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Mannigfaltige Geometrien

Hansjorg Geiges
Dem Andenken an meinen Vater Leif Geiges (1915—1990) gewidmet.

Hansjorg Geiges wurde 1966 in Basel als Sohn des Fotografen Leif Geiges und
Urenkel des Freiburger Kiinstlers Fritz Geiges geboren, dessen Glasfenster und Mo-
saike die bedeutendsten Kathedralen Deutschlands, wie die Dome von Kéln und
Trier und das Freiburger Miinster, schmiicken. Er studierte an den Universititen
Géttingen, Cambridge, Zirich und Bonn. Nach der Promotion 1992 in Cambridge
bei C.B. Thomas war er zwei Jahre als Szegd Assistant Professor an der Stanford
University tatig. Danach verbrachte er ein akademisches Jahr als Research Fellow
am Queens’ College der University of Cambridge, und seit 1995 ist er Assistenz-
Professor an der ETH Ziirich. Seine Forschungsinteressen liegen in der Kontaktgeo-
metrie und der geometrischen Topologie. Seiner Mutter verdankt er die Schweizer
und seinem Vater die deutsche Staatsbiirgerschaft, aber wie dieser fuhlt er sich zu-
allererst als Alemanne und Europier.

Wenn wir kein Verhiltnis zur Geometrie haben,
haben wir kein Weltverstiandnis

Thomas Bernhard

1 Einleitung

Das erstmalige Aufstellen der These, die Erde sei eine Kugel, wird traditionell Par-
menides von Elea (um 500 v.Chr) zugeschricben. Als sicher kann gelten, da diese
Kugelgestalt die Schulmeinung der Pythagorier darstellte und zur Zeit des Aristoteles
(384-322 v.Chr.) unter den griechischen Philosophen als offensichtliche Tatsache ak-
zeptiert wurde. Zu dieser Entdeckung gelangte man allerdings nicht durch geometrische
Beobachtungen auf der Erde, sondern iiber das Studium der Verdnderungen am Nacht-
himmel und im Gang der Sonne in Abhéingigkeit von der geographischen Position des
Beobachters, genauer: der geographischen Breite. Tatsdchlich lieBen sich viele dieser
Veranderungen auch mit einer zylindrischen Erdgestalt erklidren, wie dies etwa von Ana-
ximander (ca. 610-540 v.Chr.) vorgeschlagen wurde. Von Aristoteles wurde weiter die
Kreisformigkeit des Erdschattens bei Mondfinsternissen als Indiz fiir die Kugelgestalt
der Erde vorgebracht; auch diese Argumentation beruht also auf einer Beobachtung im
dreidimensionalen Raum und ist noch dazu unschliissig.

In der Tat ist es nicht verwunderlich, dal es nicht Beobachtungen auf der Erde selbst
waren, die zur Entdeckung ihrer Kugelgestalt fiihrten. Denn die Oberfliche einer Kugel
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oder eines Zylinders und auch die Kreisscheibe der vorgriechischen Weltsicht haben
eines gemeinsam: Im Lokalen schen sie alle so aus wie ein Teil der euklidischen Ebene,
das heiBt lokal kann man auf diesen Flichen ein zweidimensionales Koordinatennetz
einfithren, wie dies fiir die Erdoberfliche auf jeder Landkarte zu sehen ist.

Von der Beobachtung der lokalen Euklidizitit der beschriebenen Flichen gelangt man
durch Abstraktion zum Begriff der Mannigfaltigkeit beliebiger Dimension, der auf Rie-
manns berithmte Habilitations-Vorlesung in Goéttingen von 1854 zuriickgeht. Wir werden
uns hier allerdings nur mit zwei- und dreidimensionalen Mannigfaltigkeiten beschafti-
gen. Ein topologischer Raum soll also 2-Mannigfaltigkeit oder Flidche heifien, wenn er
lokal so aussieht wie die euklidische Ebene, und 3-AMannigfaltigkeit, wenn er im Kleinen
aussicht wie der dreidimensionale euklidische Raum unserer Anschauung, in anderen
Worten, wenn sich Punkte in kleinen Umgebungen in einem solchen Raum durch zwei
bzw. drei Koordinaten eindeutig charakterisieren lassen.

