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Über die Bestimmung von Leitfähigkeiten
durch Oberflächenmessungen

Reinhard Lang

Reinhard Lang hat 1976 mit einer Arbeit über unendlich-dimensionale Wienerprozesse

promoviert. Er lehrt und forscht am Institut für Angewandte Mathematik der

Universität Heidelberg. Sein Arbeitsgebiet ist die Brownsche Bewegung mit ihren

mannigfachen Beziehungen zur Analysis und zur Statistischen Physik.

1 Einleitung
Gegeben sei ein elektrisch leitender Körper mit Leitfähigkeit 7. Der Körper sei inhomogen;

7 ist daher eine Funktion des Ortes. Ist es möglich, die Leitfähigkeit zu bestimmen
durch Messungen an der Oberfläche des Körpers allein, ohne in sein Inneres
einzudringen? Wenn ja, kann 7 auf Grund dieser Messungen rekonstruiert werden? Solche

Fragen kommen zum Beispiel in der Geophysik vor, wo es darum geht, an Hand von

Es ist wohl dem Menschen angeboren, sich nicht mil der "äusseren Erscheinung" eines

Objektes zu begnügen, sondern immer auch wissen zu wollen, wie es "im Innern"
aussieht. Diese Information ist natürlich dann besonders wertvoll, wenn sie erhallen wird.
ohne das Objekt zu zerstören. Naturwissenschaftliche Fortschritte in dieser Richtung
haben immer wieder zu spektakulären Hrkcnntnisschübcn geführt, oft mit gewaltigen

praktischen Auswirkungen. Die medizinischen Anwendungen der Röntgcnstrahlcn
oder der Computcrtomographic sind dafür cindrücklichc Beispiele. Es ist keine
Überraschung, dass bei vielen dieser Verfahren die Mathematik eine Schlüsselrolle spielt.
Dies wird im vorliegenden Beitrag von Reinhard Lang an einem konkreten Beispiel
herausgearbeitet. Die Frage w ird gestellt, ob man mit Hilfe von Obcrllächenmessungen
an einem räumlichen Körper die elektrische I .eilfähigkeil in den Punkten im Innern des

Körpers bestimmen kann. Mathematisch gesehen ist dies ein sogenanntes inverses
Problem: Werden in den klassischen (Dirichlet- und von Neumann-) Problemen Lösungen
von partiellen Differentialgleichungen unter gegebenen Randbedingungen gesucht, so

will man bei inversen Problemen aus dem Rand\erhalten Aussagen über Eigenschaften
des Innern des betrachteten Gebietes erhalten. Die mathematische Behandlung inverser
Probleme hat in den vergangenen Jahren grosse Fortschritte gemacht: sie sind heule

Gegenstand intensiv er mathematischer Forschung usi
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Oberflächenmessungen Aussagen über die Zusammensetzung der Erde im Inneren zu
gewinnen. Von großer Bedeutung sind sie auch in der Medizin ("electrical impedance
tomography", siehe dazu verschiedene Artikel in dem Sammelband [2]).

Elektrische Messungen an der Oberfläche eines leitenden Körpers D können zum
Beispiel folgendermaßen vorgenommen werden. Zwischen Elektroden P und Q auf der
Oberfläche 3D legt man einen Strom an. Der aus P austretende Strom sei Jp. Dann
mißt man an verschiedenen Stellen R e 3D die Spannung fR, die in Bezug auf einen

geerdeten Punkt Ro e 3D herrscht.

Fig. 1

Wenn man verschiedene Ströme anlegt und Messungen von Jp und /r an vielen Punkten
P und R der Oberfläche vornimmt, kennt man näherungsweise die Paare (J,f), wobei

/: 3D —> R alle möglichen durch die Oberfläche 3D fließenden Ströme und/^: 3D —> R
die zugehörigen Spannungen auf 3D sind. Das inverse Randwertproblem ist die Frage,
ob die elektrische Leitfähigkeit des Körpers durch diese Information schon eindeutig
bestimmt ist. Ein analoges Problem stellt sich auch bei wärmeleitenden Körpern. Der
elektrischen Leitfähigkeit entspricht dabei die Wärmeleitfähigkeit, dem Potential die

Temperatur und dem elektrischen Strom der Wärmefluß.

