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Uber die Bestimmung von Leitfihigkeiten
durch Oberflichenmessungen

Reinhard Lang

Reinhard Lang hat 1976 mit einer Arbeit {iber unendlich-dimensionale Wienerpro-
zesse promoviert. Er lehrt und forscht am Institut fir Angewandte Mathematik der
Universitdt Heidelberg. Sein Arbeitsgebiet ist die Brownsche Bewegung mit ihren
mannigfachen Beziehungen zur Analysis und zur Statistischen Physik.

1 Einleitung

Gegeben sei ein elektrisch leitender Korper mit Leitfahigkeit . Der Kérper sei inhomo-
gen; +y ist daher eine Funktion des Ortes. Ist es moglich, die Leitfahigkeit zu bestimmen
durch Messungen an der Oberfliche des Kormpers allein, ohne in sein Inneres einzu-
dringen? Wenn ja, kann ~ auf Grund dieser Messungen rekonstruiert werden? Solche
Fragen kommen zum Beispiel in der Geophysik vor, wo es darum geht, an Hand von

ol Objekt zu zerstoren. Naturwissenschal
 haben immer wieder zu spektakularen Erkenn
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Oberflichenmessungen Aussagen iiber diec Zusammensetzung der Erde im Inneren zu
gewinnen. Von grofier Bedeutung sind sie auch in der Medizin (“electrical impedance
tomography”, siche dazu verschiedene Artikel in dem Sammelband [2]).

Elektrische Messungen an der Oberfldche eines leitenden Korpers D konnen zum Bei-
spiel folgendermaBen vorgenommen werden. Zwischen Elektroden P und Q auf der
Oberfliche JD legt man einen Strom an. Der aus P austretende Strom sei [p. Dann
mifit man an verschiedenen Stellen R € 9D die Spannung fr, die in Bezug auf einen
geerdeten Punkt Ry € 0D herrscht.

Fig. 1

Wenn man verschiedene Strome anlegt und Messungen von Jp und f an vielen Punkten
P und R der Oberfliche vornimmt, kennt man niherungsweise die Paare (7, ff ), wobei
J: 0D — R alle mdglichen durch die Oberfliche 0D fliehenden Stréme und f: 9D — R
die zugehdrigen Spannungen auf 0D sind. Das inverse Randwertproblem ist die Frage,
ob die elektrische Leitfahigkeit des Korpers durch diese Information schon eindeutig
bestimmt ist. Ein analoges Problem stellt sich auch bei wirmeleitenden Kérpern. Der
elektrischen Leitfahigkeit entspricht dabei die Wérmeleitfdhigkeit, dem Potential die
Temperatur und dem elektrischen Strom der WarmefluB3.

Im Folgenden wird versucht, sich schrittweise dem mathematischen Kern des inversen
Randwertproblems zu ndhern und die Grundidee seiner Losung zu erkliren.

Dabei werden aus der Elektrizititslehre nicht mehr als die Gesetze von Ohm und Kirch-
hoff benétigt, an die im nichsten Abschnitt erinnert wird. Im dritten Abschnitt wird eine
mathematisch prizise Formulierung der Fragestellung gegeben, und diese wird einge-
ordnet in den allgemeinen Problemkreis inverser Probleme. Danach werden die Grund-
gedanken der Losung des Problems skizziert. Diese gehen auf Calderén [1], Kohn und
Vogelius [7]. Sylvester und Uhlmann [10] zuriick; eine Ubersicht iiber diese Arbeiten
findet sich in [11]. In [11] wird auch gezeigt, wie die Methoden, die an Hand der Lésung
des inversen Randwertproblems gefunden worden sind, auf andere inverse Probleme der
Streu- und Spektraltheoric Anwendung gefunden haben.
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Diskretisiert fiir elektrische Netzwerke, 148t das inverse Randwertproblem eine elemen-
tare, schon Schiilern zugéngliche Losung zu, einschlieBlich eines Algorithmus zur Re-
konstruktion der Leitfahigkeit aus den Randdaten (vgl. [3], [4]).

