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Moglichst dichte Packungen aus kongruenten Dreh-
zylindern mit paarweise windschiefen Achsen

Claudia Graf und Peter Paukowitsch

Claudia Graf wurde 1965 in Oberdsterreich geboren. Sie absolvierte ein Lehramts-
studium an der Technischen Universitit in Wien. Nach einigen Jahren Lehrtitigkeit
an Gymnasien doktorierte sie im Jahr 1994 mit einer Arbeit (siche [2]) iiber das
hier dargestellte Thema. Frau Graf, geb. Grasser, ist verheiratet und Mutter einer
zweijdhrigen Tochter.

Peter Paukowitsch wude 1945 in Niederdsterreich geboren. Nach einem Lehramts-
studium doktorierte er 1975 an der Technischen Universitit Wien iiber ein differen-
tialgeometrisches Thema. Nach der Habilitation wurde er 1988 Assistenzprofessor
am Geometrieinstitut dieser Universitit. Seine wissenschaftlichen Interessen gehoren
der Geometrie, insbesondere ist er in der Ausbildung der Lehrer in den geometri-
schen Disziplinen sowohl in fachlicher wie auch fachdidaktischer Hinsicht titig.

1 Ergebnis

Es existiert eine Packung des 3-Raumes, bestehend aus kongruenten unbeschrénkten
Drehzylindern mit paarweise windschiefen Drehachsen, deren Dichte 5/12 = 0.416
betrigt.

2 Einleitung

Unter einer Zylinderpackung im dreidimensionalen euklidischen Raum versteht man
eine Menge Z von kongruenten Drehzylindern mit unendlicher Achsenlinge, welche
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hochstens Oberflachenpunkte gemeinsam haben. Die Dichte d (0 < d < 1) der Packung
gibt an, wieviel des Gesamtraumes durch die Drehzylinder ausgefiillt wird. Liegen die
Achsen aller Drehzylinder zueinander parallel und wird jeder Drehzylinder von sechs
anderen beriihrt, so erhilt man eine Zylinderpackung von der grofitmoglichen Dichte
7/V/12 2~ 0.907 [1].

Die Menge Z = {Z;|i € N} bezeichne die abzihlbar unendlich vielen Drehzylinder
einer Zylinderpackung und »(R) eine Kugel vom Radius R und beliebig gewihltem
Mittelpunkt. Existiert der folgende Grenzwert, so bestimmt dieser die Dichte der Zylin-

derpackung [4]:
lim Yien V(Zi N 5(R))
R—oo 4R37T/3

Dabei ist mit V(Z; N 2(R)) das Volumen der Durchschnittsmenge des Zylinders Z; und
der Kugel »(R) gemeint.

In [3] wurde gezeigt, dab eine Zylinderpackung mit der positiven Dichte 2 /576 ~ 0.017
existiert, bei welcher die Drehzylinderachsen paarweise windschief liegen. Wir geben im
folgenden ein Beispiel fiir eine derartige Drehzylinderpackung an, welche beinahe die
Hilfte des Gesamtraumes ausfiillt, und diskutieren Verbesserungsmoglichkeiten.

3 Konstruktion der Zylinderpackung

Wir benutzen im folgenden cin kartesisches Rechtskoordinatensystem [0; x,y, z]. Der
Durchmesser der kongruenten Drehzylinder der Zylinderpackung Z wird mit 1 festge-
legt, da die Dichte von Z von der Wahl der Einheitsstrecke unabhéingig ist. Die Achsen
der Drehzylinder werden in die Erzeugenden von Drehhyperboloiden mit der z-Achse
als gemeinsamer Drehachse und konzentrischen Kehlkreisen in der xy-Ebene gelegt. Die
Radien dieser Kehlkreise sollen ein ganzzahliges Vielfaches der Drehzylinderdurchmes-
ser betragen (also 0, 1,2,...,n,...). Wir sprechen dann von Zylindern der #n-ten Schar,
falls die betreffenden Zylinderachsen dem Drehhyperboloid ¢, mit dem Kehlkreisradius
n angehoren.

