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Möglichst dichte Packungen aus kongruenten
Drehzylindern mit paarweise windschiefen Achsen

Claudia Graf und Peter Paukowitsch

Claudia Graf wurde 1965 in Oberösterreich geboren. Sie absolvierte ein Lehramtsstudium

an der Technischen Universität in Wien. Nach einigen Jahren Lehrtätigkeit
an Gymnasien doktorierte sie im Jahr 1994 mit einer Arbeit (siehe [2]) über das

hier dargestellte Thema. Frau Graf, geb. Grasser, ist verheiratet und Mutter einer

zweijährigen Tochter.

Peter Paukowitsch wude 1945 in Niederösterreich geboren. Nach einem Lehramtsstudium

doktorierte er 1975 an der Technischen Universität Wien über ein

differentialgeometrisches Thema. Nach der Habilitation wurde er 1988 Assistenzprofessor
am Geometrieinstitut dieser Universität. Seine wissenschaftlichen Interessen gehören
der Geometrie, insbesondere ist er in der Ausbildung der Lehrer in den geometrischen

Disziplinen sowohl in fachlicher wie auch fachdidaktischer Hinsicht tätig.

1 Ergebnis
Es existiert eine Packung des 3-Raumes, bestehend aus kongruenten unbeschränkten

Drehzylindern mit paarweise windschiefen Drehachsen, deren Dichte 5/12 0.416

beträgt.

2 Einleitung
Unter einer Zylinderpackung im dreidimensionalen euklidischen Raum versteht man
eine Menge Z von kongruenten Drehzylindern mit unendlicher Achsenlänge, welche

Man wciss es: Gill es. (gleichartige) Röhren (Drchz\ linder) zu lagern, so stapeil man
diese am besten so. dass alle Achsen parallel liegen und jede Röhre sechs andere

berührt. Diese I .agcrungsarl braucht offensichtlich am wenigsten Platz. (Sie weist
daneben auch andere Vorteile auf.) Ungeordnet, im Extremfall mil paarweise windschiefen

Achsen, lassen sich die Drehzylinder längst nicht so dicht lagern; ein Paket Nägel
illustriert diesen Punkt höchst: anschaulich. Für die Mathematik liegi die Frage auf der
Hand: Wie dicht kann denn die ungeordnete Packung von Drchzylindem überhaupt
sein? - Claudia Graf und Peter Paukowitsch geben hier eine Packung von kongruenten
Drehzylindern an. bei welcher die Zylinderachsen paarweise windschief sind und die
fast die Hälfte des Raumes ausfüllt, usi
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höchstens Oberflächenpunkte gemeinsam haben. Die Dichte d (0 < d < 1) der Packung
gibt an, wieviel des Gesamtraumes durch die Drehzylinder ausgefüllt wird. Liegen die

Achsen aller Drehzylinder zueinander parallel und wird jeder Drehzylinder von sechs

anderen berührt, so erhält man eine Zylinderpackung von der größtmöglichen Dichte
tt/V\2 « 0.907 [1].

Die Menge Z {Z,|f e N} bezeichne die abzählbar unendlich vielen Drehzylinder
einer Zylinderpackung und x(R) eine Kugel vom Radius R und beliebig gewähltem
Mittelpunkt. Existiert der folgende Grenzwert, so bestimmt dieser die Dichte der
Zylinderpackung [4]:

4R3tt/3

Dabei ist mit V(Z, n x(R)) das Volumen der Durchschnittsmenge des Zylinders Z, und
der Kugel x(R) gemeint.

In [3] wurde gezeigt, daß eine Zylinderpackung mit der positiven Dichte tt2/576 « 0.017

existiert, bei welcher die Drehzylinderachsen paarweise windschief liegen. Wir geben im
folgenden ein Beispiel für eine derartige Drehzylinderpackung an, welche beinahe die

Hälfte des Gesamtraumes ausfüllt, und diskutieren Verbesserungsmöglichkeiten.