2 Die Gesetze von Ohm und Kirchhoff

In diesem Abschnitt betrachten wir anstelle elektrisch leitender Korper elektrische Netz-
werke. Wir wihlen die einfachsten Beispiele: ein eindimensionales Netzwerk, das bis
auf die beiden Randkanten nur innere Kanten enthilt, und als anderen Extremfall ein
zweidimensionales Netzwerk, das nur Randkanten enthilt.

Beispiel 1. Das Netzwerk enthalte 7 + 1 auf einer Geraden liegende Knoten, die der
Reihe nach mit 0, 1,...,n (n > 2) numeriert seien. Die Knoten i — 1 und ¢ seien durch
eine Kante o; miteinander verbunden (1 < i < n). Die elektrische Leitfihigkeit von o;
sei v > 0; der elektrische Widerstand der Kante o; ist also ;' (1 <i < n).

Fig. 2

Das Potential im Knoten i sei mit #; bezeichnet, und J; sei der durch dic Kante o;
flieBende Strom. Strom und Spannung ( = Potentialdifferenz) sind durch das Ohmsche
Geselz

Ji = —yiwi —ui—1), 1<i<n, (1)

miteinander verkniipft. Die Kirchhoffsche Regel besagt, daB der aus dem Knoten i auf der
rechten Seite herausflieBende Strom gleich ist dem auf der linken Seite hineinflieBenden:

Jinn —Ji =0, 1<i<n-1 (2)

Das inverse Randwertproblem besteht in der Aufgabe, die unbekannten Leitfahigkeiten
v (1 < i < n) zu bestimmen, wenn alle mit (1) und (2) vertriglichen “Randdaten”
(uo, ]1) und (u,,[,) bekannt sind. Es liegt auf der Hand, daB das in diesem eindimen-
sionalen Beispiel nicht méglich ist, weil der “Rand” zu klein ist. In der Tat erlauben die
Daten nur, das harmonische Mittel (v, ' + ...+, ')~ zu bestimmen. Denn aus (1)
und 2) bekommt manmit } =, =... =, =]

Uy — Uy = (Up — Up—1) + ... + (1 — Up)

N _ (3)

=R BV
und umgekehrt folgt aus (3): zu zwei Netzwerken, deren Leitfahigkeiten dasselbe har-
monische Mittel haben, gehoren dieselben Randdaten (i , [1) und (1, , ,), wobei das
Potential bis auf eine additive Konstante eindeutig ist (Eindeutigkeit kann zum Beispiel
durch die Erdung 1, = 0 erreicht werden).
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Wir iiberlegen noch, was die Energie ist, dic von dem in Bild 2 gezeichneten Netzwerk
pro Zeiteinheit dissipiert wird. Die von einer einzelnen Kante o; dissipierte Energie
(Spannung x Strom) ist

— (Ui — 1) - i
Die von allen Kanten dissipierte Energie €., ist daher

n
%WZ_Z( i — Ui 1]1 271 Ui — Ui 1 . (4)
i=1
Aus (4) und (2) folgt, daB sich €, auch durch Randterme alleine ausdriicken laft:
%7:1/{011 — U Jn. (5)

Beispiel 2. Das Netzwerk bestehe aus fiinf Knoten (i = 0, 1,...,4) und vier Kanten o;
(i=1,...,4) wic in Bild 3.

8]

Fig. 3

Die Kante o; habe die Leitfahigkeit v; > 0, und der durch o; flieBende Strom sei J;
(1 <i<4). Das Potential im Knoten i sei #; (0 <i < 4). Es gilt das Ohmsche Gesetz

Ji = —vi (ui — to), 1<i<4 (6)

(Die Wahl des Vorzeichens von [; und /4 ist nicht konsistent mit (1), aber zweckmaBig,
weil jetzt alle Kanten duflere Kanten des Netzwerkes sind). Die Kirchhoffsche Regel
besagt

hth+th+la=0, (7)
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woraus mit (6) die Mittelwerteigenschaft

4

4
Uy = ZAiui mit N =y Z’y]' (8)
=1

i=1

folgt. Wenn [;, 1 < i < 4, gegeben ist, kann man bei bekanntem ~ aus (6) sofort
die Randspannungen #;, 1 < i < 4, bestimmen (bis auf eine additive Konstante). Wenn
umgekehrt bei unbekanntem ~y alle méglichen mit (6) und (7) vertriglichen Werte (J; , 1),
1 <1i <4, gegeben sind, hat man genug Gleichungen, um daraus die finf Unbekannten
Uo, Y1, Y2, V3, Y4 bestimmen zu konnen.