Der Neigungswinkel ¢, der Erzeugenden des Drehhyperboloids ®,, (mit # > 1) gegen-
iiber der xy-Ebene wird festgelegt durch

1 .
tanp, = . mit g, = ¢ - arctann
n

Dabei bedeutet ¢ zunéchst eine positive Konstante, welche noch niher zu bestimmen
sein wird. Die spezielle Wahl der Arcustangensfunktion beruht auf rechentechnischen
Griinden und kann unter bestimmten Voraussetzungen durch eine andere streng mono-
ton wachsende Funktion ersetzt werden [2]. Zu beachten ist, dah die Erzeugenden mit
wachsendem Abstand zur z-Achse flacher werden und die Drehzylinderachsen der Zy-
linderpackung paarweise windschief sind. Im Sonderfall #n = 0 existiert ein Drehzylinder
mit der z-Achse als Drehachse.

Zur Vereinfachung der folgenden Rechenschritte sollen die Drehzylinder jeder Schar re-
gelmiBig um die z-Achse angeordnet werden. Dazu wird der (kleinere) Winkel «,, einer
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Drehung um die z-Achse, welche die Achsen von zwei aufeinanderfolgenden Drehzy-
lindern der n-ten Schar ineinander iiberfiihrt, folgendermaBen definiert:

ay = T72°/2% fiir 2F <n <281 (n e N,k € Ny).

Die Anzahl der Drehzylinder der n-ten Schar betrigt demmach 5 - 2%, Zudem legen
wir fest, dab die Achse von jeweils einem Drehzylinder einer jeden Schar die positive
y-Achse schneidet.

In den Sitzen 1 und 2 werden kennzeichnende Bedingungen dafiir formuliert, dal der
Normalabstand von Erzeugenden der genannten koaxialen Drehhyperboloide mindestens
1 ist. Die Satze 3 bis 6 bestitigen schrittweise den Hauptsatz 1, daB namlich die Achsen
der oberhalb beschriebenen Drehzylinderkonfiguration tatsichlich den geforderten Min-
destabstand 1 aufweisen, also eine Zylinderpackung abgeben. AnschlieBend wird die
Dichte der Packung berechnet (Hauptsatz 2).

4 Rechenschritte

Satz 1 Der Normalabstand von zwei Erzeugenden p und q des Drehhyperboloids ®,, (n €
N) ist genau dann < 1, falls fiir den Winkel o, der (mathematisch negativen) Drehung um
die z-Achse, welche p in q itberfiihrt, die folgende Ungleichung gilt (siehe Abbildung 1)

_ AP -2-a
costy < ————"

(1)

T A+ a

y!

Abb. 1

Beweis: Wir legen die Geraden p und g durch die Punkte P, P bzw. Q, Q_ wie folgt fest:

P(O)n70)7 P(Eln77’l,1), Q(xn7yn70)7 Q(fnygnv 1) mit
Xy =M -siay, Yy =1 - COSy,
Xp =M - SiN Gy + Ay - COS Oy, Yy = M - COS Oty — Gy - SIN
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Bekanntlich berechnet sich der Abstand d zweier Geraden
g:s—a+sgundh:t—b+th
unter Verwendung des Spat- sowie des Vektorproduktes zu

|[a_b7gah]|
g > h

Damit erhalten wir fiir den Abstand d,, zwischen den Geraden p und g:

Yo=Y Xn
Xn —Xn —ln : yn —n
dn un(% _y”) _ 0
_ Y=l
Xy —_Xn — 4y
(Yo — W)

Elementare Aquivalenzumformungen der Ungleichung d,, > 1 fiihren schlieBlich zur
Ungleichung (1). Die explizite Durchfithrung dieser sowie der auch im folgenden nétigen
relativ umfangreichen Rechenschritte findet sich in [2]. O

Bemerkung 1
1. Fiir a2 folgt aus (1) die Abschiitzung

4n*(1 — cos ay) — 2
1+ cos oy,

a <

2. Wegen a2 > 0 folgt aus (2) fiir den Winkel &, dann

n? —1
2n?