Wir werden implizit annehmen, daB alle beriicksichtigten Mannigfaltigkeiten orientierbar
sind, ohne diesen Begriff hier weiter zu vertiefen. AuBerdem interessieren wir uns in
erster Linie fiir geschlossene Mannigfaltigkeiten. Dies bedeutet anschaulich, dab sich in
einem solchen Raum (nach Einfithrung eines Abstandsbegriffes) ein Lichtstrahl (geome-
trisch: eine Geodétische) unendlich fortsetzen 14Bt, aber die Entfernung je zweier Punkte
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eine bestimmte endliche Schranke nicht iiberschreitet. (Es ist durchaus erlaubt, dab sich
ein Lichtstrahl selbst kreuzt oder gar in sich selbst zuriicklauft.) Die euklidische Ebene
selbst oder eine offene Kreisscheibe wiren Beispiele fiir offene Mannigfaltigkeiten.

Mit Mitteln der Algebraischen Topologie oder der Differentialtopologie kann man eine
vollstindige Klassifikation von geschlossenen Flichen erreichen (Abb. 1). Neben der
2-Sphiire 2 gibt es den 2-Torus T2, die Oberfliche eines “doughnut™; die sogenannte
Flache vom Geschlecht zwei, 3J-; und weiter Flichen mit einer zunehmenden Anzahl von
“Henkeln”. Von allen diesen Flachen konnen wir uns ein globales Bild machen, indem
wir sie “von auben” im dreidimensionalen Raum betrachten, wie eben auch bei den
Griechen Beobachtungen im dreidimensionalen Raum zur Entdeckung der Sphérizitit
der Erde fiihrten.

\ / etc.

S? T2 s,

Abb. 1 Geschlossene 2-Mannigfaltigkeiten.

Eine dhnlich globale Vorstellung von 3-Mannigfaltigkeiten kdnnte man sich also nur
in der vierten oder einer héheren Dimension machen. Es soll aber in diesem Artikel
anhand einiger Beispiele gezeigt werden, wie man durch rein dreidimensionale Vor-
stellungen, also gewissermalBen “von innen”, zu einem globalen Verstindnis von 3-
Mannigfaltigkeiten gelangen kann, und es soll auch kurz die Bedeutung einiger der
beschriebenen 3-Mannigfaltigkeiten fiir die Kosmologie diskutiert werden. In den zwei
letzten, etwas technischer gehaltenen Abschnitten geben wir einen Abril von Thurstons
Geometrisierungs-Programm fiir 3-Mannigfaltigkeiten. In [9] werden dhnliche Ideen wie
in dem vorliegenden Artikel behandelt.

2 Sphirische Geometrie

In diesem und den folgenden zwei Abschnitten wollen wir eine alternative Beschreibung
von S2, T? bzw. Y, geben und durch Analogie erste Beispiele von 3-Mannigfaltigkeiten
konstruieren.

Durch Projektion der nérdlichen Hemisphire von S? auf die Aquatorebene erkennt man,
daB eine Hemisphire topologisch dquivalent ist zu einer Kreisscheibe, allerdings wird
hier die Geometrie der Sphire (d.h. Abstinde und Winkel) sehr stark verzerrt. Da die
2-Sphire durch Verkleben zweier Hemisphiren entlang des Aquators entsteht, kann man
sich jedenfalls topologisch vorstellen, dal die 2-Sphire durch Verkleben zweier Kreis-
scheiben entlang ihres Randes gebildet wird (Abb. 2). Bei diesem Verkleben heben sich
die Rinder gewissermaben gegenseitig auf: auf der 2-Sphiire ist der Aquator nur eine
gedachte Grenze. Das resultierende Objekt ist also endlich aber unbegrenzt — eben eine
geschlossene Fliche.
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Abb. 2 Die 2-Sphare.

Bei diesem topologischen Bild geht aber ein wichtiger geometrischer Aspekt der 2-
Sphire verloren. Man mub sich vorstellen (wie das bei der globalen Darstellung von S?
klar ist), dab S? eine homogene Geometrie trigt, das heibt die Sphire sicht von jedem
Punkt auf ihr betrachtet gleich aus.

Ganz analog dazu erhiilt man die 3-Sphire S°, indem man zwei Vollkugeln entlang ihres
Randes (einer 2-Sphére) miteinander verklebt (Abb. 3). Auch hier mufl man sich aber
wieder vorstellen, dal das resultierende Objekt mit einer Geometrie versehen ist, die es
zu einem homogenen Raum macht.

Abb. 3 Die 3-Sphire.