Die Frage ist, ob dasselbe bei groBeren Netzwerken in Z¢, d > 2, die viele innere Knoten
und einen vergleichsweise kleinen Rand haben, immer noch der Fall ist. Dem analogen
Problem im Kontinuierlichen wenden wir uns im Folgenden zu.

3 Mathematische Formulierung des Problems

Zur mathematischen Prizisierung des inversen Randwertproblems benutzen wir folgende
Notation. D C R? (d > 2) sei eine zusammenhingende offene und beschrinkte Menge
mit glattem Rand 0D, ihr Abschluf sei D = D U dD. Die nach auBen weisende Ein-
heitsnormale sei mit #(x), x € ID, bezeichnet. Die Leitfahigkeit v in D sei eine strikt
positive C*°-Funktion v: D — R.

In der Einleitung waren wir davon ausgegangen, dahl man an einen leitenden Korper einen
Strom anlegt und dann die dadurch erzeugte Randspannung mifit. Vom mathematischen
Standpunkt aus ist es bequemer, sich umgekehrt verschiedene Potentiale f am Rand 9D
vorzugeben und den jeweils dazugehdrigen Stromflud J/ durch 8D zu betrachten. Sei
also ein Randpotential f: 9D — R gegeben. Um das Arbeiten mit Distributionsrdumen zu
vermeiden, nehmen wir der Einfachheit halber f € C*°(0D) an, d. h. f sei als unendlich
oft differenzierbar vorausgesetzt. Um den zu f gehdrigen Randstrom J/ zu finden, miissen
wir zuerst das Gleichgewichts-Potential u, welches sich bei Randpotential f im Inneren
des Korpers bildet, bestimmen. Es ist die eindeutig bestimmte, in D stetige Losung
u: D — R des Problems (Dirichlet-Problem in D bei Randbedingung f)

div (y(x)Vu(x)) =0, xeD 9
u(x) = f(x), x € aD, )

wobei Vu(x) = gradu(x). Gleichung (9) ergibt sich folgendermaBen. Fiir den Strom |
in D gilt das Analogon zum Ohmschen Gesetz (1)

J(x) = —v(x) Vu(x), xeD, (10)
und das Analogon zur Kirchhoffschen Regel (2)
div/(x) =0, x €D, (11)

d. h. der Strom ist in D quellen- und senkenfrei. Zusammengenommen ergeben (10) und
(11) gerade die obere Gleichung in (9). Bei gegebenem f € C*°(9D) bezeichnen wir
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die Losung des Dirichlet-Problems (9) mit #; wegen f € C>(dD) ist dann #/ glatt in
D. so daB #/ alle im Folgenden benutzten Differenzierbarkeitseigenschaften besitzt. Bei
Randpotential f ist der zugehorige durch die Oberflaiche oD flieBende Strom J/ gegeben
durch (vgl. (10))

f
P (x) = —v(x) (Vi (x)) - n(x) = —v(x)(zin(x% x € 0D; (12)

dabei bedeutet - das Skalarprodukt in R? und % die Normalableitung in Richtung 7.

Damit kénnen wir das inverse Randwertproblem folgendermaBen formulieren: Die Leit-
fahigkeit v: D — R sei unbekannt. Fiir alle f € C>(0D) seien die Paare (f, /) gegeben.
Ist v durch diese Angaben schon eindeutig bestimmt?