3)

cosay, <

Satz 2 Sind p bzw. q Erzeugenden des Drehhyperboloids &y bzw. &; (k,l € N und
I > k + 1), welche jeweils die positive y-Achse schneiden, und bezeichnet (| den
Drehwinkel einer im mathematisch negativen Sinn gemessenen Drehung um die z-Achse,
welche die Erzeugende ( in eine Erzeugende v des Drehhyperboloids ®, iiberfiihrt, so
ist der Normalabstand zwischen den Geraden p und v genau dann mindestens 1, falls
gilt (siehe Abbildung 2)

D— VD —CE
cos Bg; < —c
mit C — (lag + kay)® + a2, D — (kax +la))(lay + kay) — axa )

und E = (kay +la))* — (a3 +a? + ata})
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Abb. 2

Der Beweis erfolgt analog zum Nachweis von Satz 1. ([

Bemerkung 2

L. Bezeichnet 3, den Drehwinkel einer im mathematische positiven Sinn gemessenen
Drehung um die z-Achse, welche die Erzeugende p des Drehhyperboloids P in
die Erzeugende r des Drehhyperboloids ® iiberfiihrt derart, daB der Normalabstand
zwischen den Geraden 7 und g mindestens 1 betrigt, so gilt cos By = cos Gy, da
die Cosinusfunktion gerade ist.

2. Im Spezialfall k = [ — 1 benachbarter Drehhyperboloide erhalten wir aus (4) die
folgende Ungleichung:

Pla_y +a)? —2a_y (@ +a) —ai(l +af_,)
Hm—1 +a) —m)* +af_ 4

cos G 1 <

(5)

3. Fir k = [ ergibt (4) die Ungleichung (1).

Satz 3 Der in 3 fiir die spezielle Drehzylinderkonfiguration gewdéhlte Drehwinkel o, =

720/2K, 2K <n < 2K (n e N, k € Ny) ist nicht kleiner als der Drehwinkel ov, aus
Satz 1, es gilt daher

dn® -2 —a?

cos o, < W

Die Konstante c erfiillt die Abschatzung ¢ < +/0.229005051.
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Beweis: Wir fithren folgende Fallunterscheidungen durch:
1.Fall: Wir diskutieren n = 2% (n = 1,2,4,8, .. .). Fiir den Beweis der Ungleichung

4n%(1 — cos(72°/n)) — 2
1+ cos(72°/n)

n?—2—a2

o 2
cos(72°/n) < P " bzw. a, <

ersetzen wir cos(72°/n) durch die zugehorige Reihenentwicklung

047)  (0.4m)* (—1)"(0.47)2m

COS(72 /71):1— 2!7’[2 4!7’[4 W vy

wobei der rechte Term in der Ungleichung genau dann minimal ist, wenn fiir cos(72°/n)
die Reihenentwicklung nach dem 3. Glied abgebrochen wird [2]. Wir erhalten somit die
Ungleichung
481*((0.47)% — 1) — 4n2(0.47)*
2 2
ta <
Clarann) S e 0 Ar Y 1 (04n)

in welcher der rechte Term genau bei 7 = 1 sein Minimum (=~ 0.565047317) besitzt
[2]. Ersetzen wir (arctann)? durch den Grenzwert 72 /4, so ergibt sich fiir ¢ eine obere
Schranke von ~ 0.229005051.

2.Fall: Bs sei nun 2F < n < 2¥*! Léuft n im offenen Intervall (25,251, so lautet
der zugehdrige Winkel «, stets 72°/2F. Da jedoch ((4n*> — 2 — a2)/(4n> + a2)) eine
monoton wachsende Folge darstellt, wichst der rechte Term der Ungleichung cos oy, <
(4n* —2 —a2)/(4n? + a2), wihrend der linke Term konstant bleibt. Somit folgt — unter
Einhaltung der im 1. Fall fiir die Konstante ¢ angegebenen Bedingung — die Richtigkeit
von Satz 3. ]

Bemerkung 3

1. Aus Satz 1 und 3 folgt, dah der Normalabstand von je zwei Drehzylinderachsen
derselben Schar der in 3 beschriebenen Zylinderkonfiguration mindestens 1 ist.