Die 3-Sphire ist demnach ebenfalls ein endlicher aber unbegrenzter Raum und auBerdem
lokal dreidimensional, wie man sich in Analogie mit der 2-Sphére leicht klar macht, also
eine geschlossene 3-Mannigfaltigkeit. Wir kdnnen uns zwar das konkrete Verkleben der
beiden Vollkugeln nicht mehr vorstellen, da dies nur im vierdimensionalen Raum méglich
ist. Man kann sich aber ein Bild davon machen, wie man von der linken Vollkugel in
die rechte gelangt, indem man den Punkt P passiert, der mit P’ identifiziert ist. Dabei
iiberschreitet man nur einen imaginiren Aquator, der hier eine 2-Sphiire ist.

In seiner Probevorlesung wies Riemann ausdriicklich darauf hin, daf die 3-Sphire ein
geometrisches Modell fiir ein endliches aber dennoch unbegrenztes Universum liefert. Es
ist aber faszinierend festzustellen, dab dieses Modell bereits mehr als fiinfhundert Jahre
frither in der Literatur Erwahnung findet, ndmlich in Dantes Gottlicher Komodie (Abb. 4).
Hier stellt die eine Vollkugel das beobachtbare Universum da, das vom Kristallhimmel
(Primum Mobile) begrenzt ist. Als Dante jedoch in diesen Kristallhimmel aufsteigt,
stofit er nicht etwa an die Grenze des Universums, sondern blickt in das Empyreum
oder Reich Gottes, in dem die Hierarchien der Engel ganz dhnlich auf Kugelschalen
aufgereiht sind wie die Planeten und Sterne im beobachtbaren Universum. Auch hier muff
man sich die beiden Vollkugeln entlang ihres Randes, des Kristallhimmels, miteinander
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identifiziert vorstellen, das resultierende Universum ist also die beschricbene 3-Sphére.
Eine detaillierte Analyse des Danteschen Universums vom geometrischen Standpunkt
aus mit Verweisen auf konkrete Textstellen findet der Leser in [5], vergl. auch [4].

Abb. 4 Das Universum bei Dante.

4 Euklidische Geometrie

Betrachten wir als néichstes den 2-Torus T?. Diesen kann man konstruieren, indem man in
einem Rechteck in der euklidischen Ebene gegeniiberliegende Seiten paarweise mitein-
ander identifiziert (Abb. 5). Wenn man versucht, mit einem Blatt Papier durch Verkleben
der Rander dies konkret zu realisieren, so stellt man fest, daB man ein Seitenpaar tatsich-
lich verkleben kann und damit einen Zylinder erhilt. Das zweite Seitenpaar kann aber
nicht mehr miteinander verklebt werden, ohne das Papier zu verzerren.

Abb. 5 Der 2-Torus.

Wir beobachten aber folgendes: Bei der abstrakten Identifikation der Seiten werden die
vier Ecken des Rechteckes zu einem Punkt P identifiziert. Es werden also in P vier
rechte Winkel miteinander verklebt, die zusammen genau einen vollen Winkel von 360°
ergeben. Daher kann man diese Identifikation tatsdchlich ausfiihren, ohne die (euklidi-
sche) Geometrie des Papiers zu verzerren, wenngleich man dazu in die vierte Dimension
gehen miite. Es bleibt festzuhalten, da man den 2-Torus mit einer Geometrie versehen
kann, so dab kleine Umgebungen auf T? geometrisch alle gleich aussehen, und zwar
wie kleine Umgebungen in der euklidischen Ebene. Man spricht dann von einem /okal
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homogenen Raum, in diesem Fall einem (im geometrischen Sinne) lokal euklidischen
Raum."

Mathematisch exakter 148t sich dies einsehen, wenn man sich T2 vorstellt als Quoti-
enten der euklidischen Ebene E? unter ganzzahligen Translationen in horizontaler und
vertikaler Richtung (Abb. 6), das heifit, zwei Punkte der Ebene werden genau dann mit-
einander identifiziert, wenn sich ihre x-Koordinaten um ein ganzzahliges Vielfaches von
a und ihre y-Koordinaten um ein ganzzahliges Vielfaches von b unterscheiden; formal:
T? = Z?\E?. Da diese Translationen Isometrien sind, das heiBt alle geometrischen Eigen-
schaften der euklidischen Ebene (wie Abstinde, Winkel, Geraden, Kongruenz) erhalten,
ist der resultierende Quotientenraum lokal euklidisch.

y

> > > >

Abb. 6  Der 2-Torus als Quotient der euklidischen Ebene.

