen Ebene gegenüberliegende Seiten paarweise miteinander

identifiziert (Abb. 5). Wenn man versucht, mit einem Blatt Papier durch Verkleben
der Ränder dies konkret zu realisieren, so stellt man fest, daß man ein Seitenpaar tatsächlich

verkleben kann und damit einen Zylinder erhält. Das zweite Seitenpaar kann aber

nicht mehr miteinander verklebt werden, ohne das Papier zu verzerren.

Abb. 5 Der 2-Torus.

Wir beobachten aber folgendes: Bei der abstrakten Identifikation der Seiten werden die

vier Ecken des Rechteckes zu einem Punkt P identifiziert. Es werden also in P vier
rechte Winkel miteinander verklebt, die zusammen genau einen vollen Winkel von 360°

ergeben. Daher kann man diese Identifikation tatsächlich ausführen, ohne die (euklidische)

Geometrie des Papiers zu verzerren, wenngleich man dazu in die vierte Dimension
gehen müßte. Es bleibt festzuhalten, daß man den 2-Torus mit einer Geometrie versehen
kann, so daß kleine Umgebungen auf T2 geometrisch alle gleich aussehen, und zwar
wie kleine Umgebungen in der euklidischen Ebene. Man spricht dann von einem lokal
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homogenen Raum, in diesem Fall einem (im geometrischen Sinne) lokal euklidischen
Raum.1'

Mathematisch exakter läßt sich dies einsehen, wenn man sich T2 vorstellt als Quotienten

der euklidischen Ebene E2 unter ganzzahligen Translationen in horizontaler und
vertikaler Richtung (Abb. 6), das heißt, zwei Punkte der Ebene werden genau dann
miteinander identifiziert, wenn sich ihre x-Koordinaten um ein ganzzahliges Vierfaches von
a und ihre y-Koordinaten um ein ganzzahliges Vierfaches von b unterscheiden; formal:
T2 Z2\E2. Da diese Translationen Isometrien sind, das heißt alle geometrischen
Eigenschaften der euklidischen Ebene (wie Abstände, Winkel, Geraden, Kongruenz) erhalten,
ist der resultierende Quotientenraum lokal euklidisch.

y

a

Abb. 6 Der 2-Torus als Quotient der euklidischen Ebene.

In direkter Analogie konstruiert man den 3-Torus T3, indem man gegenüberliegende
Seitenflächen eines Quaders im euklidischen Raum E3 paarweise miteinander identifiziert.

Konkret ließe sich diese Verklebung der Seitenflächen etwa im sechs-dimensionalen
Raum ausführen. Wichtig ist aber wieder nur folgende Beobachtung: Der Kantenwinkel
im Quader befragt 90°. Bei der beschriebenen Identifikation der Seitenflächen des Quaders

werden jeweils vier Kanten miteinander identifiziert. Daher ist diese Identifikation
wieder möglich, ohne die Geometrie des Quaders zu verzerren; der resultierende 3-

Torus ist also eine lokal homogene 3-Mannigfaltigkeit mit lokal euklidischer Geometrie.

Man erkennt dies auch daran, daß man den euklidischen Raum mit Kopien des Quaders

lückenlos ausfüllen kann. Formal können wir in Analogie zum 2-Torus schreiben:

T3=Z3\E3.
Ein Lichtstrahl, der auf die rechte Seitenwand des Quaders trifft, erscheint (nach
Identifikation der Seiten) wieder an der linken Seitenwand. Blickt ein Beobachter im 3-Torus

1) Man überlegt sich leicht, daß T2 in der Tat sogar homogen ist.
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also nach rechts, sieht er dort seine linke Seite. Da die Sichtlinie den Toms unendlich
oft durchlaufen kann, sieht der Beobachter sogar im Prinzip unendlich viele Abbilder
von sich selbst (Abb. 7). Der optische Effekt ist demnach vergleichbar mit dem in einem

Raum, dessen Wände verspiegelt sind, nur daß im letzteren Raum das erste, dritte, und

allgemein jedes ungeradzahlige Abbild des Beobachters spiegelverkehrt wäre.

Abb. 7 Der 3-Torus, © Spektrum der Wissenschaft.

4 Hyperbolische Geometrie
Schneidet man die Fläche vom Geschlecht zwei entlang der in Abb. 8 gezeichneten
Kurven auf, so läßt sich S2 zu einem Achteck auffalten. Umgekehrt erhält man £2,
indem man die Ränder eines Achteckes wie in Abb. 9 gezeigt paarweise miteinander
identifiziert. Wieder beobachten wir, daß dabei alle acht Ecken zu einem Punkt P
identifiziert werden. Nun beträgt aber der Innenwinkel des regelmäßigen Achteckes in der
euklidischen Ebene 135°, daher kann diese Identifikation nicht ausgeführt werden, ohne
das euklidische Achteck zu verzerren.