2. Es ist moglich, die Konstante ¢ groBer als angegeben zu wihlen, womit sich der Nei-
gungswinkel der Drehzylinderachsen gegeniiber 7, verringert. Da jedoch die Anzahl
der Achsen pro Schar festgelegt ist, hat diese Anderung von ¢ keine Auswirkung auf
die Dichte der Zylinderpackung.

Satz 4 Der fiir die spezielle Drehzylinderkonfiguration in 3 gewdéhlte Drehwinkel oy, =
72025, 2% < < 2K (n e N\ {1,2}, k € Ny) ist nicht kleiner als der Drehwinkel
Bijn aus Satz 2, es gilt daher

D-+vD?-CE
C

mit C = (a, +nm)* +ajaz, D = (na, + a))(a, +a1) — ara,

cos ay <

und E = (na, +m)* — (82 + a2 + a2a?).
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Beweis: Wegen «,, > 72°/n und cos(0.47/n) < (4n* — 2n*(0.47)% + (0.47)%)/4n*
geniigt es, fir n € N\ {1,2} die folgende Ungleichung zu beweisen:

(0.47)? " (0.47)* " D —-+vD?>—CE
2n? dnt — C

1—
bzw.

n'® . 576(a, —ay)* —n’ - 1152(a, — m)*
+n® - 576(0.47)%a; (@, —ay) +n’ - 576(0.47)(a, — a1)*
+n° - (48(0.47)%a; (4a) — a,) — 576(0.47)*(1 +a})a2)
+1° - 48(0.47)* (8aya, — a7 — a2)
it (192(0.47)* (1 +a3)as — 24(0.47)°a3)
—n® - 48(0.47)aa,
+n? - ((0.47)%a7 — 24(0.47)°(1 + at)a?)
41 - 2(0.4m) a4, 4 (0.47)8(1 4-at)a? > 0.

Die Richtigkeit dieser Ungleichung ergibt sich durch Koeffizientenvergleich, die explizite
Durchfiihrung findet sich in [2]. ([l

Bemerkung 4 Aus Satz 2 und 4 folgt, dabB fiir die in 3 beschriebene Zylinderkonfiguration
der Normalabstand von je einer Drehzylinderachse der ersten sowie der 7n-ten Schar
(n > 2) mindestens 1 ist.

Satz 5 Der fiir die spezielle Drehzylinderkonfiguration in 3 gewdhlte Drehwinkel o, =
720/2%, 2k <m < 2K (n € N\ {1,2}, k € Ny) ist nicht kleiner als der Drehwinkel
Bu—i1|n aus Satz 2, es gilt also die Ungleichung

1@y 1 + an)* — 208y 1 (@n1 +an) —az(1+a;_)

cosay, <
"= (a1 +ay) — 8,)2 +02_ a2

Beweis: Wegen 72°/2% > 72°/n ersetzen wir in der zu beweisenden Ungleichung den
Term o, durch 72°/n, und erhalten nach Aquivalenzumformungen die folgende Ab-
schitzung:

. o 2 nn—1)(1+¢)
1 — (sin(36°/n))* < f4 (n+en—1))72

mit e =e(n) ;= f(n)/f(n — 1), e(n) > 1 und f = f(n) := arctann

Anstelle von sin(36°/n) kann die zugehorige Reihenentwicklung bis zum zweiten Glied
eingesetzt werden [2]:

- <%> *5 <%> -3 <Oiw>6 S
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Durch Aquivalenzumformungen und Vernachlissigung des Terms —(0.27/n)°/36 ge-
langt man zu

n® - 3(1 — 2ﬁ+g 3(0.2m)%(1 +¢)%)
+n3~(65(0.27r)2(1+5))+n 3(0.27)? 2ﬁ+g 027r)4(1+5)2)
+n - (=2e(1+ 5)(0.27r) (0.2m)*(*f* + €2

Die Richtigkeit dieser Ungleichung ergibt sich durch Koeffizientenvergleich [2]. (|

Bemerkung 5 Aus Satz 2 und 5 folgt, dab fiir die in 3 beschriebene Zylinderkonfi-
guration der Normalabstand von je zwei Drehzylinderachsen aus benachbarten Scharen
mindestens 1 ist.