In direkter Analogic konstruiert man den 3-Torus T>, indem man gegeniiberliegende
Seitenflichen eines Quaders im euklidischen Raum E> paarweise miteinander identifi-
ziert. Konkret liefe sich diese Verklebung der Seitenflichen etwa im sechs-dimensionalen
Raum ausfithren. Wichtig ist aber wieder nur folgende Beobachtung: Der Kantenwinkel
im Quader betragt 90°. Bei der beschricbenen Identifikation der Seitenflichen des Qua-
ders werden jeweils vier Kanten miteinander identifiziert. Daher ist diese Identifikation
wieder moglich, ohne die Geometrie des Quaders zu verzerren; der resultierende 3-
Torus ist also eine lokal homogene 3-Mannigfaltigkeit mit lokal euklidischer Geometrie.
Man erkennt dies auch daran, dal man den cuklidischen Raum mit Kopien des Qua-
ders liickenlos ausfiillen kann. Formal kénnen wir in Analogie zum 2-Torus schreiben:
T3 =23\ E3.

Ein Lichtstrahl, der auf die rechte Seitenwand des Quaders trifft, erscheint (nach Identi-
fikation der Seiten) wieder an der linken Seitenwand. Blickt ein Beobachter im 3-Torus

1) Man tiberlegt sich leicht, daB T2 in der Tat sogar homogen ist.
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also nach rechts, sicht er dort seine linke Seite. Da die Sichtlinic den Torus unendlich
oft durchlaufen kann, sieht der Beobachter sogar im Prinzip unendlich viele Abbilder
von sich selbst (Abb. 7). Der optische Effekt ist demnach vergleichbar mit dem in einem
Raum, dessen Wande verspiegelt sind, nur dah im letzteren Raum das erste, dritte, und
allgemein jedes ungeradzahlige Abbild des Beobachters spiegelverkehrt wire.

Abb. 7 Der 3-Torus, © Spektrum der Wissenschaft.

4 Hyperbolische Geometrie

Schneidet man die Fliche vom Geschlecht zwei entlang der in Abb. 8 gezeichneten
Kurven auf, so 14Bt sich >, zu einem Achteck auffalten. Umgekehrt erhilt man 33,,
indem man die Riander eines Achteckes wie in Abb. 9 gezeigt paarweise miteinander
identifiziert. Wieder beobachten wir, daf dabei alle acht Ecken zu einem Punkt P iden-
tifiziert werden. Nun betrigt aber der Innenwinkel des regelmibigen Achteckes in der
euklidischen Ebene 135°, daher kann diese Identifikation nicht ausgefiihrt werden, ohne
das cuklidische Achteck zu verzerren.

Nichtsdestotrotz kann 33, mit einer Geometrie verschen werden, die diese Fliche zu ei-
ner lokal homogenen Mannigfaltigkeit macht. Dazu betrachten wir das Poincaré-Modell
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Abb. 8 Die Flache vom Geschlecht zwei.

Abb. 9 3y via Identifikationen am Achteck.

der hyperbolischen Ebene H2. In diesem Modell wird H? repriisentiert als offene Kreis-
scheibe in der euklidischen Ebene, und hyperbolische Geraden erscheinen als Durch-
messer der Kreisscheibe oder Kreisbogen, die senkrecht zum Rand der Kreisscheibe
sind (Abb. 10). Der Abstandsbegriff ist in diesem Modell so definiert, dab H? eine
homogene 2-Mannigfaltigkeit ist.>)

Es folgt unmittelbar aus der Definition der hyperbolischen Geraden, daf die Innenwinkel
eines sehr kleinen regelmiBigen Achteckes in H? anndihernd gleich 135° sind, diese
Innenwinkel aber gegen Null gehen, wenn man das Achteck vergrofiert (Abb. 11).

Insbesondere findet man ein regelmiBiges Achteck in H?, dessen Innenwinkel genau 45°
betragen (Man vergleiche dies mit dem analogen Effekt auf S?, wo die Innenwinkel eines
Polygons beim Vergrofern desselben grofer werden). Bei einem solchen Achteck lassen
sich nun die Seiten wie in Abb. 9 miteinander identifizieren, ohne die Geometrie von H>
zu verzerren, daher ist 3, eine lokal homogene Mannigfaltigkeit mit lokal hyperbolischer
Geometrie. Das gleiche gilt fiir alle Flachen hoheren Geschlechts.