Im Folgenden wird versucht, sich schrittweise dem mathematischen Kern des inversen

Randwertproblems zu nähern und die Grundidee seiner Lösung zu erklären.

Dabei werden aus der Elektrizitätslehre nicht mehr als die Gesetze von Ohm und Kirchhoff

benötigt, an die im nächsten Abschnitt erinnert wird. Im dritten Abschnitt wird eine
mathematisch präzise Formulierung der Fragestellung gegeben, und diese wird
eingeordnet in den allgemeinen Problemkreis inverser Probleme. Danach werden die
Grundgedanken der Lösung des Problems skizziert. Diese gehen auf Calderön [1], Kohn und

Vogelius [7], Sylvester und Uhlmann [10] zurück; eine Übersicht über diese Arbeiten
findet sich in [11]. In [11] wird auch gezeigt, wie die Methoden, die an Hand der Lösung
des inversen Randwertproblems gefunden worden sind, auf andere inverse Probleme der
Streu- und Spektraltheorie Anwendung gefunden haben.
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Diskretisiert für elektrische Netzwerke, läßt das inverse Randwertproblem eine elementare,

schon Schülern zugängliche Lösung zu, einschließlich eines Algorithmus zur
Rekonstruktion der Leitfähigkeit aus den Randdaten (vgl. [3], [4]).

2 Die Gesetze von Ohm und Kirchhoff
In diesem Abschnitt betrachten wir anstelle elektrisch leitender Körper elektrische
Netzwerke. Wir wählen die einfachsten Beispiele: ein eindimensionales Netzwerk, das bis
auf die beiden Randkanten nur innere Kanten enthält, und als anderen Extremfall ein
zweidimensionales Netzwerk, das nur Randkanten enthält.

Beispiel 1. Das Netzwerk enthalte n + 1 auf einer Geraden liegende Knoten, die der
Reihe nach mit 0,1,..., n (n > 2) numeriert seien. Die Knoten i — 1 und i seien durch
eine Kante <r; miteinander verbunden (1 < i < n). Die elektrische Leitfähigkeit von <r,

sei 7, > 0; der elektrische Widerstand der Kante a, ist also 7,-
l (1 < i < n).

a, a, a„

0 12 n-1 n

Fig. 2

Das Potential im Knoten i sei mit m, bezeichnet, und /; sei der durch die Kante a,
fließende Strom. Strom und Spannung Potentialdifferenz) sind durch das Ohmsche
Gesetz

Jî -'yî(ui-Ui-i), l<i<n, (1)

miteinander verknüpft. Die Kirchhof/sehe Regel besagt, daß der aus dem Knoten i auf der
rechten Seite herausfließende Strom gleich ist dem auf der linken Seite hineinfließenden:

h+i-h 0, \<i<n-\. (2)

Das inverse Randwertproblem besteht in der Aufgabe, die unbekannten Leitfähigkeiten

7i (1 < i < n) zu bestimmen, wenn alle mit (1) und (2) verträglichen "Randdaten"
(Mo, Ji) und («„,/„) bekannt sind. Es liegt auf der Hand, daß das in diesem eindimensionalen

Beispiel nicht möglich ist, weil der "Rand" zu klein ist. In der Tat erlauben die
Daten nur, das harmonische Mittel (7^ + + 7„~1)~1 zu bestimmen. Denn aus (1)
und (2) bekommt man mit h h ¦ ¦ ¦ Jn J

Un-U0 (M„ - M„-i + + (Mi - Mo)

+ +

und umgekehrt folgt aus (3): zu zwei Netzwerken, deren Leitfähigkeiten dasselbe
harmonische Mittel haben, gehören dieselben Randdaten (m0 /1) und (m„ /„), wobei das

Potential bis auf eine additive Konstante eindeutig ist (Eindeutigkeit kann zum Beispiel
durch die Erdung u0 0 erreicht werden).
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Wir überlegen noch, was die Energie ist, die von dem in Bild 2 gezeichneten Netzwerk

pro Zeiteinheit dissipiert wird. Die von einer einzelnen Kante a, dissipierte Energie
(Spannung x Strom) ist

Die von allen Kanten dissipierte Energie %7 ist daher

(4)
{=1 {=1

Aus (4) und (2) folgt, daß sich %^ auch durch Randterme alleine ausdrücken läßt:

rt1 Uoh-u„Jn. (5)

Beispiel 2. Das Netzwerk bestehe aus fünf Knoten (i 0,1,..., 4) und vier Kanten a;
(i 1,... ,4) wie in Bild 3.