Nichtsdestotrotz kann S2 mit einer Geometrie versehen werden, die diese Fläche zu
einer lokal homogenen Mannigfaltigkeit macht. Dazu betrachten wir das Poincaré-Modell
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Abb. 8 Die Fläche vom Geschlecht zwei.

Abb. 9 £2 via Identifikationen am Achteck.

der hyperbolischen Ebene H2. In diesem Modell wird H2 repräsentiert als offene
Kreisscheibe in der euklidischen Ebene, und hyperbolische Geraden erscheinen als Durchmesser

der Kreisscheibe oder Kreisbögen, die senkrecht zum Rand der Kreisscheibe
sind (Abb. 10). Der Abstandsbegriff ist in diesem Modell so definiert, daß H2 eine

homogene 2-Mannigfaltigkeit ist.2'

Es folgt unmittelbar aus der Definition der hyperbolischen Geraden, daß die Innenwinkel
eines sehr kleinen regelmäßigen Achteckes in H2 annähernd gleich 135° sind, diese

Innenwinkel aber gegen Null gehen, wenn man das Achteck vergrößert (Abb. 11).

Insbesondere findet man ein regelmäßiges Achteck in H2, dessen Innenwinkel genau 45°

betragen (Man vergleiche dies mit dem analogen Effekt auf S2, wo die Innenwinkel eines

Polygons beim Vergrößern desselben größer werden). Bei einem solchen Achteck lassen
sich nun die Seiten wie in Abb. 9 miteinander identifizieren, ohne die Geometrie von H2

zu verzerren, daher ist S2 eine lokal homogene Mannigfaltigkeit mit lokal hyperbolischer
Geometrie. Das gleiche gilt für alle Flächen höheren Geschlechts.

2) Inversionen an Kreisen senkrecht zum Rand der Kreisscheibe sind hyperbolische Isometrien, und jeder
Punkt der Kreisscheibe läßt sich durch eine geeignete solche Inversion auf den Mittelpunkt abbilden.
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Abb. 10 Das Poincaré-Modell der hyperbolischen Ebene.

Abb. 11 Ein regelmäßiges Achteck in ff2.

Formal (und ganz analog zum 2-Torus) betrachtet man eine lückenlose Überdeckung

von H2 mit Kopien des regelmäßigen Achteckes mit Innenwinkel 45° (im Poincaré-
Modell sehen diese Achtecke zum Rand hin sehr stark verzerrt aus) und bezeichnet mit
T die Gruppe der (orientierungserhaltenden) Isometrien von H2, die Achtecke dieser
Überdeckung ineinander überführen. Es gilt dann S2 T \ H2.

5 Die beiden Dodekaederräume

In Analogie zu der Beschreibung von S2 in Abschnitt 4 wollen wir nun eine
dreidimensionale lokal hyperbolische Mannigfaltigkeit konstruieren, und eine ähnliche
Konstruktion wird uns eine lokal sphärische 3-Mannigfaltigkeit liefern. Ausgangspunkt der
Konstruktion ist das Dodekaeder, eines der fünf regelmäßigen Polyeder (oder platonischen

Körper), dessen Rand von zwölf regelmäßigen Fünfecken gebildet wird (Abb. 12).

Wir verkleben nun gegenüberliegende Seitenflächen des Dodekaeders, wobei wir jede
Seite um 3/10 eines vollen Winkels verdrehen, bevor wir die Identifikation ausführen

(Abb. 12 links). Damit ergibt sich die in Abb. 13 gezeigte Identifikation. Man kann sich

überlegen, daß dabei je fünf Kanten miteinander identifiziert werden.
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Abb. 12 Die beiden Dodekaederräume.

Abb. 13 Der Seifert-Weber-Dodekaederraum.

Nun beträgt aber der Kantenwinkel des euklidischen Dodekaeders annähernd 117°, so

daß dieses Verkleben nicht mit einem solchen Dodekaeder ausgeführt werden kann.

Wie im vorigen Abschnitt betrachtet man stattdessen ein Dodekaeder im hyperbolischen
Raum, wo man einen analogen Effekt beobachtet: Beim Vergrößern eines Polyeders
nehmen die Kantenwinkel ab, und man kann ein Dodekaeder mit Kantenwinkel 360°/5
72° finden. Nun ist das Verkleben auch geometrisch durchführbar, und man erhält den

sogenannten Seifert-Weber-Dodekaederraum, eine lokal homogene 3-Mannigfaltigkeit
mit lokal hyperbolischer Geometrie.
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Abb. 14 Der Poincarè Dodekaederraum.