2) Inversionen an Kreisen senkrecht zum Rand der Kreisscheibe sind hyperbolische Isometrien, und jeder
Punkt der Kreisscheibe 146t sich durch eine geeignete solche Inversion auf den Mittelpunkt abbilden.
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Abb. 10 Das Poincaré-Modell der hyperbolischen Ebene.

Abb. 11  Ein regelmaBiges Achteck in H2.

Formal (und ganz analog zum 2-Torus) betrachtet man eine liickenlose Uberdeckung
von H? mit Kopien des regelmiBigen Achteckes mit Innenwinkel 45° (im Poincaré-
Modell sehen diese Achtecke zum Rand hin sehr stark verzerrt aus) und bezeichnet mit
I die Gruppe der (orientierungserhaltenden) Isometrien von H?, die Achtecke dieser
Uberdeckung ineinander iiberfiihren. Es gilt dann Y, = I'\ H2,

5 Die beiden Dodekaederriume

In Analogie zu der Beschreibung von >, in Abschnitt 4 wollen wir nun eine drei-
dimensionale lokal hyperbolische Mannigfaltigkeit konstruieren, und eine dhnliche Kon-
struktion wird uns eine lokal sphirische 3-Mannigfaltigkeit liefern. Ausgangspunkt der
Konstruktion ist das Dodekaeder, eines der fiinf regelmiBigen Polyeder (oder platoni-
schen Korper), dessen Rand von zwdlf regelmifigen Fiinfecken gebildet wird (Abb. 12).

Wir verkleben nun gegeniiberliegende Seitenflichen des Dodekaeders, wobei wir jede
Seite um 3/10 eines vollen Winkels verdrehen, bevor wir die Identifikation ausfithren
(Abb. 12 links). Damit ergibt sich die in Abb. 13 gezeigte Identifikation. Man kann sich
iiberlegen, daf dabei je fiinf Kanten miteinander identifiziert werden.
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Abb. 12 Die beiden Dodekaederraume.

Abb. 13 Der Seifert-Weber-Dodekaederraum.

Nun betrigt aber der Kantenwinkel des euklidischen Dodekaeders annidhernd 117°, so
daB dieses Verkleben nicht mit einem solchen Dodekaeder ausgefiihrt werden kann.
Wie im vorigen Abschnitt betrachtet man stattdessen ein Dodekaeder im hyperbolischen
Raum, wo man einen analogen Effekt beobachtet: Beim Vergrobern eines Polyeders
nehmen die Kantenwinkel ab, und man kann ein Dodekaeder mit Kantenwinkel 360° /5 =
72° finden. Nun ist das Verkleben auch geometrisch durchfiihrbar, und man erhilt den
sogenannten Seifert-Weber-Dodekaederraum, eine lokal homogene 3-Mannigfaltigkeit
mit lokal hyperbolischer Geometrie.
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Abb. 14 Der Poincaré Dodekaederraum.

Verklebt man gegeniiberliegende Seitenflachen des Dodekaeders dagegen mit einer Dre-
hung von 1/10 (Abb. 12 rechts), so werden nur je drei Kanten miteinander identifiziert
(Abb. 14).

Hier ist der Kantenwinkel des euklidischen Dodekaeders also zu klein. In der 3-Sphire
1aBt sich aber ein Dodekaeder finden, dessen Kantenwinkel etwas grofBer, namlich gleich
120° = 360°/3 sind, und damit 146t sich die Identifikation wieder geometrisch ausfiihren.
Die resultierende 3-Mannigfaltigkeit, der sogenannte Poincaré-Dodekaederraum, trigt
also lokal sphirische Geometrie.

Eine detaillierte Beschreibung dieser beiden Dodekaederrdume findet man in der sehr
schonen Originalarbeit von Weber und Seifert [11].

6 Kosmologische Modelle

Astronomische Beobachtungen zeigen, dah unser Universum von der Erde aus betrachtet
weitgehend isofrop ist, das heiBt in jeder Richtung das gleiche Bild darbietet, wobei der
Mabstab selbstverstdndlich hinreichend groB angelegt werden mufl. Das kosmologische
Prinzip postuliert, daB es keinen ausgezeichneten Beobachter im Universum gibt. Auf
der Grundlage dieses Prinzips geht man daher davon aus, da das Universum von jedem
Beobachtungspunkt aus isotrop erscheint und eine homogene Masseverteilung besitzt.