3 Konstruktion der Zylinderpackung
Wir benutzen im folgenden ein kartesisches Rechtskoordinatensystem [0;x,y,z\. Der
Durchmesser der kongruenten Drehzylinder der Zylinderpackung Z wird mit 1 festgelegt,

da die Dichte von Z von der Wahl der Einheitsstrecke unabhängig ist. Die Achsen
der Drehzylinder werden in die Erzeugenden von Drehhyperboloiden mit der z-Achse
als gemeinsamer Drehachse und konzentrischen Kehlkreisen in der xy-Ebene gelegt. Die
Radien dieser Kehlkreise sollen ein ganzzahliges Vielfaches der Drehzylinderdurchmesser

betragen (also 0,1,2,.. .,n,...). Wir sprechen dann von Zylindern der n-ten Schar,

falls die betreffenden Zylinderachsen dem Drehhyperboloid $„ mit dem Kehlkreisradius
n angehören.

Der Neigungswinkel ipn der Erzeugenden des Drehhyperboloids $„ (mit n > 1) gegenüber

der xy-Ebene wird festgelegt durch

1

tan^„ := — mit a„ c ¦ arctann
Un

Dabei bedeutet c zunächst eine positive Konstante, welche noch näher zu bestimmen
sein wird. Die spezielle Wahl der Arcustangensfunktion beruht auf rechentechnischen
Gründen und kann unter bestimmten Voraussetzungen durch eine andere streng monoton

wachsende Funktion ersetzt werden [2]. Zu beachten ist, daß die Erzeugenden mit
wachsendem Abstand zur z-Achse flacher werden und die Drehzylinderachsen der
Zylinderpackung paarweise windschief sind. Im Sonderfall n 0 existiert ein Drehzylinder
mit der z-Achse als Drehachse.

Zur Vereinfachung der folgenden Rechenschritte sollen die Drehzylinder jeder Schar

regelmäßig um die z-Achse angeordnet werden. Dazu wird der (kleinere) Winkel an einer
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Drehung um die z-Achse, welche die Achsen von zwei aufeinanderfolgenden Drehzylindern

der n-ten Schar ineinander überführt, folgendermaßen definiert:

an := 72° /2k für 2k < n < 2k+l (neN,k e No).

Die Anzahl der Drehzylinder der n-ten Schar beträgt demnach 5 • 2k. Zudem legen
wir fest, daß die Achse von jeweils einem Drehzylinder einer jeden Schar die positive
y-Achse schneidet.

In den Sätzen 1 und 2 werden kennzeichnende Bedingungen dafür formuliert, daß der
Normalabstand von Erzeugenden der genannten koaxialen Drehhyperboloide mindestens
1 ist. Die Sätze 3 bis 6 bestätigen schrittweise den Hauptsatz 1, daß nämlich die Achsen
der oberhalb beschriebenen Drehzylinderkonfiguration tatsächlich den geforderten
Mindestabstand 1 aufweisen, also eine Zylinderpackung abgeben. Anschließend wird die
Dichte der Packung berechnet (Hauptsatz 2).

4 Rechenschritte

Satz 1 Der Normalabstand von zwei Erzeugenden p und q des Drehhyperboloids $„ (n G

N) ist genau dann < 1, falls für den Winkel a„ der (mathematisch negativen) Drehung um
die z-Achse, welche p in q überführt, die folgende Ungleichung gilt (siehe Abbildung 1)

- An1 -2-aln^ (1)

Abb. 1

Beweis: Wir legen die Geraden p und q durch die Punkte P, P bzw. Q, Q wie folgt fest:

P(0,n,0), P(fl„,n,l), Q(x„,j/„,O), Q(x„,y„,l) mit

xn n ¦ sinä„, yn n ¦ cosan,

x„ n ¦ sina„ + a„ ¦ cos an, yn n ¦ cos an — an ¦ sina„
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Bekanntlich berechnet sich der Abstand d zweier Geraden

j:SMa + sg und h : t t-^b + th

unter Verwendung des Spat- sowie des Vektorproduktes zu

|[a-b,g,h]|
|gxh|

Damit erhalten wir für den Abstand dn zwischen den Geraden p und q:

y„ -y„

a„(y„-y„)
y„-y„

xn xn un

a„{y„-y„)