Wihrend beim direkten Problem (9) die Aufgabe darin besteht, bei bekanntem +, d. h.
bei gegebener Gleichung (9), die Losung 1/ zu finden, ist beim inversen Problem die
Gleichung selbst nicht gegeben. Vielmehr ist es umgekehrt die Aufgabe, aus Eigenschaf-
ten der Losungen fiir verschiedene Randwerte f die unbekannte Funktion ~ zu finden.
Dies ist ein Beispiel fiir Aufgaben vom inversen Typ, wie sie hiufig in Naturwissenschaft
und Technik auftreten, etwa wenn die Gestalt eines streuenden Objektes zu finden ist,
gegeben die Intensitiat der gestreuten Licht- oder Schallwellen in verschiedenen Rich-
tungen. Eine schone Einfithrung in inverse Probleme dieser und dhnlicher Art kann der
daran interessierte Leser in [5] finden.

Wir nennen cine Funktion 1: D — R ~-harmonisch in D, wenn sie
div(y(x) Vu(x)) =0, xeD, (13)

erfiillt. Die Bedingung (13) ist das kontinuierliche Analogon zur Mittelwerteigenschaft
(8). Im Spezialfall v = 1 bedeutet (13) gerade Au(x) =0, x € D, wobei

P »*
A=—+...+—
8x%+ Jr<9x§

der Laplace-Operator ist, d. h. u ist harmonisch im iiblichen Sinn. Der Leser der “Ele-
mente der Mathematik” kann Beitrdge zum Thema harmonische Funktionen zum Beispiel
in den Aufsitzen [8] oder [12] in dieser Zeitschrift finden.

Bei nicht festgelegten Randbedingungen gibt es viele auf D glatte Funktionen, wel-
che y-harmonisch in D sind, nimlich genauso viele, wie es verschiedene Randbedin-
gungen f € C*(9D) gibt. So gesehen besteht der mathematische Kern des inversen
Randwertproblems darin, “geeignete” y-harmonische Funktionen zu finden, die “genug”
Randbedingungen f und zugehérige Randstrome J/ produzieren, so dab daraus auf die
Eindeutigkeit von v geschlossen werden kann. Was dabei “geeignet” und “genug” ge-
nauer bedeutet, wird in Abschnitt 6 prizisiert werden.
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4 Formulierung des Satzes

Fiir f € C*°(9D) sei 1/ die Losung des Dirichlet-Problems (9). Die zusammengesetzte
Abbildung

fod = ()
bezeichnen wir mit
M) =y (14
¢ m |op

A, (f) ist also das Negative (dic Wahl des Vorzeichens ist Konvention) des durch die
Oberfliche 0D flieBenden Stromes bei gegebenem Randpotential f und bei zugrun-
deliegendem . Der Definitionsbereich von A, 1aBt sich auf eine grofere Klasse von
Funktionen f: 9D — R ausdehnen, was aber fiir die folgenden Uberlegungen zunichst
nicht erforderlich ist.

Es sieht vielleicht so aus, als sei die Einfithrung von A, nur eine zusétzliche, aber
entbehrliche Notation. Das ist nicht der Fall, es steckt mehr dahinter, nAmlich der auf
Calderén [1] zuriickgehende Gedanke, die Abbildung v —— A, mit funktionalanaly-
tischen Mitteln zu untersuchen. Das inverse Randwertproblem ist die Frage, ob diese
Abbildung injektiv ist.

Satz. Seid > 2, und ~; € COO(D_) seien strikt positive Leitfihigkeiten in D (i=1,2).
Dann gilt
A’Y1 :A’Yz:>'71 =72 (15)

Die Leitfihigkeit ist also in der Tat durch die Randwerte (f, ) allein schon eindeutig
bestimmt, zumindest in der Klasse der strikt positiven, unendlich oft differenzierbaren
Funktionen. Der Satz gibt allerdings keinen Hinweis darauf, wie man ~ aus den Randda-
ten tatsichlich rekonstruieren kann. Fiir die zu diesem Zweck entwickelten numerischen
Verfahren siche zum Beispiel [6].

In den nichsten beiden Abschnitten soll die Grundidee des Beweises des Satzes erklért
werden. Dazu iiberlegen wir zuerst, was die elektrische Energie eines auf Randpotential f
befindlichen Kd1pers ist, und welche Symmetrie-Eigenschaften die Abbildung A, besitzt.