Nach der Allgemeinen Relativititstheorie beeinflut die Masseverteilung im Universum
dessen Geometrie, und so wird man auch von einem geometrischen Modell fiir das Uni-
versum fordern, dab es wenigstens lokal homogen ist. Die in den obigen Abschnitten
beschriebenen 3-Mannigfaltigkeiten liefern gerade solche Modelle. Man beachte, daB in
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diesen geschlossenen 3-Mannigfaltigkeiten die Homogenitat des Universums im Grofien
eine Folge der Tatsache wire, dab der Beobachter (wie am Beispiel des 3-Torus be-
schrieben) vielfache Kopien einer Fundamentalzelle (dort: eines Quaders) sehen wiirde.
Solche Modelle wiirden also die beobachtete Homogenitit der Masseverteilung als rein
geometrisches Phianomen erklaren. Weiter kommt hinzu: Ware das Universum eine ge-
schlossene 3-Mannigfaltigkeit, so hatte im Urknall nur endlich viel Materie erzeugt
werden miissen.

Aus diesen Griinden werden geschlossene Modelle von einigen Kosmologen bevorzugt.
Ellis [2] gibt eine eingehende topologische Beschreibung solcher Modelle; in [1] wer-
den diese Modelle vom Standpunkt der beobachtenden Astronomie aus diskutiert. In
der Tat lieBe es sich im Prinzip durch Beobachtung verifizieren, dab wir in einem ge-
schlossenen Universum leben, da vielfache Abbilder des gleichen Objektes beobacht-
bar wiren. Aufgrund der dabei wegen der endlichen Lichtgeschwindigkeit auftretenden
Zeitverschiebungen wiren solche Beobachtungen aber nur an sehr auffilligen Objekten
méglich. In [1] werden aus diesen Uberlegungen Abschitzungen fiir die Mindestgrobe
der Fundamentalzelle abgeleitet.

Die Vorstellung, das Universum konnte ein Dodekaederraum sein, ist besonders faszi-
nierend angesichts der Tatsache, daB bereits Platon das Dodekaeder mit dem Weltganzen
in Verbindung gebracht hat. Im “Timaios” identifiziert er vier der fiinf regelmibigen
Polyeder, namlich Tetraeder, Wiirfel, Oktaeder und Ikosaeder, mit den Elementen Feuer,
Erde, Luft und Wasser, und fihrt dann fort (in der Ubersetzung von O. Apelt): “Und da
es noch eine Art der Zusammensetzung gibt, also eine fiinfte [nimlich das Dodekaeder],
so verwendete Gott sie fir das Weltall, zu dem sie ihm als Muster dienen sollte.”

Es ist angebracht, hier auf eine Sprachverwirrung zwischen Topologen und Kosmolo-
gen hinzuweisen. Von der Materiedichte im Universum héngt es ab, ob die gegenwirtig
beobachtete Expansion des Universums zum Stillstand kommt und sich das Universum
wieder zusammenzieht (was bei hinreichend groBer Materiedichte der Fall wire), oder ob
es sich auf ewig ausdehnen wird. Wieder aufgrund der Allgemeinen Relativitatstheorie
ware die Geometrie des Universums im ersten Fall lokal sphirisch, im zweiten Fall lokal
euklidisch (falls die Materiedichte gerade so groB ist, daBb die Expansionsgeschwindig-
keit asymptotisch gegen Null geht) oder lokal hyperbolisch. Kosmologen sprechen im
ersten Fall von einem geschlossenen, in den beiden anderen Fillen von einem offenen
Universum. Wie unsere Diskussion gezeigt hat, konnte es sich aber auch in letzteren
Féllen um ein im topologischen Sinne geschlossenes Universum handeln.

7 Geometrien im Sinne von Thurston

Wir haben bis jetzt den Begriff der Geometrie in einem durchaus naiven Sinne verwendet,
ohne den Versuch einer Prazisierung zu unternehmen. Beispielsweise haben wir ihn auf
sehr vage Weise mit Abstands- und Winkelbegriffen identifiziert. GleichermalBen wichtig
fiir eine Geometrie sind aber Konzepte wie Geraden und Ebenen (vergleiche etwa die
Geradendefinition im Poincaré-Modell der hyperbolischen Ebene) oder ein Kongruenz-
begriff (vergleiche unsere Diskussion der Uberdeckung von H? mit durch Spiegelungen
erhaltenen Achtecken). In diesem Abschnitt soll der Geometrie-Begriff prizisiert werden,
und in einem abschlieBenden Abschnitt diskutieren wir die Bedeutung solcher Geome-
trien fiir das globale Verstindnis von 3-Mannigfaltigkeiten.
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Die folgende Definition ist eine leichte Abwandlung einer Definition von Thurston [7,
8, 9]. Dieser Geometrie-Begriff ist eng verwandt mit dem von Felix Klein aus seinem
Erlanger Programm von 1872.

