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Metrische Geometrie

Bruno Colbois

Bruno Colbois wurde in Troyes (Frankreich) geboren, kam aber bald nach Lau-
sanne, wo er Schule und Universitit besuchte. Er doktorierte 1987 bei Peter Buser.
Nach einem Aufenhalt an der Universitit Bonn wurde er 1992 Assistenzprofessor
an der ETHZ. Seit 1994 ist er Professor an der Université de Savoie in Chambéry.
Sein Forschungsgebiet ist die Riemannsche Geometrie, insbesondere die Spektral-
theorie des Laplace-Operators auf Mannigfaltigkeiten. In seiner Freizeit liebt er es,
Wanderungen zu unternehmen und die Natur zu beobachten.

Einleitung

Eines der Ziele der Raumgeometrie ist es, Flichen im dreidimensionalen Raum zu be-
schreiben. So ausgesprochen bedarf dieses Ziel natiirlich der Prézisierung, denn es ist von
vorneherein nicht klar, was als eine “Fldche” im dreidimensionalen Raum zu betrachten
und was genau mit dem Wort “beschreiben” gemeint ist.

Wenden wir uns zuerst dem Wort “beschreiben” zu. Dies meint zuerst einmal eine
mathematische Beschreibung der Fliache. Aber natiirlich auch wesentlich mehr: die uns
intuitiv geldufigen Eigenschaften der Fliche sollen aus der Beschreibung abgeleitet wer-
den konnen. So soll zum Beispiel daraus ersichtlich sein, dass eine Sphire iiberall gleich
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gekriimmt ist, wihrend die Kriimmung eines Ellipsoides von Ort zu Ort variiert (siche
Figur 1), und dhnliches. Zu diesem Zweck miissen selbstverstidndlich alle diese intuitiv
geldufigen Eigenschaften mathematisch formalisiert werden.

Fig. 1 Sphire und Ellipsoid

Diesen Vorgang wollen wir im vorliegenden Text am Beispiel des Begriffs der Geoddite
nadher betrachten. Intuitiv versteht man unter einer Geodite eine Kurve auf der Fliche,
welche die kiirzeste Verbindung zwischen zwei gegebenen Punkten der Fldche herstellt.
Jedermann, der schon die “Strecke” Ziirich—-New York geflogen ist, weiss, dass der Flug
tiber Island fiihrt: Die kiirzeste Verbindung zwischen zwei Punkten auf der Erdkugel-
oberfldche verlduft auf einem Grosskreis. Die Grosskreisstiicke sind in diesem Sinn die
Geoditen der Kugeloberfliache.

Die Geometrie hat nach dem, was wir oben gesagt haben, als erstes die Aufgabe, den
Begriff der Geodite zu formalisieren, also aus der intuitiven eine mathematische Defi-
nition zu machen. Es ist anschliessend nachzuweisen, dass die Definition verniinftig ist,
insbesondere soll zum Beispiel die Existenz von Geoditen in den interessierenden Fél-
len mathematisch bewiesen werden konnen. Und schliesslich soll die Definition weitere
Resultate moglich machen; so sollen daraus allgemeine Sitze iiber Geodéten hergeleitet
werden konnen, zum Beispiel iiber die Existenz von geschlossenen Geoditen oder iiber
die Existenz einer auf der Fliche dichten Geodite, oder andere.

Beim Bemiihen, den Begriff der Geodite aus der intuitiven Vorstellung der kiirzesten
Verbindung zu entwickeln, zeigen sich sehr rasch Schwierigkeiten. Eine erste besteht
darin, dass die Definition der Linge einer Kurve auf der Fiche bereits vorausgesetzt
wird. Eine zweite wird durch die folgende Tatsache illustriert (siehe Figur 2): Das Gross-
kreisstiick PyP,P; auf der Sphire liefert zwar zu je zwei seiner Punkte, die geniigend
nahe beieinander liegen, die kiirzeste Verbindung, es ist aber selbst nicht die kiirzeste
Verbindung zwischen P; und P;. Es gehen somit in diese Art der Definition Eigenschaften
des globalen Aussehens der Flidche ein, die im allgemeinen nur schwer zu durchschauen
sind.

Die Geometrie hat hier die Wahl: Sie kann versuchen, den durch die Intuition nahegeleg-
ten Begriff der Geodéite als kiirzeste Verbindung genauer zu fassen, bis eine mathematisch
befriedigende Formalisierung erreicht ist, oder sie kann versuchen, einen vollig anderen
Standpunkt einzunehmen und andere, vielleicht schwichere Eigenschaften der kiirzesten
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Fig. 2 Das Grosskreisstiick Py P,P3 liefert lokal die kiirzeste Verbindung zwischen zwei Punken, etwa zwi-

schen P; und P, und zwischen P, und Ps, aber es bildet nicht die kiirzeste Verbindung zwischen P;
und P3.