Elementare Äquivalenzumformungen der Ungleichung d„ > 1 führen schließlich zur
Ungleichung (1). Die explizite Durchführung dieser sowie der auch im folgenden nötigen
relativ umfangreichen Rechenschritte findet sich in [2]. D

Bemerkung 1

1. Für a2 folgt aus (1) die Abschätzung

2 4n2(l - cosa„) - 2

" 1 + cos än

2. Wegen fl2 > 0 folgt aus (2) für den Winkel än dann

2n2- 1

cosa„ <
2n2

(2)

(3)

Satz 2 Sind p bzw. q Erzeugenden des Drehhyperboloids $jt bzw. $; (k,l G N und
l > k + \), welche jeweils die positive y-Achse schneiden, und bezeichnet ß^\\ den

Drehwinkel einer im mathematisch negativen Sinn gemessenen Drehung um die z-Achse,
welche die Erzeugende q in eine Erzeugende r des Drehhyperboloids $; überfuhrt, so

ist der Normalabstand zwischen den Geraden p und r genau dann mindestens 1, falls
gilt (siehe Abbildung 2)

COSßk\i <
D - VD2 - CE

C

mitC (lak + kai)2 +a2ka2, D (kak +hi)(lak + kax) -
undE {kak +lai)2 - {a\ +a2 +a2ka2)

(4)
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Abb. 2

Der Beweis erfolgt analog zum Nachweis von Satz 1. D

Bemerkung 2

1. Bezeichnet ßi\k den Drehwinkel einer im mathematische positiven Sinn gemessenen
Drehung um die z-Achse, welche die Erzeugende p des Drehhyperboloids $jt in
die Erzeugende r des Drehhyperboloids $jt überführt derart, daß der Normalabstand
zwischen den Geraden r und q mindestens 1 beträgt, so gilt cos/?^/ cos/3p, da

die Cosinusfunktion gerade ist.

2. Im Spezialfall k l - 1 benachbarter Drehhyperboloide erhalten wir aus (4) die

folgende Ungleichung:

/2(fl;_i +a;)2-2Za;_1(a;_1 +ai) -ajil+aj^)C0SA(5)
3. Für k l ergibt (4) die Ungleichung (1).

Satz 3 Der in 3 für die spezielle Drehzylinderkonfiguration gewählte Drehwinkel an
72°/2k, 2k < n < 2k+l (n £ N, k £ No) ist nicht kleiner als der Drehwinkel a„ aus
Satz 1, es gilt daher

4nz - 2 - aln

cosa„ < ; ^-JL~ 4n2 + al

Die Konstante c erfüllt die Abschätzung c < VO.229005051.



76 Elem. Math. 52 (1997)

Beweis: Wir führen folgende Fallunterscheidungen durch:

I.Fall: Wir diskutieren n 2k (n 1,2,4,8,...). Für den Beweis der Ungleichung

o. 4n2-2-a2n 2 4n2(l - cos(72°/n)) - 2
cos72°/n < ——, ^ bzw. fl2 < K- v,„„ ' ','v ' ' ~ An2 + fl2 " ~ 1 + cos(72°/n)

ersetzen wir cos(72°/n) durch die zugehörige Reihenentwicklung

wobei der rechte Term in der Ungleichung genau dann minimal ist, wenn für cos(72°/n)
die Reihenentwicklung nach dem 3. Glied abgebrochen wird [2]. Wir erhalten somit die

Ungleichung
48w4((0.4tt)2 - 1) - 4w2(0.4tt)4

in welcher der rechte Term genau bei n 1 sein Minimum (« 0.565047317) besitzt

[2]. Ersetzen wir (arctann)2 durch den Grenzwert tt2/4, so ergibt sich für c2 eine obere

Schranke von « 0.229005051.