4-
a2

Fig. 3

Die Kante a, habe die Leitfähigkeit 7, > 0, und der durch a, fließende Strom sei /;
(1 < i < 4). Das Potential im Knoten i sei w, (0 < i < 4). Es gilt das Ohmsche Gesetz

/{ -7i(M{-Mo), 1 < I < 4. (6)

(Die Wahl des Vorzeichens von J3 und /4 ist nicht konsistent mit (1), aber zweckmäßig,
weil jetzt alle Kanten äußere Kanten des Netzwerkes sind). Die Kirchhoffsehe Regel
besagt

/l+/2+/3+/4 0, (7)
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woraus mit (6) die Mittelwerteigenschaft

folgt. Wenn /,-, 1 < i < 4, gegeben ist, kann man bei bekanntem 7 aus (6) sofort
die Randspannungen «,, 1 < i < 4, bestimmen (bis auf eine additive Konstante). Wenn

umgekehrt bei unbekanntem 7 alle möglichen mit (6) und (7) verträglichen Werte (/;,«,-),
1 < i < 4, gegeben sind, hat man genug Gleichungen, um daraus die fünf Unbekannten

Mo, 71, 72, 73, 74 bestimmen zu können.

Die Frage ist, ob dasselbe bei größeren Netzwerken in Zd, d > 2, die viele innere Knoten
und einen vergleichsweise kleinen Rand haben, immer noch der Fall ist. Dem analogen
Problem im Kontinuierlichen wenden wir uns im Folgenden zu.

3 Mathematische Formulierung des Problems

Zur mathematischen Präzisierung des inversen Randwertproblems benutzen wir folgende
Notation. D c Rd (d > 2) sei eine zusammenhängende offene und beschränkte Menge
mit glattem Rand dD, ihr Abschluß sei D D U dD. Die nach außen_weisende
Einheitsnormale sei mit n(x),_x G dD, bezeichnet. Die Leitfähigkeit 7 in D sei eine strikt
positive C°°-Funktion 7: D —s- R.

In der Einleitung waren wir davon ausgegangen, daß man an einen leitenden Körper einen
Strom anlegt und dann die dadurch erzeugte Randspannung mißt. Vom mathematischen

Standpunkt aus ist es bequemer, sich umgekehrt verschiedene Potentiale / am Rand 3D
vorzugeben und den jeweils dazugehörigen Stromfluß jf durch 3D zu betrachten. Sei

also ein Randpotential/: 3D —s- R gegeben. Um das Arbeiten mit Distributionsräumen zu
vermeiden, nehmen wir der Einfachheit halber/ G C°°(<9D) an, d. h. / sei als unendlich
oft differenzierbar vorausgesetzt. Um den zu/ gehörigen Randstrom ]f zu finden, müssen

wir zuerst das Gleichgewichts-Potential u, welches sich bei Randpotential / im Inneren
des Körpers bildet, bestimmen. Es ist die eindeutig bestimmte, in D stetige Lösung
u: D —s- R des Problems (Dirichlet-Problem in D bei Randbedingung /)

fdiv(7(x)VM(x)) O, xeD
\u(x)=f(x), xedD, y '

wobei Vm(x) gradw(x). Gleichung (9) ergibt sich folgendermaßen. Für den Strom /
in D gilt das Analogon zum Ohmschen Gesetz (1)

-7(x)Vm(x), xgD, (10)

und das Analogon zur Kirchhoffschen Regel (2)

div/(x) 0, xgD, (11)

d. h. der Strom ist in D quellen- und senkenfrei. Zusammengenommen ergeben (10) und
(11) gerade die obere Gleichung in (9). Bei gegebenem / g C°°(dD) bezeichnen wir
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die Lösung des Dirichlet-Problems (9) mit i/; wegen / G C°°(dD) ist dann uf glatt in
D, so daß uf alle im Folgenden benutzten Differenzierbarkeitseigenschaften besitzt. Bei
Randpotential / ist der zugehörige durch die Oberfläche 3D fließende Strom jf gegeben
durch (vgl. (10))

|^(x), xedD; (12)

dabei bedeutet • das Skalarprodukt in Rd und -^ die Normalableitung in Richtung n.