Verklebt man gegenüberliegende Seitenflächen des Dodekaeders dagegen mit einer
Drehung von 1/10 (Abb. 12 rechts), so werden nur je drei Kanten miteinander identifiziert
(Abb. 14).

Hier ist der Kantenwinkel des euklidischen Dodekaeders also zu klein. In der 3-Sphäre
läßt sich aber ein Dodekaeder finden, dessen Kantenwinkel etwas größer, nämlich gleich
120° 360°/3 sind, und damit läßt sich die Identifikation wieder geometrisch ausführen.

Die resultierende 3-Mannigfaltigkeit, der sogenannte Poincaré-Dodekaederraum, trägt
also lokal sphärische Geometrie.

Eine detaillierte Beschreibung dieser beiden Dodekaederräume findet man in der sehr

schönen Originalarbeit von Weber und Seifert [11].

6 Kosmologische Modelle

Astronomische Beobachtungen zeigen, daß unser Universum von der Erde aus betrachtet

weitgehend isotrop ist, das heißt in jeder Richtung das gleiche Bild darbietet, wobei der
Maßstab selbstverständlich hinreichend groß angelegt werden muß. Das kosmologische
Prinzip postuliert, daß es keinen ausgezeichneten Beobachter im Universum gibt. Auf
der Grundlage dieses Prinzips geht man daher davon aus, daß das Universum von jedem
Beobachtungspunkt aus isotrop erscheint und eine homogene Masseverteilung besitzt.

Nach der Allgemeinen Relativitätstheorie beeinflußt die Masseverteilung im Universum
dessen Geometrie, und so wird man auch von einem geometrischen Modell für das

Universum fordern, daß es wenigstens lokal homogen ist. Die in den obigen Abschnitten
beschriebenen 3-Mannigfaltigkeiten liefern gerade solche Modelle. Man beachte, daß in
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diesen geschlossenen 3-Mannigfaltigkeiten die Homogenität des Universums im Großen
eine Folge der Tatsache wäre, daß der Beobachter (wie am Beispiel des 3-Toms
beschrieben) vielfache Kopien einer Fundamentalzelle (dort: eines Quaders) sehen würde.
Solche Modelle würden also die beobachtete Homogenität der Masseverteilung als rein
geometrisches Phänomen erklären. Weiter kommt hinzu: Wäre das Universum eine
geschlossene 3-Mannigfaltigkeit, so hätte im Urknall nur endlich viel Materie erzeugt
werden müssen.

Aus diesen Gründen werden geschlossene Modelle von einigen Kosmologen bevorzugt.
Ellis [2] gibt eine eingehende topologische Beschreibung solcher Modelle; in [1] werden

diese Modelle vom Standpunkt der beobachtenden Astronomie aus diskutiert. In
der Tat ließe es sich im Prinzip durch Beobachtung verifizieren, daß wir in einem
geschlossenen Universum leben, da vielfache Abbilder des gleichen Objektes beobachtbar

wären. Aufgrund der dabei wegen der endlichen Lichtgeschwindigkeit auftretenden

Zeitverschiebungen wären solche Beobachtungen aber nur an sehr auffälligen Objekten
möglich. In [1] werden aus diesen Überlegungen Abschätzungen für die Mindestgröße
der Fundamentalzelle abgeleitet.

Die Vorstellung, das Universum könnte ein Dodekaederraum sein, ist besonders
faszinierend angesichts der Tatsache, daß bereits Piaton das Dodekaeder mit dem Weltganzen
in Verbindung gebracht hat. Im "Timaios" identifiziert er vier der fünf regelmäßigen
Polyeder, nämlich Tetraeder, Würfel, Oktaeder und Ikosaeder, mit den Elementen Feuer,
Erde, Luft und Wasser, und fährt dann fort (in der Übersetzung von O. Apelt): "Und da

es noch eine Art der Zusammensetzung gibt, also eine fünfte [nämlich das Dodekaeder],
so verwendete Gott sie für das Weltall, zu dem sie ihm als Muster dienen sollte."
Es ist angebracht, hier auf eine Sprachverwirrung zwischen Topologen und Kosmologen

hinzuweisen. Von der Materiedichte im Universum hängt es ab, ob die gegenwärtig
beobachtete Expansion des Universums zum Stillstand kommt und sich das Universum
wieder zusammenzieht (was bei hinreichend großer Materiedichte der Fall wäre), oder ob

es sich auf ewig ausdehnen wird. Wieder aufgrund der Allgemeinen Relativitätstheorie
wäre die Geometrie des Universums im ersten Fall lokal sphärisch, im zweiten Fall lokal
euklidisch (falls die Materiedichte gerade so groß ist, daß die Expansionsgeschwindigkeit

asymptotisch gegen Null geht) oder lokal hyperbolisch. Kosmologen sprechen im
ersten Fall von einem geschlossenen, in den beiden anderen Fällen von einem offenen
Universum. Wie unsere Diskussion gezeigt hat, könnte es sich aber auch in letzteren
Fällen um ein im topologischen Sinne geschlossenes Universum handeln.