2.Fall: Es sei nun 2k < n < 2k+l. Läuft n im offenen Intervall (2k,2k+y), so lautet
der zugehörige Winkel an stets 72°/2k. Da jedoch ((4n2 - 2 - a2)/(4n2 + fl2)} eine

monoton wachsende Folge darstellt, wächst der rechte Term der Ungleichung cos an <
(4n2 - 2 - fl2)/(4n2 + fl2), während der linke Term konstant bleibt. Somit folgt - unter

Einhaltung der im 1. Fall für die Konstante c angegebenen Bedingung - die Richtigkeit
von Satz 3. D

Bemerkung 3

1. Aus Satz 1 und 3 folgt, daß der Normalabstand von je zwei Drehzylinderachsen
derselben Schar der in 3 beschriebenen Zylinderkonfiguration mindestens 1 ist.

2. Es ist möglich, die Konstante c größer als angegeben zu wählen, womit sich der Nei¬

gungswinkel der Drehzylinderachsen gegenüber -k\ verringert. Da jedoch die Anzahl
der Achsen pro Schar festgelegt ist, hat diese Änderung von c keine Auswirkung auf
die Dichte der Zylinderpackung.

Satz 4 Der für die spezielle Drehzylinderkonfiguration in 3 gewählte Drehwinkel a„
72°/2k, 2k < n < 2k+l (n e N \ {1,2}, k G No) ist nicht kleiner als der Drehwinkel
/?!!„ aus Satz 2, es gilt daher

D - VD2 - CE
cosa„ <

mit C (fl„+Wfli)2+fl2fl2, D (nfl„ + fli)(fl„+fli) -flifl„
und E (nan + fli )2 - (fl2 + fl2 + fl2fl2).
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Beweis: Wegen an > 12°/n und cos(0.4tt/w) < (4n4 - 2w2(0.4tt)2 + (0.4tt)4)/4w4
genügt es, für n G N \ {1,2} die folgende Ungleichung zu beweisen:

(0.4tt)2 (0.4tt)4 D -
22 + 442n2

'

4n4 " C

bzw.

nw ¦ 576(fl„ -ai)2 -n9 -I \52(an - ax )2

+n8 • 576(0.47r)2fl1 (an -a^ + n7 ¦ 576(0.4tt)2(an - ax)2

+W6-(48(0.47r)4fl1(4fl1 - an) - 576(0.4tt)2(1 +fl2)fl2)

+n5 ¦ 48(0.47r)4(8fl1fl„ - fl2 - fl2)

+n4 • (192(0.4tt)4(1 +fl2)fl2 -24(0.47r)6fl2)

-n3 ¦ 48(0.47r)6fl1fl„

+n2 • ((0.47r)8fl2 - 24(0.4tt)6(1 + fl2)fl2)

+n ¦ 2(0.47r)8fl1fl„ + (0.4tt)8(1 + a\)a2n > 0.

Die Richtigkeit dieser Ungleichung ergibt sich durch Koeffizientenvergleich, die explizite
Durchführung findet sich in [2]. D

Bemerkung 4 Aus Satz 2 und 4 folgt, daß für die in 3 beschriebene Zylinderkonfiguration
der Normalabstand von je einer Drehzylinderachse der ersten sowie der n-ten Schar
(n > 2) mindestens 1 ist.

Satz 5 Der für die spezielle Drehzylinderkonfiguration in 3 gewählte Drehwinkel o.n

12°/2k, 2k < n < 2k+l (n G N \ {1,2}, k G No) ist nicht kleiner als der Drehwinkel

ßn-\\n aus S®?2 2, es gilt also die Ungleichung

n2(a„-i +a„)2 -2na„-i(a„-i +a„) -a\{\ + a2n_l)
cosan < — —

(n(ß„_i + a„) - a„y + «„_]«„

Beweis: Wegen 72°/2k > 12°/n ersetzen wir in der zu beweisenden Ungleichung den

Term an durch 12°/n, und erhalten nach Äquivalenzumformungen die folgende
Abschätzung:

1 - (sin(367n))2 < —^-
(n + e(n-l))2

mit e e(n) :=/(n)//(n - 1), e(n) > 1 und/ /(n) := arctann

Anstelle von sin(36°/n) kann die zugehörige Reihenentwicklung bis zum zweiten Glied
eingesetzt werden [2] :