Damit können wir das inverse Randwertproblem folgendermaßen formulieren: Die
Leitfähigkeit 7: D —> R sei unbekannt. Für alle / G C°° (<9D) seien die Paare (/, jf) gegeben.

Ist 7 durch diese Angaben schon eindeutig bestimmt?

Während beim direkten Problem (9) die Aufgabe darin besteht, bei bekanntem 7, d. h.

bei gegebener Gleichung (9), die Lösung uf zu finden, ist beim inversen Problem die

Gleichung selbst nicht gegeben. Vielmehr ist es umgekehrt die Aufgabe, aus Eigenschaften

der Lösungen für verschiedene Randwerte / die unbekannte Funktion 7 zu finden.
Dies ist ein Beispiel für Aufgaben vom inversen Typ, wie sie häufig in Naturwissenschaft
und Technik auftreten, etwa wenn die Gestalt eines streuenden Objektes zu finden ist,
gegeben die Intensität der gestreuten Licht- oder Schallwellen in verschiedenen
Richtungen. Eine schöne Einführung in inverse Probleme dieser und ähnlicher Art kann der
daran interessierte Leser in [5] finden.

Wir nennen eine Funktion u: D —> R ^-harmonisch in D, wenn sie

div(7(x)V«(x)) =0, xgD, (13)

erfüllt. Die Bedingung (13) ist das kontinuierliche Analogon zur Mittelwerteigenschaft
(8). Im Spezialfall 7=1 bedeutet (13) gerade Aw(x) 0, x G D, wobei

A
d2 d2

dx2 ' ' '

dx\

der Laplace-Operator ist, d. h. u ist harmonisch im üblichen Sinn. Der Leser der
"Elemente der Mathematik" kann Beiträge zum Thema harmonische Funktionen zum Beispiel
in den Aufsätzen [8] oder [12] in dieser Zeitschrift finden.

Bei nicht festgelegten Randbedingungen gibt es viele auf D glatte Funktionen, welche

7-harmonisch in D sind, nämlich genauso viele, wie es verschiedene Randbedingungen

/ g C°°(<9D) gibt. So gesehen besteht der mathematische Kern des inversen

Randwertproblems darin, "geeignete" 7-harmonische Funktionen zu finden, die "genug"
Randbedingungen / und zugehörige Randströme jf produzieren, so daß daraus auf die

Eindeutigkeit von 7 geschlossen werden kann. Was dabei "geeignet" und "genug"
genauer bedeutet, wird in Abschnitt 6 präzisiert werden.
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4 Formulierung des Satzes

Für/ G C°°(<9D) sei uf die Lösung des Dirichlet-Problems (9). Die zusammengesetzte
Abbildung

bezeichnen wir mit

A7(/) =7 — (14)
an dD

A7(/) ist also das Negative (die Wahl des Vorzeichens ist Konvention) des durch die

Oberfläche 3D fließenden Stromes bei gegebenem Randpotential / und bei
zugrundeliegendem 7. Der Definitionsbereich von A7 läßt sich auf eine größere Klasse von
Funktionen /: dD —s- R ausdehnen, was aber für die folgenden Überlegungen zunächst
nicht erforderlich ist.

Es sieht vielleicht so aus, als sei die Einführung von A7 nur eine zusätzliche, aber
entbehrliche Notation. Das ist nicht der Fall, es steckt mehr dahinter, nämlich der auf
Calderön [1] zurückgehende Gedanke, die Abbildung 7 1—> A7 mit funktionalanalytischen

Mitteln zu untersuchen. Das inverse Randwertproblem ist die Frage, ob diese

Abbildung injektiv ist.

Satz. Sei d > 2, und 7, G C°°(D) seien strikt positive Leitfähigkeiten in D (i 1,2).
Dann gilt

A7l A72 =>7i =72. (15)

Die Leitfähigkeit ist also in der Tat durch die Randwerte (J,]f) allein schon eindeutig
bestimmt, zumindest in der Klasse der strikt positiven, unendlich oft differenzierbaren
Funktionen. Der Satz gibt allerdings keinen Hinweis darauf, wie man 7 aus den Randdaten

tatsächlich rekonstruieren kann. Für die zu diesem Zweck entwickelten numerischen
Verfahren siehe zum Beispiel [6].