5 Energie und Symmetrie

Sei f € C*°(9D) gegeben. Was ist dic Energie €., die pro Zeiteinheit erforderlich ist,
um das Randpotential f auf D aufrecht zu erhalten? In Analogie zu Netzwerken gilt

(vel (4)
%yz/D'y(x) Vil (x) | dx. (16)

Wir nennen ‘€, die Energie des leitenden Korpers D (korrekt wire, von Energie pro
Zeiteinheit, also von Leistung, zu sprechen) und schreiben

€, -, (uf7uf):/v(x) |Vl (x) | dx, feCx(aD). (17)
D
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Die Energie ist mit der Abbildung A, verkniipft durch

&, W) = f Ay (f) (x) o (dx), (18)

wobei o(dx) das OberflichenmaB auf OD ist. Formel (18) ist das Analogon zu (5) und
folgt aus dem Greenschen Satz (= partielle Integration fiir mehrdimensionale Integrale)

/VU dxf/ v(x)F(x)~n(x)a(dx)—/v(x)diVF(x)dx (19)
oD D

fiir hinreichend regulire Funktionen v: D — R und Vektorfelder F: D — RY. Denn aus
(19), angewandt mit v = #/ und F = ~V1/, bekommt man wegen (9) und (14)

&) = [ W (x) (y(x) Vil (x)) - n(x) o (dx)

oD

_ / f (x) div(y(x) Vil (x)) dx (20)

/fv—da—/f A, () (x

Es ist zweckmiBig, etwas allgemeiner als (17) die bilineare Form
%W(um):/«qu‘Vvdag u,veC"o(ﬁ), (21)
D

zu betrachten. Wie in (20) bekommt man mit partieller Integration, dab fiir Funktionen
u,v € C*(D), welche in D ~y-harmonisch sind, gilt

E4( f Jo(dx) mit f=ulspp und g =0lsp. (22)

Weil €., symmetrisch ist, folgt aus (22) die Symmetrie

[ i @io = [ gnio,  fgec=(p) @)
8D 8D

Die anschauliche Bedeutung von (23) ist die auf Grund der Geometrie des Korpers D
keineswegs offensichtliche, aber in der Elektrizititslehre hiufig anzutreffende Symmetrie
zwischen Spannung und Strom.

Aus der Symmetrie von A, ergibt sich unmittelbar das folgende Lemma, von dem im
nichsten Abschnitt der Beweis des Satzes seinen Ausgang nehmen wird.

Lemma. Seien ~; (i = 1,2) C-Leitfihigkeiten mit A,, = A.,. Dann gilt fiir alle
Funktionen u; € C*° (D), die in D ~;-harmonisch sind (i = 1,2)

/D (31 (x) = 72 (x)) Vs (x) - Vaa () dx = 0, (24)
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Beweis. Mit der Formel (19) der particllen Integration bekommt man

/(’Yl — ) Vuy - Vi dx = / Vi - (Vi) dx —/ Vi - (Vi) dx
D D D

*/ u'y%da—/ u'y%da
(9D2187’l gDIZaTl '

Setzt man u;|sp = f; und benutzt die Symmetrie (23), bekommt man aus (25) und aus
der Voraussetzung A, = A,,:

(25)

Lon =V Ve = [ pas(fdo = [ fit(hydo
— [ Ao~ [ fin (o
aD 8D
— [ At~ (o ~0.
oD

6 Grundidee des Beweises des Satzes

Die Dimension des Raumes sei d > 2, und v1,v, € C C>O(15) seien gegebene Leitfahig-
keiten. Es sei ¢ € C*°(D) eine stetige Funktion auf D so, daB gilt

/ o(x) Vi (x) - Vup(x)dx =0 (26)
D

fiir alle Funktionen 1#; € C*°(D), welche in D ~;-harmonisch sind (i = 1,2). Wenn wir
zeigen konnen, dab daraus ¢ = 0 folgt, ist wegen des Lemmas der Satz bewiesen. Um
den Grundgedanken, der z7um Beweis von ¢ = 0 fiihrt, zu erklidren, betrachten wir ein
einfacheres Problem, namlich den Spezialfall dieser Aussage unter der Voraussetzung
v = v, = 1. Wir zeigen:
Wenn ¢ € C(D) so, daB

/ e(x)Vu(x) - Vo(x)dx =0 (27)
D

fiir alle in D harmonischen u,v € C OO(D_), dann ist notwendig ¢ = 0.