Definition Eine Geometrie (X,G) ist eine vollstindige Riemannsche Mannigfaltigkeit
X zusammen mit einer Gruppe G von Isometrien von X, wobei gelten soll:

1. X ist zusammenhéingend und einfach zusammenhéingend.
2. G operiert transitiv auf X, das heifit X ist ein homogener Raum.

3. G besitzt diskrete Untergruppen I, so daB der lokal homogene Raum I" \ X eine
geschlossene Mannigfaltigkeit ist.

Bemerkungen.
(1) Streng genommen ist die Riemannsche Metrik auf X nicht Teil der Definition, vergl.
die Bemerkungen in [10].

(2) Im allgemeinen nimmt man fiir G die Gruppe a/ler Isometrien von X und spricht
dann kurz von der Geometrie X.

(3) Eine Mannigfaltigkeit der Form M = I'\ X heibt geometrische Mannigfaltigkeit vom
Tip X.

Wir haben oben in Dimension zwei und drei je drei Geometrien kennengelernt und
konkrete Beispicle geometrischer Mannigfaltigkeiten angegeben. In Dimension zwei gibt
es keine weiteren Geometrien, und Thurston hat gezeigt, daB es in Dimension drei genau
acht Geometrien gibt (Tab. 1), vergl. [6]. In Dimension vier gibt es achtzehn Geometrien,
vergl. [10]. In hoheren Dimensionen ist eine Klassifikation nicht bekannt.

Isotropiegruppe | Geometrien
SO@3) S3,E3.H?
SO(2) S2 x E', H?> x E', Nil, SL,
trivial Sol

Tabelle 1 Die Geometrien in Dimension drei.

Die drei oben beschriebenen Geometrien sind isotrop, das heifit die Isotropiegruppe ist
SO(3). Vier der fiinf weiteren Geometrien haben Isotropiegruppe SO(2), was anschaulich
bedeutet, dab es in diesen Riumen eine ausgezeichnete oben-unten Richtung gibt. Die
achte Geometrie ist vollstindig anisotrop.

Wir wollen hier noch eine dieser Geometrien beschreiben, die Heisenberg-Gruppe Nil.
Diese wird gebildet von den Matrizen der Form

1
0
0

O =R
— i N

mit x,y,z € R. Ein Beispiel fiir eine geschlossene 3-Mannigfaltigkeit vom Typ Nil
ergibt sich, indem man fiir I' die Gruppe aller solcher Matrizen mit X, Y,z € Z wihlt.
Mit anderen Worten, man betrachtet den Quotienten von R® unter der Gruppe I, die
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erzeugt wird von den Abbildungen

(x%z) = (ﬂ%z + 1)7
(x,y,2) — (,y+1,2),
(x,y,2)— (x+1,y,z+y).

Die Projektionsabbildung
(%, y,2) — (x,y)

gibt T\ Nil die Struktur eines S!-Biindels iiber T2.

Allgemeiner gilt, dab die Geometrien S> x E', E3, H? x E', $3, Nil und SL, genau den
Seifert-gefaserten 3-Mannigfaltigkeiten entsprechen. Anschaulich sind dies gerade jene
3-Mannigfaltigkeiten, auf denen ein FluB definiert werden kann, der nur geschlossene
Bahnen besitzt (wie etwa die Meridiankreise auf dem 2-Torus oder analog dazu auf dem
3-Torus). Auch Sol-Mannigfaltigkeiten besitzen eine sehr einfache Struktur, sie fasern
als T2-Biindel iiber S!.

Damit 146t sich im Prinzip eine vollstindige Beschreibung aller geometrischen 3-Man-
nigfaltigkeiten auber jenen vom Typ H? durch einfache numerische Invarianten angeben,
und oft kann eine explizite analytische Beschreibung wie im Nil-Beispiel gegeben werden
oder eine geometrische Darstellung wie bei den Dodekaederraumen.