Satz 6 Der fiir die spezielle Drehzylinderkonfiguration in 3 gewdhite Drehwinkel o, =
720/2%, 2% <m < 251 (m e N\{1,2}, k € N\{1}) ist nicht kleiner als der Drehwinkel
Bun (mym € N, 1 <m <n — 1) aus Satz 2, es gilt daher die Ungleichung

D —-+vD?>-CE
C
mit C = (ma, + nay,)?* + a;,as, D = (na, + may)(ma, + nay,) — aua,
und E = (na, +may)? — (@2, +a> + a2a2)

cosay <

Beweis: Der Nachweis gliedert sich in Fallunterscheidungen, die Argumentation wird
durch die Abbildung 3 unterstiitzt.

1. Wir fiihren fiir spezielle Geraden aus verschiedenen Scharen folgende Bezeichnungen
ein (n > 2): a bzw. a bezeichnet eine Gerade der ersten Schar bzw. der (1 — 1)-ten
Schar mit der Steigung 1/a; bzw. 1/a,,_1; e bzw. e bezeichnet eine Gerade der (n—1)-
ten Schar bzw. der ersten Schar mit der Steigung 1/a,_; bzw. 1/a;; und schlieBlich
gibt f eine Gerade der n-ten Schar mit der Steigung 1/a, ab. Diese Geraden sollen
jeweils die positive y-Achse schneiden, woraus die Parallelitit von a zu e sowie von a
zu e folgt. Mit f bezeichnen wir jene Gerade, die aus f bei Drehung um die z-Achse
um den Winkel —2¢,, hervorgeht.

2. Wir zeigen, daB der Normalabstand zwischen den Geraden e und f mindestens 1 ist:
Die Ungleichung

_ [n(a, + a1)(1 — cos avy) + (an COS vy — 1)) 5

\/a% — 2818, COS ayy + a7 + a2a%(1 — (cos auy)?) -

3

ist nach Ersetzen von cos «;, durch

(047)?>  (0.47)
2n? 24n*
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GzeMs g

Abb. 3

aquivalent zu

n - 48(a —a?) +nt - (—48a2(1 + &) + 12(0.47m)%(a, +a1)?)
1 - (—24(0.47) %, (8, + )
+n* - (12(0.47)2a2(1 + a3) — (0.4m)* (@, +a1)?)
41 - 2(0.47) a,(a, + @) — (0.47)*a2(1 +ai) >0
Die Richtigkeit dieser Ungleichung ergibt sich durch Koeffizientenvergleich.

3. Wir zeigen, dab der Normalabstand zwischen den Geraden 4 und f mindestens 1
betrigt: Dazu betrachten wir in Abbildung 3 die Geraden a, e und f in Grund-, Auf-
und KreuzriB. Den Winkel zwischen dem KreuzriB der Geraden f und der xy-Ebene
7 bezeichnen wir mit 3. Man erkennt folgende Aquivalenzen:

(a)
1
>
Au—1 — 0, COSQy
S, CoSay — Ay > 0.

Yn1 > B tang, | > tanf <

Der Normalabstand von e zu f ist kleiner als jener von a zu f. Wegen ef > 1
(siehe Satz 5) folgt damit af > 1, wobei diese Ungleichung fiir alle natiirlichen
Zahlen n mit a, cos o, > 1 gilt.
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(b)

o1 < B 4, c08 oy — a1 < 0.