7 Geometrien im Sinne von Thurston
Wir haben bis jetzt den Begriff der Geometrie in einem durchaus naiven Sinne verwendet,
ohne den Versuch einer Präzisierung zu unternehmen. Beispielsweise haben wir ihn auf
sehr vage Weise mit Abstands- und Winkelbegriffen identifiziert. Gleichermaßen wichtig
für eine Geometrie sind aber Konzepte wie Geraden und Ebenen (vergleiche etwa die

Geradendefinition im Poincaré-Modell der hyperbolischen Ebene) oder ein Kongruenzbegriff

(vergleiche unsere Diskussion der Überdeckung von H2 mit durch Spiegelungen
erhaltenen Achtecken). In diesem Abschnitt soll der Geometrie-Begriff präzisiert werden,
und in einem abschließenden Abschnitt diskutieren wir die Bedeutung solcher Geometrien

für das globale Verständnis von 3-Mannigfaltigkeiten.
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Die folgende Definition ist eine leichte Abwandlung einer Definition von Thurston [7,
8, 9]. Dieser Geometrie-Begriff ist eng verwandt mit dem von Felix Klein aus seinem

Erlanger Programm von 1872.

Definition Eine Geometrie (X, G) ist eine vollständige Riemannsche Mannigfaltigkeit
X zusammen mit einer Gruppe G von Isometrien von X, wobei gelten soll:

1. X ist zusammenhängend und einfach zusammenhängend.

2. G operiert transitiv auf X, das heißt X ist ein homogener Raum.

3. G besitzt diskrete Untergruppen T, so daß der lokal homogene Raum T \ X eine

geschlossene Mannigfaltigkeit ist.

Bemerkungen.

(1) Streng genommen ist die Riemannsche Metrik auf X nicht Teil der Definition, vergl.
die Bemerkungen in [10].

(2) Im allgemeinen nimmt man für G die Gruppe aller Isometrien von X und spricht
dann kurz von der Geometrie X.

(3) Eine Mannigfaltigkeit der Form M V \ X heißt geometrische Mannigfaltigkeit vom

TypX.

Wir haben oben in Dimension zwei und drei je drei Geometrien kennengelernt und
konkrete Beispiele geometrischer Mannigfaltigkeiten angegeben. In Dimension zwei gibt
es keine weiteren Geometrien, und Thurston hat gezeigt, daß es in Dimension drei genau
acht Geometrien gibt (Tab. 1), vergl. [6]. In Dimension vier gibt es achtzehn Geometrien,
vergl. [10]. In höheren Dimensionen ist eine Klassifikation nicht bekannt.

Isotropiegruppe

SO(3)

SO(2)
trivial

Tabelle 1 Die Geometrien in Dimension drei.

Geometrien

S2 xE\H2 x£',Nfl, SL2

Sol

Die drei oben beschriebenen Geometrien sind isotrop, das heißt die Isotropiegruppe ist
SO(3). Vier der fünf weiteren Geometrien haben Isotropiegruppe SO(2), was anschaulich
bedeutet, daß es in diesen Räumen eine ausgezeichnete oben-unten Richtung gibt. Die
achte Geometrie ist vollständig anisotrop.

Wir wollen hier noch eine dieser Geometrien beschreiben, die Heisenberg-Gruppe Nil.
Diese wird gebildet von den Matrizen der Form

mit x,y,z G R. Ein Beispiel für eine geschlossene 3-Mannigfaltigkeit vom Typ Nil
ergibt sich, indem man für Y die Gruppe aller solcher Matrizen mit x,y,z G Z wählt.

Mit anderen Worten, man betrachtet den Quotienten von R3 unter der Gruppe T, die
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erzeugt wird von den Abbildungen

Die Projektionsabbildung
(x,y,z)i—>(x,y)

gibt T \ Nil die Struktur eines S1 -Bündels über T2.