In den nächsten beiden Abschnitten soll die Grundidee des Beweises des Satzes erklärt
werden. Dazu überlegen wir zuerst, was die elektrische Energie eines auf Randpotential /
befindlichen Körpers ist, und welche Symmetrie-Eigenschaften die Abbildung A7 besitzt.

5 Energie und Symmetrie
Sei / G C°°(dD) gegeben. Was ist die Energie %1, die pro Zeiteinheit erforderlich ist,

um das Randpotential / auf 3D aufrecht zu erhalten? In Analogie zu Netzwerken gilt
(vgl. (4))

r
j(x) \Vuf(x)\2dx. (16)

Wir nennen %7 die Energie des leitenden Körpers D (korrekt wäre, von Energie pro
Zeiteinheit, also von Leistung, zu sprechen) und schreiben

%,, %,,{u^uf)= [ <y(x) \W(x)\2dx, /gC°°(c»D). (17)
Jd
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Die Energie ist mit der Abbildung A7 verknüpft durch

%1{y!M)= I f(x)A,(f)(x)a(dx), (18)
Jod

wobei a(dx) das Oberflächenmaß auf 3D ist. Formel (18) ist das Analogon zu (5) und

folgt aus dem Greenschen Satz partielle Integration für mehrdimensionale Integrale)

Vv{x)-F{x)dx [ v{x)F{x)-n{x)a{dx)- [ v(x)divF(x)dx (19)
D JdD JD

für hinreichend reguläre Funktionen v:D —> R und Vektorfelder F.D —> Rd. Denn aus

(19), angewandt mit v uf und F ^Vu/', bekommt man wegen (9) und (14)

dD

r
- / uf(x)dw(-f(x)Vt/(x))dx (20)

JD

j £a= j f{x)K1{J){x)a{dx).
JdD On JdD

Es ist zweckmäßig, etwas allgemeiner als (17) die bilineare Form

%7(u,v) f -/Vu- Vvdx, m,cgC°°(D), (21)
Jd

zu betrachten. Wie in (20) bekommt man mit partieller Integration, daß für Funktionen

u,v e C°°(D), welche in D 7-harmonisch sind, gilt

%1{u,v)= f{x)K1{g){x)a{dx) mit f u\dD und g v\dD. (22)
JdD

Weil %7 symmetrisch ist, folgt aus (22) die Symmetrie

I fA1(g)da= I gA^{f)da, f,g (=C°°(dD). (23)
dD JdD

Die anschauliche Bedeutung von (23) ist die auf Grund der Geometrie des Körpers D
keineswegs offensichtliche, aber in der Elektrizitätslehre häufig anzutreffende Symmetrie
zwischen Spannung und Strom.

Aus der Symmetrie von A7 ergibt sich unmittelbar das folgende Lemma, von dem im
nächsten Abschnitt der Beweis des Satzes seinen Ausgang nehmen wird.

Lemma. Seien 7, (i^= 1,2) C°°-Leitfähigkeiten mit A7l A72. Dann gilt für alle
Funktionen u, G C°°(D), die in D ^-harmonisch sind (i =1,2)

(71 (x) - 72(x)) Vui(x) • Vm2(x) dx 0. (24)
D
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Beweis. Mit der Formel (19) der partiellen Integration bekommt man

r ff/ (71 - 72) V«i • Vm2 dx Vm2 • (71 V«i) dx - / V«i • (72VM

f i,[ du2
/ U2"f\—-da - / "i72^— da.

Jod ein JdD dn

Setzt man m,|öd fi und benutzt die Symmetrie (23), bekommt man aus (25) und aus

der Voraussetzung A7l A72 :

f f/ (71 - 72) Vmi • Vm2 dx / /2A71 (/, )da -Jd JdD
[
dD

dD JdD

dD

6 Grundidee des Beweises des Satzes

Die Dimension des Raumes sei d > 2, und 71,72 € C°°(D) seien gegebene Leitfähigkeiten.