Der Normalabstand von e zu f ist groBer als jener von a zu f. Wir bezeichnen
mit ¢ die Verbindungsebene der parallelen Geraden 2 und e sowie mit & eine der
beiden im Abstand 1 parallel zu € verlaufenden Ebenen. Fiir die y-Koordinate i
des Schnittpunktes S von ¢ und f gilt

a,(1 —n sinoy, sing,_1) sinoy,

_ <1
(a,cosay, —a, 1) sing,

Y = 1nCoSary —

Deuten wir S als Schnittpunkt der Gemeinnormalen von k und f, wobei k eine
zu a und e parallele Gerade in der Ebene = bezeichnet, so ist der Normalabstand
zwischen k und f grofer als 1. Bezeichnen wir mit T den Schnittpunkt der
Gemeinnormalen von a und f mit der Geraden f, so folgt unsere Behauptung,
falls die y-Koordinate y von T grofer ist als jene von S. Fiir y erhalten wir

Y = 1108 Ctyy—
San(L+a2_)(1 — ncosay) — 1(@y—1 — 8, COS vy
(ancos oy — ay—1)? +a2(1 +a2_,)(sinay,)?

a,(sin ay,)

Die Ungleichung y; > s ist daher dquivalent zu
/1482 ausina,((@n—1 — 8, cOS o) + 1 (8 — B—1 COS )
> (@, c08 oy — 1) + (1 +a2 ))a’(sinoy,)?

Die Giiltigkeit dieser Ungleichung ergibt sich aber aus den beiden folgenden
Ungleichungen [2]:

\/1+a2  aysinay,(ay—1 —a,cosay) > (a, cosay —a,—1)* und

\/1+ a2 8, sinoy(ay — a,_1 cosay) > (1 +a;_,)a;(sinay)?

4. Der Normalabstand zwischen den Geraden e und f ist nicht groBer als jener von a
und f.

5. Bezeichnet b eine Gerade der m-ten Schar (1 < m < n — 1), welche die positive
y-Achse schneidet, so liegt b zwischen den Geraden a4 und e.

(a) Dreht man die Gerade b in der xz-parallelen Ebene durch b solange um ihren

Schnittpunkt mit der y-Achse, bis sic in eine Lage b mit der Steigung 1/a; ge-
langt, so verliuft b parallel zu a und e, wobei aus 2 sowie Satz 4 folgt, dab
der Normalabstand zwischen den Geraden b und f mindestens 1 ist. Dies gilt,
da die Gerade f die Ebene e rechts von e schneidet, also die y-Koordinate des
Schnittpunktes von f und £ gréBer als nn — 1 ist.
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(b) Dreht man in gleicher Weise die Gerade b in die Lage b mit der Steigung 1 /A1,
so verlauft diese gedrehte Gerade b parallel zu 2 und e. Weiter schneidet die
Gerade f die Ebene ¢ im Falle a,cos ay, —a,—1 > 0 rechts von e bzw. im Falle
Ay COS vy — Ay—1 < 0 links von a, sodah also die y-Koordinate des Schnittpunktes
von f und & grofer als 1 — 1 bzw. Kleiner als 1 ist. Zusammen mit 3 und Satz
5 folgt daher insgesamt, daB der Normalabstand zwischen den Geraden b und f
mindestens 1 betrigt.

(¢) Da die Gerade b zwischen den beiden beschriebenen Extremlagen b und b liegt
und diese beiden Geraden jeweils den Mindestabstand 1 zur Geraden f aufweisen,
folgt damit schlieBlich, dah der Normalabstand der Geraden b der m-ten Schar
zur Geraden f der n-ten Schar mindestens 1 ist.

Damit ist der Beweis von Satz 6 abgeschlossen. O

Aus den Sitzen 1 bis 6 folgt nun unmittelbar der in 3 angekiindigte

Hauptsatz 1 Der Normalabstand von je zwei Drehzylinderachsen der in 3 beschriebe-
nen Zylinderkonfiguration ist mindestens 1. Diese Drehzylinder haben daher hochstens
Oberflachenpunkte gemeinsam, bestimmen also tatsachlich eine Zylinderpackung mit
paarweise windschiefen Achsen.