Allgemeiner gilt, daß die Geometrien S2 xE\ E3, H2 x E1, S3, Nil und SL2 genau den

Seifert-gefaserten 3-Mannigfaltigkeiten entsprechen. Anschaulich sind dies gerade jene
3-Mannigfaltigkeiten, auf denen ein Fluß definiert werden kann, der nur geschlossene
Bahnen besitzt (wie etwa die Meridiankreise auf dem 2-Torus oder analog dazu auf dem

3-Torus). Auch Sol-Mannigfaltigkeiten besitzen eine sehr einfache Struktur, sie fasern
als T2-Bündel über S1.

Damit läßt sich im Prinzip eine vollständige Beschreibung aller geometrischen
3-Mannigfaltigkeiten außer jenen vom Typ H3 durch einfache numerische Invarianten angeben,
und oft kann eine explizite analytische Beschreibung wie im Nil-Beispiel gegeben werden
oder eine geometrische Darstellung wie bei den Dodekaederräumen.

8 Die Geometrisierungs-Vermutung
Man kann sich die Fläche vom Geschlecht zwei als verbundene Summe zweier Tori in
folgendem Sinne vorstellen: Entferne eine Kreisscheibe aus jedem Torus und identifiziere

die enstehenden Kreis-Ränder. Umgekehrt kann man £2 entlang eines Kreises S!

aufschneiden und die entstehenden Löcher mit Kreisscheiben auffüllen, so daß man zwei

Kopien von T2 erhält.

Ganz analog dazu kann eine geschlossene 3-Mannigfaltigkeit entlang von 2-Sphären
aufgeschnitten werden in Mannigfaltigkeiten, die nicht weiter auf diese Weise zerlegt
werden können. Diese unzerlegbaren Bausteine heißen Pn/w-Mannigfaltigkeiten, und
die Zerlegung ist im wesentlichen eindeutig [3].

Thurstons Geometrisierungs-Vermutung besagt, daß alle Prim-Mannigfaltigkeiten, eventuell

nach einem weiteren Aufschneiden entlang von Tori, eine geometrische Struktur
im Sinne von Abschnitt 7 tragen. Thurston hat diese Vermutung für sogenannte Haken-

Mannigfaltigkeiten bewiesen. Damit bezeichnet man Mannigfaltigkeiten M3, die eine

koorientierbar eingebettete Fläche N2 ^ S2 besitzen, die inkompressibel ist, das heißt,

jede einfache Kurve auf N2, die eine Scheibe in M3 berandet, berandet bereits eine
Scheibe in N2. Dieser Satz wird oft auch als Thurstons Monster-Theorem bezeichnet.

Bei den nicht-Haken Mannigfaltigkeiten unterscheidet man die folgenden drei Fälle:

1. Die Fundamentalgruppe -k\ (M) ist endlich: Hier übersetzt sich die Geometrisierungs-
Vermutung in die Orthogonalisierungs-Vermutung. Danach sollte M von der Form M
F \ S3 mit F c SO(4) sein. Anders formuliert: Eine einfach zusammenhängende 3-

Mannigfaltigkeit ist notwendigerweise die 3-Sphäre (dies ist die berühmte Poincaré-
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Vermutung), und jede freie Operation einer Gruppe auf S3 ist konjugiert zu einer

orthogonalen Operation. Für diesen zweiten Teil der Vermutung hat Rubinstein auf dem
International Congress of Mathematicians 1994 in Zürich in vielen Fällen eine positive
Antwort angekündigt.

2. Die Fundamentalgruppe -k\ (M) ist nicht endlich und besitzt Z als normale

Untergruppe: Hier gelangt man zur Seifert-Faserraum-Vermutung, welche besagt, daß alle
diese Mannigfaltigkeiten eine Seifert-Faserung zulassen. Diese Vermutung wurde von
Gabai und Casson-Jungreis bewiesen, mit wichtigen Beiträgen von mehreren anderen

Mathematikern. Eine Liste von Referenzen findet man in der Einleitung zu Teil 2 von [3].

3. Die Fundamentalgruppe tti(M) ist nicht endlich und besitzt keine normale
Untergruppe isomorph zu Z: In diesem Fall wird Thurstons Vermutung zur Hyperbolisierungs-
Vermutung, wonach solche Mannigfaltigkeiten von der Form M T\ H3 sind. Hier gibt
es sehr weitreichende Ergebnisse von Thurston und anderen, für Referenzen siehe wieder

[3].

Zusammenfassend läßt sich feststellen, daß inzwischen die Evidenz für die Geometri-

sierungs-Vermutung überwältigend ist. In jedem Fall hat sie wichtige Impulse für die

3-Mannigfaltigkeit-Topologie geliefert, wenngleich die Poincaré-Vermutung nach wie
vor allen Beweisversuchen trotzt.
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