/0.2tt\2 1 /0.2tt\4 1 /0.2tt

3\ 36 \
6

36 \n ~ c2f2 + (n + e(n - l))2
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Durch Äquivalenzumformungen und Vernachlässigung des Terms -(0.2tt/w)6/36
gelangt man zu

„5 3(1 _ £2) + n4 (3(c2/2 + £2) _ 3(0.2^)2(1 + £)2)

+n3 • (6e(0.2^)2(l + e)) + n2 • (^(O^V/2 + e2) + (0.2^)4(l + e)2)

+n • (-2e(l + £)(0.2tt)4) + (0.2tt)4(c2/2 + e2) < 0

Die Richtigkeit dieser Ungleichung ergibt sich durch Koeffizientenvergleich [2]. D

Bemerkung 5 Aus Satz 2 und 5 folgt, daß für die in 3 beschriebene Zylinderkonfiguration

der Normalabstand von je zwei Drehzylinderachsen aus benachbarten Scharen
mindestens 1 ist.

Satz 6 Der für die spezielle Drehzylinderkonfiguration in 3 gewählte Drehwinkel a„
72° /2k, 2k <n< 2k+l {n G N\{1,2}, k G N\{1}) ist nicht kleiner als der Drehwinkel
ßm\„ (m, n G N, 1 < m < n - 1) aus Satz 2, es gilt daher die Ungleichung

D - VD2 - CE
cosa„ <

mit C {man + namf + a2ma2n, D {nan + mam){man + nam) - aman

und E {nan + mamf 2 2 22

Beweis: Der Nachweis gliedert sich in Fallunterscheidungen, die Argumentation wird
durch die Abbildung 3 unterstützt.

1. Wir führen für spezielle Geraden aus verschiedenen Scharen folgende Bezeichnungen
ein (n > 2): a bzw. a bezeichnet eine Gerade der ersten Schar bzw. der (n - l)-ten
Schar mit der Steigung l/a\ bzw. l/fl„_i; ebzw. ^bezeichnet eine Gerade der (n —1)-
ten Schar bzw. der ersten Schar mit der Steigung l/ß„_i bzw. 1/fli; und schließlich

gibt/ eine Gerade der n-ten Schar mit der Steigung l/a„ ab. Diese Geraden sollen

jeweils die positive y-Achse schneiden, woraus die Parallelität von a zu ësowie von a

zu e folgt. Mit / bezeichnen wir jene Gerade, die aus / bei Drehung um die z-Achse

um den Winkel —2an hervorgeht.

2. Wir zeigen, daß der Normalabstand zwischen den Geraden ë^und / mindestens 1 ist:

Die Ungleichung

=r |w(«n + «i)(l -cosan) + (flncosan - U\)\

/al -2flifl„cosa„ +a2 +a2a2(l - (cosa„)2)

ist nach Ersetzen von cos a„ durch

(0.4tt)2 (0.4tt)4
1- 2n2 24n4
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Abb. 3

äquivalent zu

n5 • 48(a2 _ a\) + n4 • (-48^(1 + a\) + 12(0.47r)2(a„

+n2 a\) -
+n ¦ 2(0A7T)4an(an + fli) - (0.4^)4a2(l + a2) > 0

Die Richtigkeit dieser Ungleichung ergibt sich durch Koeffizientenvergleich.
3 Wir zeigen, daß der Normalabstand zwischen den Geraden a und / mindestens 1

beträgt: Dazu betrachten wir in Abbildung 3 die Geraden a, e und / in Grund-, Auf-
und Kreuzriß Den Winkel zwischen dem Kreuzriß der Geraden/ und der xy-Ebene
7Ti bezeichnen wir mit ß. Man erkennt folgende Äquivalenzen:

(a)

<Pn-\ > ß <=$ tan^„_i > tan/3 <^>>>
ancosa n

fl„ cos an - an-\ > 0.

Der Normalabstand von e zu / ist kleiner als jener von ä zu /. Wegen ef > 1

(siehe Satz 5) folgt damit af > 1, wobei diese Ungleichung für alle natürlichen
Zahlen n mit «„ cos a„_i > 1 gilt.
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(b)

fn-l < ß <=> Un COS a„ — ü„-\ < 0.

