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Let B be a coordinate block in E" of the form

B {(xu...,xn) gE" \at <x, < b{, (1 <i <n)},

where a, < b, for each i. Define the volume of B as

V(B) (h- fli)(b2-fl2) ¦¦¦{bn-an)

in the obvious way. If K ç E" is a bounded set, let V~ (K) sup J2m V(Bm), where the

supremum is taken over all packings in K by finite families {B\, B2,...} of blocks, and
let V+(K) inf J2m V(Bm), where the infimum is taken over all coverings of K by finite
families {B\, B2, ¦ ¦ ¦} of blocks. Let us recall that a packing in a set is an arrangement
whose members are all contained in the set and have mutually disjoint interiors, and

a covering of a set is an arrangement whose union contains the set. It is clear that
V (K) < V+(K). Now, we say that the bounded set K ç E" is Jordan measurable if
V (K) V+(K), and in this case we call this common value the volume of K. For a

more comprehensive account we refer the reader to the monograph [1]. The aim of this

paper is to give a reasonably simple geometric proof (i.e. without using compactness
arguments) for the following well-known

Theorem Every bounded convex set K C En is Jordan measurable.

Standardbeispiele nicht messbarer Mengen sind wohlbekannt; hingegen sind allgemeine
Säl/e über die Mcssbarkcil bcslinunlcr Mengen weniger geläufig. Das Resultat, welches

besagt, dass jede beschränkte konvexe Menge des Euklidischen Räumer. E;; Jordan-
messbar ist. geht wohl auf Minkowski zurück (Volumen und Oberfläche. Math. Ann.
57 (1903). 447-495: Ges. Abh. II. 230-276). Läs/.lo Szabö gibt dafiir einen einfachen

goo ine Irischen Beweis um
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Proof. Bounded convex sets of dimension less than n are clearly Jordan measurable, so

we may assume that K is n-dimensional. We may also assume, without loss of generality,
that K is contained in the cube

By subdividing each edge of C into V equal parts we can partition C into congruent
closed cubes, each of which has edges of length 2~>. Let !£j denote the family of those

small cubes defined above which intersect the interior of K, and let !£} ç Xj denote the

family of those small cubes which intersect the boundary of K as well (j 1,2,...). It
is clear that U(£,\]£,)ÇKÇ uX, for each ;.
We show that the total volume of the small cubes in !£j is not greater than n2n2~K
Consider the 2" directions determined by the 2" vectors carrying the vertices of C to the

origin o. Associate not greater than n2>(-n l~>

rays with each direction in the following
way. For each vertex v of C consider the rays emanating from the centres of small cubes

touching at least one of the n facets of C containing v, and having direction vector v6.

Note that the total number of these rays is not greater than n2"2>(-n l~> and exactly 2" of
them pass through the centre of each small cube in C.

Let C be an arbitrary small cube in !£j and consider the 2" rays from the above family
which contain the centre of C. We claim that at least one of these rays intersects the

centre of C before it reaches (according to the natural ordering on the ray) the centre of
any other small cube in !£j. Indeed, if each of the above rays intersected the centre of
some small cube in !£j different from C before reaching the centre of C, then choosing
one interior point of K in each of these 2" small cubes, the convex hull of these interior
points of K would contain C, so C would not be in !£j. To see this we need the

following simple observation.

Proposition Divide E" into 2" open connected regions by the n coordinate hyperplanes
and choose one point in each of these regions. Then the convex hull of these points
contains the origin.

Proof of Proposition. The proof is by induction on the dimension n. For n 1 the

assertion is trivial. Assume that we have already proved the result for some n > 1, and

we want to show that it also holds for n + 1. Let 2P denote the set of the points chosen in
the regions. Let SPi be the set of those points of SP whose first coordinates are negative. If
II denotes the orthogonal projection of the space onto the hyperplane of equation %\ 0,

then by the induction hypothesis the convex hull of n(SPi contains the origin. Therefore
the convex hull of SPi necessarily contains a point y>\ of the Xi-axis with negative first
coordinate. Similarly, if 2P2 denotes the set of those points of 2P whose first coordinates
are positive, then the convex hull of 2P2 contains a point p2 of the Xi-axis with positive
first coordinate. Now, the origin obviously belongs to the segment pTpï and thus to the

convex hull of SP as well. D

Therefore the number of small cubes in <£,] is not greater than n2"2^" ^ and thus the

total volume of them is at most n2n2~>.
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The total volumes of small cubes in !£j decrease while the total volumes of small cubes

in Xj \ X) increase as j —> oo. Furthermore, as we have seen above, the differences
between the two volumes tend to zero as j —> oo. Hence the two sequences of volumes

converge to the same positive number and this number is obviously equal to both V~ (K)
and V+(K), i.e. K is Jordan measurable. D

Remark We note that, apart from the constant n2", our estimate n2n2 > for the total
volume of the small cubes in !£j is the best possible for each j.
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