Es sei ip G C°°(D) eine stetige Funktion auf D so, daß gilt

- Vu2(x)dx 0 (26)

für alle Funktionen m, G C°°(D), welche in D ^-harmonisch sind (i 1,2). Wenn wir
zeigen können, daß daraus ip 0 folgt, ist wegen des Lemmas der Satz bewiesen. Um
den Grundgedanken, der zum Beweis von <p 0 führt, zu erklären, betrachten wir ein
einfacheres Problem, nämlich den Spezialfall dieser Aussage unter der Voraussetzung

71 72 1. Wir zeigen:

Wenn ^ g C(D) so, daß

/ <p{x) V«(x) • Vc(x) dx 0 (27)

für alle in D harmonischen u, v G C°°(D), dann ist notwendig y 0.

Zum Beweis ist es zweckmäßig, harmonische_Funktionen m mit Werten in den komplexen
Zahlen C zu betrachten. Eine Funktion u: D —> C heißt harmonisch in D, wenn Real-
und Imaginärteil harmonisch sind. Für zwei Vektoren w,z G Cd bezeichnen wir das

Skalarprodukt in Cd mit (w,z) W\Z\ + + WdZd. Durch Zerlegung in Real- und

Imaginärteil sieht man, daß die Gültigkeit von (27) für alle reellwertigen harmonischen
Funktionen die Gültigkeit von

<p(x){Vu(x),Vv(x))dx 0 (28)
D

für alle komplexwertigen harmonischen Funktionen u, v nach sich zieht.
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Wie kann man aus (28) auf <p 0 schliessen? Calderons Idee (siehe [1]) ist es, zu
versuchen, einen Zusammenhang mit der Fourier-Transformierten (F. t.) der Funktion <p,

<p(k) -27rffc -x)ip(x)dx, keW, (29)

herzustellen. Dazu sucht man harmonische Funktionen in der Klasse der Funktionen

Mp(x) exp(-îV(Ax)), PeCd. (30)

Sei p k + il (k, I e Rd). Die Funktion up ist harmonisch genau dann, wenn

Aup(x) -TT2(p,p)u(x) 0, d.h.

{k + il, k + il) \k\2 -\l\2 + 2ik-l 0, d.h.

121 \k\ und k-l O. (31)

Fig. 4

Sei k G Rd gegeben. Wegen d > 2 kann man dazu ein I h G Rd finden, so daß (31)
erfüllt ist (vgl. Bild 4). Für p k+il und p k -il sind dann die Funktionen up und

up harmonisch, und nach Voraussetzung (28) ist daher

0

-k2 {p, p) (32)

-2ttz -2irik ¦ x)dx -2ir2\k\2cp(k),
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Die F. t. von ip ist also identisch Null. Da die Funktion ip eindeutig durch ihre F. t.

bestimmt ist (Fourier-Inversion), folgt daraus ip 0, und das Modellproblem (27) ist

gelöst.

Sylvester und Uhlmann [10] ist es gelungen, das Problem (26) bei allgemeinem 7, G

C°°(D) (i 1,2) zu lösen. Dazu haben sie ^-harmonische Funktionen w, (i 1,2)
konstruiert, die von exponentiellem Typ sind, ähnlich wie die Funktionen up in (30). Das
Lemma aus Abschnitt 5 bleibt richtig für eine den Raum C°°(D) umfassende Klasse von
7, -harmonischen Funktionen, welche insbesondere die so konstruierten 7,-harmonischen
Funktionen enthält. Wenn die Dimension d > 3 ist, kann man dann ähnlich
weiterschließen wie in obigem Modellproblem und die Injektivität von 7 1—> A7 folgern
(siehe [10]). Der Grenzfall d 2 ist schwieriger und lange offen geblieben. Geometrisch

hängt das damit zusammen, daß in Bild 4 bei Dimension d 2 der Vektor /

schon eindeutig durch k festgelegt ist (bis auf das Vorzeichen), während man für d > 3

zusätzliche Freiheitsgrade hat, die man beim Beweis des Satzes ausnutzen kann. Der
verbleibende Fall d 2 ist erst jüngst von Nachman [9] vollständig bewiesen worden.

Bemerkung. Der Dank des Verfassers gilt Steffen Heinze und Reimer Kühn. Aus
Diskussionen mit ihnen ist dieser Aufsatz entstanden.
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