Zum Beweis ist es zweckmibig, harmonische Funktionen # mit Werten in den komplexen
Zahlen C zu betrachten. Eine Funktion u: D — C heiit harmonisch in D, wenn Real-
und Imaginirteil harmonisch sind. Fiir zwei Vektoren w,z € C? bezeichnen wir das
Skalarprodukt in C? mit (w,z) = wiz1 + ... + wazq. Durch Zerlegung in Real- und
Imaginirteil sicht man, daB die Giiltigkeit von (27) fiir alle reellwertigen harmonischen
Funktionen die Giiltigkeit von

/ o(x) (Vu(x), Vo(x)ydx =0 (28)
D

fiir alle komplexwertigen harmonischen Funktionen #, v nach sich zieht.
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Wie kann man aus (28) auf ¢ = 0 schliessen? Calderons Idee (siche [1]) ist es, zu
versuchen, einen Zusammenhang mit der Fourier-Transformierten (F. t.) der Funktion ¢,

2k) — / expl—2mik Do)y, keR, (29)
D
herzustellen. Dazu sucht man harmonische Funktionen in der Klasse der Funktionen
u,(x) = exp(~in (p,7)),  peCl (30)
Sei p = k +il (k,I € RY). Die Funktion u, ist harmonisch genau dann, wenn

Auy(x) = =7 (p,p) u(x) =0, d. h.
(k il k+il) = [k = I + 2k -1=0, d.h.
] = [k| und k-1=0. (31)

(|

A4

Fig. 4

Sei k € R? gegeben. Wegen d > 2 kann man dazu ein [ = [; € R? finden, so daB (31)
erfiillt ist (vgl. Bild 4). Fiir p = k +il und p = k —il sind dann die Funktionen #, und
u; harmonisch, und nach Voraussetzung (28) ist daher

0= [ ) (Vi (), Vi) v
D
— 2 (p, 5) fD Py esp(—in (ot 7, %)) dx (32)

-~ _2W2|k|2/ o(x) exp(—2mik - x)dx — —2x2|k23(K), k € RL.
D
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Die F. t. von ¢ ist also identisch Null. Da die Funktion ¢ eindeutig durch ihre F. t.
bestimmt ist (Fourier-Inversion), folgt daraus ¢ = 0, und das Modellproblem (27) ist
gelost.

Sylvester und Uhlmann [10] ist es gelungen, das Problem (26) bei allgemeinem +; €
C*>(D) (i = 1,2) zu 16sen. Dazu haben sie +;-harmonische Funktionen u; (i = 1,2)
konstruiert, die von exponentiellem Typ sind, dhnlich wie die Funktionen 1, in (30). Das
Lemma aus Abschnitt 5 bleibt richtig fiir eine den Raum C*° (D) umfassende Klasse von
~;-harmonischen Funktionen, welche insbesondere die so konstruierten +;-harmonischen
Funktionen enthilt. Wenn die Dimension d > 3 ist, kann man dann dhnlich weiter-
schliefen wie in obigem Modellproblem und die Injektivitit von v —— A, folgern
(siche [10]). Der Grenzfall d = 2 ist schwieriger und lange offen geblicben. Geome-
trisch hiangt das damit zusammen, dab® in Bild 4 bei Dimension d = 2 der Vektor [
schon eindeutig durch k festgelegt ist (bis auf das Vorzeichen), wihrend man fiir d > 3
zusétzliche Freiheitsgrade hat, die man beim Beweis des Satzes ausnutzen kann. Der
verbleibende Fall d = 2 ist erst jiingst von Nachman [9] vollstindig bewiesen worden.

Bemerkung. Der Dank des Verfassers gilt Steffen Heinze und Reimer Kiihn. Aus Dis-
kussionen mit ihnen ist dieser Aufsatz entstanden.
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