-
AT

g i

(J\‘ o I
W

F”TJM“'
T Wm}l\l&\?\ it

e
] - 0

T

(

Abb. 4

5 Resultat
Wir berechnen nun die Dichte der Zylinderpackung aus 3 und bestitigen damit das in 1
formulierte Ergebnis dieser Publikation:

Hauptsatz 2 Die Dichte der im Abschnitt 3 beschriebenen Zylinderpackung betragt
5/12.
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Beweis:

1. Wir dndern zur Berechnung der Dichte der Zylinderpackung die Lage der einzelnen
Drehzylinder wie folgt ab:

Jede Zylinderachse schneidet die xy-Ebene 7 und schliefit mit 7 einen Winkel
@i < 90° ein. Dreht man jeden Drehzylinder um die Gemeinnormale einerseits sei-
ner Drehachse und andererseits der z-Achse um den Winkel 90° — ¢; derart, daB
die Drehzylinderachse dann parallel zur z-Achse verlduft, dann bleiben die Schnitt-
punkte der Zylinderachsen mit 7, fest. Weiters gilt, daB alle Drehzylinder nach dem
Drehvorgang zueinander parallel liegen und hochstens Oberflaichenpunkte gemeinsam
haben, also wieder eine Packung bestimmen.

Durch dieses Geradestellen dndert sich am Volumen der Durchschnittsmenge zwi-
schen jedem Drehzylinder der Packung sowie der in Kapitel 2 angefiithrten Kugel
2(R) nichts, sodaB auch die zu berechnende Dichte der Zylinderpackung ungedndert
bleibt. Weiter ist der Durchschnitt einer jeden zu 7; parallelen Ebene mit der ge-
drehten Zylinderpackung kongruent, womit sich das Problem der Dichteberechnung
der Zylinderpackung aus 3 darauf reduziert, die Dichte einer Kreispackung in 7; zu
bestimmen.

2. Die Dichte d der Kreispackung ist das Produkt des Kreisinhaltes (= 7/4) und der
Anzahldichte A der Packung [4]. Die Anzahl A(n) der Drehzylinderachsen bis zum
Zihlindex nn = 251 — 1 berechnet sich aufgrund der Anzahl 5-2% der Zylinderachsen
der m-ten Schar (25 <m < 2F+1) gemih

o -1
A(n):les‘z YV =145—5—
j=0
Damit folgt fiir die Anzahldichte
. An)
A= ngrolo R

der Wert ne y
_145@FT 13 s
A= 1 -
Foe (2K —1/2027  3n

Wir erhalten somit d = 5/12 = 0.416 als Dichte der in 3 angefiihrten Zylinderpackung
mit paarweise windschiefen Achsen. ([

6 Diskussion

1. Vergleicht man nun die Dichte d = 5/12 dieser Zylinderpackung mit paarweise
windschiefen Achsen aus 3 mit der maximal moglichen Dichte einer Zylinderpackung
— bei allerdings dann parallelen Achsen — von 7/+/12 =~ 0.907, so erkennt man, daB
unsere Packung noch grofe Freirdume aufweisen mubl. Die Dichte 4 = 5/12 liegt
jedoch weit iiber dem von K. Kuperberg [3] berechneten Wert von 72/576 =~ 0.017
bei einer speziellen Zylinderpackung mit paarweise windschiefen Achsen.
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2.

Wihlt man anstelle des Winkels o, = 72°/2F (28 < n < 2%*!) den Winkel
72°/n (n € N), so ist damit die windschiefe Lage von je zwei Zylinderachsen sowie
der Mindestnormalabstand 1 zwischen je zwei Achsen derselben Schar gewéhrleistet.
Diese Zylinderkonfiguration erfiillt demnach schon einige wesentliche der in 2 und 3
formulierten Forderungen. Unter der Annahme, daf tatséichlich eine Zylinderpackung
mit paarweise windschiefen Achsen vorliegt, weist sie dann eine Packungsdichte von
5/8 = 0.625 auf. Dieser um 5/24 = 0.2083 groBere Wert gegeniiber 4 = 5/12
kann daher als obere Schranke fiir Zylinderpackungen der in 3 beschricbenen Art
angeschen werden.
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