Der Normalabstand von e zu / ist größer als jener von ä zu /. Wir bezeichnen
mit e die Verbindungsebene der parallelen Geraden a und e sowie mit (Feine der
beiden im Abstand 1 parallel zu e verlaufenden Ebenen. Für die y-Koordinate ys

des Schnittpunktes S von e und / gilt

fl„(l — n sina„ sincz>„_i) sina„
ys n cos a„ — < 1

(fl„cosan -fl„_i) sinipn_x

Deuten wir S als Schnittpunkt der Gemeinnormalen von k und /, wobei k eine

zu a und e parallele Gerade in der Ebene e bezeichnet, so ist der Normalabstand
zwischen k und / größer als 1. Bezeichnen wir mit T den Schnittpunkt der
Gemeinnormalen von a und / mit der Geraden /, so folgt unsere Behauptung,
falls die y-Koordinate yt von T größer ist als jene von S. Für yt erhalten wir

fl„(sina„

yt ncosan-
2ß„(l+ «£_!)(! -ncosa„) -n(ß„_i -a„cosa„)

(fl„ cos an — an-\ )2 + fl2

Die Ungleichung yt > ys ist daher äquivalent zu

fl^_1fl„sina„((fl„_i -fl„cosa„) + n (fl„ -fl„_i cosa„))

> (fl„cosa„ -fl„-i)2 + (1 +fl^_1)fl

Die Gültigkeit dieser Ungleichung ergibt sich aber aus den beiden folgenden
Ungleichungen [2]:

fl2_]fl„ sina„(fl„_i —fl„cosa„) > (fl„cosa„ —fl„_i)2 und

'1+«£_!«„ sin a„(ß„ -fl„_icosa„) > (1+fl2_1)fl2(sina„)2

4. Der Normalabstand zwischen den Geraden ë^und / ist nicht größer als jener von a

und/.
5. Bezeichnet b eine Gerade der m-ten Schar (1 < m < n - 1), welche die positive

y-Achse schneidet, so liegt b zwischen den Geraden a und e.

(a) Dreht man die Gerade b in der xz-parallelen Ebene_ durch b solange um ihren
Schnittpunkt mit der y-Achse, bis sie in eine Lage b mit der Steigung l/a\
gelangt, so verläuft b parallel zu a und e, wobei aus 2 sowie Satz 4 folgt, daß

der Normalabstand zwischen den Geraden b und / mindestens 1 ist. Dies gilt,
da die Gerade / die Ebene e rechts von e schneidet, also die y-Koordinate des

Schnittpunktes von / und e größer als n - 1 ist.
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(b) Dreht man in gleicher Weise die Gerade b in die Lage b mit der Steigung l/ß„_i,
so verläuft diese gedrehte Gerade b parallel zu a und e. Weiter schneidet die
Gerade / die Ebene e im Falle a„cos an - an-\ > 0 rechts von e bzw. im Falle

fl„ cos a„ - ß„_i < 0 links von fl, sodaß also die y-Koordinate des Schnittpunktes

von / und e größer als n — 1 bzw. kleiner als 1 ist. Zusammen mit 3 und Satz

5 folgt daher insgesamt, daß der Normalabstand zwischen den Geraden b und /
mindestens 1 beträgt.

(c) Da die Gerade b zwischen den beiden beschriebenen Extremlagen b und b liegt
und diese beiden Geraden jeweils den Mindestabstand 1 zur Geraden/ aufweisen,

folgt damit schließlich, daß der Normalabstand der Geraden b der m-ten Schar

zur Geraden / der n-ten Schar mindestens 1 ist.

Damit ist der Beweis von Satz 6 abgeschlossen. D

Aus den Sätzen 1 bis 6 folgt nun unmittelbar der in 3 angekündigte

Hauptsatz 1 Der Normalabstand von je zwei Drehzylinderachsen der in 3 beschriebenen

Zylinderkonfiguration ist mindestens 1. Diese Drehzylinder haben daher höchstens

Oberflächenpunkte gemeinsam, bestimmen also tatsächlich eine Zylinderpackung mit
paarweise windschiefen Achsen.