Verbindungen zur Definition heranzuziehen. Der zweite Weg wurde historisch von der
Differentialgeometrie beschritten, der erste Weg entspricht der metrischen Geometrie.
Hier wollen wir uns zuerst kurz das Vorgehen in der Differentialgeometrie in Erinnerung
rufen und uns dann anschliessend mit den Ideen der metrischen Geometrie beschiftigen.

Der Weg der Differentialgeometrie

In der Ebene R? ist die kiirzeste Verbindung zwischen zwei Punkten die Gerade. Un-
ter den parametrisierten Kurven c(t) kann die Gerade durch ¢”(t) = 0 charakterisiert
werden. In der Ebene konnen wir auf diese Weise das rein geometrische Konzept der
kiirzesten Verbindung zwischen zwei Punkten analytisch fassen.

o

P
Fig. 3 In der Ebene ist die kiirzeste Verbindung durch die Gerade gegeben.

In der Differentialgeometrie zieht man dies zur Definition einer Geodite auf einer Fliche
heran: Man definiert eine Geodite im differentialgeometrischen Sinn als eine (parametri-
sierte) Kurve c(t) so, dass die “zweite Ableitung” verschwindet, wobei wir jetzt natiirlich
die “zweite Ableitung” zu interpretieren haben. Am einfachsten diirfte dies mechanisch
zu veranschaulichen sein: Die Geodite entspricht der Bahn eines Massenpunktes auf der
Fliache, auf den keine tangential zur Flache wirkenden Krifte ausgeiibt werden (sondern
hochstens solche, die senkrecht zur Fliche wirken). Diese Idee hat kaum mehr etwas mit
der urspriinglichen geometrischen Idee gemeinsam, ausser natiirlich der Tatsache, dass
sie im Spezialfall der Ebene die kiirzeste Verbindung liefert. Trotzdem fiihrt sie in der
Differentialgeometrie zu einem grundlegenden Begriff, welcher den Weg zu interessanten
und wichtigen Resultaten offnet.
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Die so getroffene Definition benétigt den Begriff der Ableitung auf der Fliche. Dies
impliziert natiirlich, dass als Flachen fiir diese Theorie nur solche zugelassen werden
konnen, auf denen Differentialrechnung getrieben werden kann. Dies sind die zweidi-
mensionalen differenzierbaren Untermannigfaltigkeiten des dreidimensionalen Raumes.
Grob gesprochen sind das diejenigen Flichen, die eine Uberdeckung durch Umgebun-
gen U, zulassen, wobei jedes U, injektives Bild einer offenen Menge in R? unter einer
C°°-Abbildung h, ist (siche Figur 4; vergleiche auch [DC], Definition 1, p. 43).

h
he,

B

Fig. 4 Zur Definition einer 2-dimensionalen Untermannigfaltigkeit des R3

Beispiele von Flachen dieser Art sind Ebene, Sphire, Zylinder, usw. Natiirlich gibt es
neben diesen viele andere Gebilde, die in der Umgangssprache ebenfalls als Flidchen
angesprochen, hier aber ausgeschlossen werden. In der Figur 5 sind einige derartige

Beispiele skizziert.

X

Fig. 5 Einige “Flichen”, die keine 2-dimensionalen Mannigfaltigkeiten sind: die “Flichen” in der oberen
Reihe sind nicht glatt genug, die “Flichen” in der unteren Reihe lassen keine Uberdeckung durch
Umgebungen zu, die offenen Mengen des R? entsprechen.
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Fig. 6 Zur Definition einer Geodéten auf einer 2-dimensionalen Mannigfaltigkeit

Differentialgeometrisch wird eine Geodite auf der Flidche S als eine Kurve c(t) definiert,
deren zweite Ableitung ¢”’(t) senkrecht zur Fliche ist (siehe Figur 6; vergleiche auch
[DC], Definition 8, p. 187).

Ist die Flidche lokal durch eine Parametrisierung gegeben, so fiihrt diese Geodétenbedin-
gung auf eine gewohnliche Differentialgleichung zweiter Ordnung (siehe [DC], Propo-
sition 5, p. 195). Die bekannten Existenz- und Eindeutigkeitssitze fiir derartige Diffe-
rentialgleichungen liefern dann sofort den ersten Teil des folgenden Satzes; der zweite
Teil liegt etwas tiefer, fiir einen Beweis vergleiche man [DC], Proposition 4, p. 227.