8 Die Geometrisierungs-Vermutung

Man kann sich die Fliche vom Geschlecht zwei als verbundene Summe zweier Tori in
folgendem Sinne vorstellen: Entferne eine Kreisscheibe aus jedem Torus und identifi-
ziere die enstehenden Kreis-Riander. Umgekehrt kann man Y, entlang eines Kreises S!
aufschneiden und die entstehenden Locher mit Kreisscheiben auffiillen, so daB man zwei
Kopien von T2 erhilt.

Ganz analog dazu kann eine geschlossene 3-Mannigfaltigkeit entlang von 2-Sphiren
aufgeschnitten werden in Mannigfaltigkeiten, die nicht weiter auf diese Weise zerlegt
werden konnen. Diese unzerlegbaren Bausteine heien Prim-Mannigfaltigkeiten, und
die Zerlegung ist im wesentlichen eindeutig [3].

Thurstons Geometrisierungs-Vermutung besagt, dah alle Prim-Mannigfaltigkeiten, even-
tuell nach einem weiteren Aufschneiden entlang von Tori, eine geometrische Struktur
im Sinne von Abschnitt 7 tragen. Thurston hat diese Vermutung fiir sogenannte Haken-
Mannigfaltigkeiten bewiesen. Damit bezeichnet man Mannigfaltigkeiten M3, die eine
koorientierbar eingebettete Fliche N2 £ S? besitzen, die inkompressibel ist, das heiBt,
jede einfache Kurve auf N2, dic eine Scheibe in M?> berandet, berandet bereits eine
Scheibe in N2. Dieser Satz wird oft auch als Thurstons Monster-Theorem bezeichnet.

Bei den nicht-Haken Mannigfaltigkeiten unterscheidet man die folgenden drei Falle:

1. Die Fundamentalgruppe 7 (M) ist endlich: Hier iibersetzt sich die Geometrisierungs-
Vermutung in die Orthogonalisierungs-Vermutung. Danach sollte M von der Form M =
'\ $* mit ' C SO(4) sein. Anders formuliert: Eine einfach zusammenhiingende 3-
Mannigfaltigkeit ist notwendigerweise die 3-Sphire (dies ist die berithmte Poincaré-
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Vermutung), und jede freie Operation einer Gruppe auf S* ist konjugiert zu einer or-
thogonalen Operation. Fiir diesen zweiten Teil der Vermutung hat Rubinstein auf dem
International Congress of Mathematicians 1994 in Ziirich in vielen Fillen eine positive
Antwort angekiindigt.

2. Die Fundamentalgruppe 7 (M) ist nicht endlich und besitzt Z als normale Unter-
gruppe: Hier gelangt man zur Seifert-Faserraum-Vermutung, welche besagt, dab alle
diese Mannigfaltigkeiten eine Seifert-Faserung zulassen. Diese Vermutung wurde von
Gabai und Casson-Jungreis bewiesen, mit wichtigen Beitrigen von mehreren anderen
Mathematikern. Eine Liste von Referenzen findet man in der Einleitung zu Teil 2 von [3].

3. Die Fundamentalgruppe 71 (M) ist nicht endlich und besitzt keine normale Unter-
gruppe isomorph zu Z: In diesem Fall wird Thurstons Vermutung zur Hyperbolisierungs-
Vermutung, wonach solche Mannigfaltigkeiten von der Form M = I'\ H? sind. Hier gibt
es sehr weitreichende Ergebnisse von Thurston und anderen, fiir Referenzen siche wie-
der [3].

Zusammenfassend 14Bt sich feststellen, dab inzwischen die Evidenz fiir die Geometri-
sierungs-Vermutung iiberwaltigend ist. In jedem Fall hat sic wichtige Impulse fiir die
3-Mannigfaltigkeit-Topologie geliefert, wenngleich die Poincaré-Vermutung nach wie
vor allen Beweisversuchen trotzt.

Danksagung. Dieser Artikel basiert auf meiner Einfithrungsvorlesung an der ETH Ziirich
vom Januar 1996. Ich mochte Herrn Professor Urs Stammbach fiir die Einladung danken,
das Manuskript der Vorlesung fiir die Elemente der Mathematik auszuarbeiten.

Bildnachweis. Abbildung 7 stammt aus [9] und wird hier abgedruckt mit freundlicher
Genehmigung der Spektrum der Wissenschaft Verlagsgesellschaft.
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