Abb. 4

5 Resultat
Wir berechnen nun die Dichte der Zylinderpackung aus 3 und bestätigen damit das in 1

formulierte Ergebnis dieser Publikation:

Hauptsatz 2 Die Dichte der im Abschnitt 3 beschriebenen Zylinderpackung beträgt
5/12.
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Beweis:

1. Wir ändern zur Berechnung der Dichte der Zylinderpackung die Lage der einzelnen

Drehzylinder wie folgt ab:

Jede Zylinderachse schneidet die xy-Ebene -k\ und schließt mit -k\ einen Winkel
ipx < 90° ein. Dreht man jeden Drehzylinder um die Gemeinnormale einerseits seiner

Drehachse und andererseits der z-Achse um den Winkel 90° - ^, derart, daß

die Drehzylinderachse dann parallel zur z-Achse verläuft, dann bleiben die Schnittpunkte

der Zylinderachsen mit tt\ fest. Weiters gilt, daß alle Drehzylinder nach dem

Drehvorgang zueinander parallel liegen und höchstens Oberflächenpunkte gemeinsam
haben, also wieder eine Packung bestimmen.

Durch dieses Geradestellen ändert sich am Volumen der Durchschnittsmenge
zwischen jedem Drehzylinder der Packung sowie der in Kapitel 2 angeführten Kugel
x(R) nichts, sodaß auch die zu berechnende Dichte der Zylinderpackung ungeändert
bleibt. Weiter ist der Durchschnitt einer jeden zu -k\ parallelen Ebene mit der
gedrehten Zylinderpackung kongruent, womit sich das Problem der Dichteberechnung
der Zylinderpackung aus 3 darauf reduziert, die Dichte einer Kreispackung in -k\ zu
bestimmen.

2. Die Dichte d der Kreispackung ist das Produkt des Kreisinhaltes tt/4) und der
Anzahldichte A der Packung [4]. Die Anzahl A(n) der Drehzylinderachsen bis zum
Zählindex n 2k+l -1 berechnet sich aufgrund der Anzahl 5 -2k der Zylinderachsen
der m-ten Schar {2k < m < 2k+l gemäß

A{n) 1 + J2 5.2>-2> l + 5^--—^
;=o

Damit folgt für die Anzahldichte

A hm -^R^oo R2TT

der Wert

A lim —
(2fc+! - 1/2)% 3ir

Wir erhalten somit d 5/12 0.416 als Dichte der in 3 angeführten Zylinderpackung
mit paarweise windschiefen Achsen. D

6 Diskussion

1. Vergleicht man nun die Dichte d 5/12 dieser Zylinderpackung mit paarweise
windschiefen Achsen aus 3 mit der maximal möglichen Dichte einer Zylinderpackung

- bei allerdings dann parallelen Achsen - von ir/\fÏ2 « 0.907, so erkennt man, daß

unsere Packung noch große Freiräume aufweisen muß. Die Dichte d 5/12 liegt
jedoch weit über dem von K. Kuperberg [3] berechneten Wert von tt2/576 « 0.017
bei einer speziellen Zylinderpackung mit paarweise windschiefen Achsen.
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2. Wählt man anstelle des Winkels an 72°/2k (2k < n < 2k+l) den Winkel
72°/n (n G N), so ist damit die windschiefe Lage von je zwei Zylinderachsen sowie
der Mindestnormalabstand 1 zwischen je zwei Achsen derselben Schar gewährleistet.
Diese Zylinderkonfiguration erfüllt demnach schon einige wesentliche der in 2 und 3

formulierten Forderungen. Unter der Annahme, daß tatsächlich eine Zylinderpackung
mit paarweise windschiefen Achsen vorliegt, weist sie dann eine Packungsdichte von
5/8 0.625 auf. Dieser um 5/24 0.2083 größere Wert gegenüber d 5/12
kann daher als obere Schranke für Zylinderpackungen der in 3 beschriebenen Art
angesehen werden.
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