Satz (i) Durch die Vorgabe der Werte von c(tg) und c’(to) wird eindeutig eine Geodiite
bestimmt.

(i1) Lokal ist eine Geoddte die kiirzeste Verbindung zwischen je zwei ihrer Punkte.

Man beachte, dass in diesem Satz nichts iiber die Existenz einer Geodite zwischen
zwei gegebenen Punkten ausgesagt wird. In der Tat lassen sich leicht Beispiele angeben,
wo zwischen zwei gegebenen Punkten keine Geodidte in unserem Sinn existiert. Ein
entsprechendes Beispiel ist in Figur 7 skizziert.

Fig. 7 Im Ring ohne Rand gibt es zwischen P und Q keine kiirzeste Verbindung.
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Unser Satz zeigt, dass die analytische Definition einer Geodéten auf einer differenzier-
baren 2-dimensionalen Mannigfaltigkeit S unserer intuitiven Erwartung entgegenkommt,
auch wenn diese Definition anfinglich sehr weit hergeholt schien: Geoditen sind, wenn
nicht global, so doch wenigstens lokal wirklich kiirzeste Verbindungen, und durch jeden
Punkt von S gibt es in jeder Richtung genau eine Geodite. Die befriedigende diffe-
rentialgeometrische Theorie der Geoditen wurde allerdings durch die Beschriankung auf
differenzierbare 2-dimensionale Mannigfaltigkeiten erkauft. Dies fiihrte dazu, dass viele
in der Anschauung durchaus als Fldchen bezeichnete Gebilde von der Betrachtung aus-
geschlossen werden mussten.

Der Weg der metrischen Geometrie

Wir kehren jetzt zu diesen komplizierteren, vorher nicht nidher betrachteten Fldchen
zuriick. Wir versuchen, auch in diesen allgemeineren Situationen vom intuitiven Begriff
der kiirzesten Verbindung ausgehend zu einem mathematisch einwandfreien und niitz-
lichen Begriff der Geodite zu gelangen. Es ist dabei von vorneherein klar, dass wir in
unserem Raum Lingen messen miissen. Wir legen deshalb unseren Uberlegungen einen
metrischen Raum X mit Abstandsfunktion d zugrunde.

Es sei ¢ : [a,b] C R — (X,d) eine stetige Kurve in X. Wir koénnen die Linge dieser

Kurve nicht wie iiblich durch das Integral L(c) = fab |c’(t)| dt geben, da ohne diffe-
renzierbare Struktur im Raum X die Ableitung c’(¢) nicht definiert werden kann. Wir
setzen deshalb allgemeiner fest:

Definition: Die Linge L(c) der Kurve c : [a,b] — (X,d) ist definiert durch

L(c) = sup (Zd<c<tk>,c<tk_1>>) ,
k=1

wobei das Supremum iiber alle Zerlegungen
a=tg<ti<tp<---<t,=b

des Intervalles [a, b] zu nehmen ist.

Falls in X eine differenzierbare Struktur vorhanden ist und die Kurve c glatt ist, so liefert
diese neue Definition der Bogenlidnge denselben Wert wie die iibliche, oben erwéhnte
Definition.

Mit Hilfe dieses neuen allgemeineren Begriffes der Linge einer Kurve kann man eine
Pseudo-Abstandsfunktion d; definieren: Fiir je zwei Punkte P, Q € X setzt man

dr(P,Q) = inf(d.(c)) ,

wobei das Infimum iiber alle stetigen Kurven c : [a,b] — (X,d) mit c(a) = P und
c(b) = Q zu nehmen ist.

Mit dieser Festsetzung kann es vorkommen, dass der Wert dp (P, Q) unendlich wird,
oder dass er null ist, auch wenn P und Q verschieden sind. Es ist also d; nicht not-
wendigerweise eine Abstandsfunktion. Deshalb sind die Fille, wo d; tatsdchlich eine
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Abstandsfunktion ist, natiirlich besonders interessant. Falls die so erhaltene Abstands-
messung sogar mit der urspriinglichen Metrik iibereinstimmt, falls also d; = d gilt, so
nennen wir (X,d) einen Ldngenraum. Beizufiigen ist hier, dass (X, d; ) ein Lingenraum
ist, wenn immer d eine Abstandsfunktion ist; es gilt namlich (d;); = dy.

Die Sphire S?, aufgefasst als metrischer Raum, in dem der Abstand zwischen zwei
Punkten durch die Lénge der verbindenden Sehne gegeben ist, ist kein Lingenraum. De-
finiert man hingegen den Abstand zweier Punkte auf S? durch den von ihnen gebildeten
Zentriwinkel, so erhélt man einen Langenraum. Es gilt (siehe Figur 8) di (P, P) =«

und di.(Py, P3) = m/2, wo Py den Nordpol, P den Siidpol und P; einen Punkt auf dem
Aquator bezeichnet.

P
2

Fig. 8 Die Sphire mit der durch den Zentriwinkel gegebenen Metrik ist ein Lingenraum.

Alle Flachen, die in der Differentialgeometrie studiert werden, also die zweidimensio-
nalen Untermannigfaltigkeiten des R3, sind auch Lingenridume im hier definierten Sinn.
Aber der Begriff des Langenraumes ist umfassender; so sind alle in Figur 5 skizzierten
Beispiele ebenfalls Langenrdume.

Bevor wir uns nun den Geoditen zuwenden, bemerken wir noch, dass Kurven in Liangen-
rdumen eine ausgezeichnete Parametrisierung besitzen: sie entspricht der Parametrisie-
rung durch die Bogenlinge in differenzierbaren Mannigfaltigkeiten. Ist & : [a,b] — (X, d)
eine stetige Kurve im Liangenraum (X, d), so lésst sich diese durch eine Parametrisierung
c:[0,L] — (X,d) beschreiben, so dass fiir alle t € [0,L] gilt L(c|jpy) = t.

Indem wir uns eng an die intuitive Definition einer Geoditen als einer kiirzesten Ver-
bindung halten, definieren wir jetzt:

Definition: Es sei (X,d) ein Liangenraum. Eine Kurve ¢ : [0,L] — (X,d) heisst eine
minimale Geodiite im metrischen Sinn, wenn fiir alle t,,t, € [0, L] gilt d(c(t1),c(t2)) =
dr(c(t1),c(t2)) = |t2 — t1|. Eine Geoddte im metrischen Sinn in (X, d) ist eine Kurve
c:[0,L] — (X,d), die lokal eine minimale Geodite ist.

Eine Kurve ¢ : [0,L] — (X,d) ist also eine minimale Geodite (Geodite), wenn die
Abbildung ¢ eine Isometrie (lokale Isometrie) ist (siche z.B. [CDP], p. 4). Anzumer-
ken ist hier, dass nach dieser Definition der Begriff der Geodite ihre Parametrisierung
miteinschliesst.
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Fig. 9 Zwei senkrecht zueinander stehende Ebenen als Lingenraum

Wir betrachten zur Illustration das Beispiel zweier senkrecht zueinander stehenden Ebe-
nen. Es sei P; ein Punkt auf der (vertikalen) Ebene E; und P, ein Punkt auf der (hori-
zontalen) Ebene E,.

Die Geodite zwischen den Punkten P; und P, entspricht offensichtlich der Geraden zwi-
schen P; und P;, wo P; aus P, erhalten wird, indem die Ebene E, um die Schnittgerade
nach unten geklappt wird. Wir betrachten zusitzlich noch den Spezialfall (siehe Figur
9), wo P; und P; symmetrisch zur Schnittgeraden der beiden Ebenen zu liegen kom-
men. Wir bezeichnen in diesem Fall mit Q den Schnittpunkt der Geraden P;P; mit der
Schnittgeraden der beiden Ebenen. Dann sind PyQP, und P;QP; beides Geoditen. Sie
stimmen zwischen P; und Q iiberein, sind aber global verschieden. Dies ist ein drasti-
scher Unterschied zum Sachverhalt, wie wir ihn oben in der differentialgeometrischen
Teil beschrieben haben; dort ist das globale Verhalten der Geoditen vollstindig durch
die lokalen Eigenschaften, also durch c(tp) und c’(t), festgelegt.

Einen anderen wesentlichen Unterschied illustriert das folgende Beispiel, das uns von
Herrn Prof. K. Voss mitgeteilt wurde (siehe Figur 10). Wir betrachten zwei symmetrisch
zueinander liegende Parallelkreise auf der Sphére und kleben die Nord- und die Siid-
Kalotte lings der isometrischen Parallelkreise zusammen. Damit entsteht — wie man
beweisen kann — ein Lingenraum, der zwar zu einer Sphire homdomorph ist, aber
keine Fliche im Sinn der Differentialgeometrie ist. Der gemeinsame Parallelkreis ist
eine Singularitit der Metrik, wie man etwa aus folgender Uberlegung entnehmen kann.
Sind P und Q zwei verschiedene, beliebig nahe beieinander liegende Punkte auf dem
gemeinsamen Parallelkreis, so gibt es zwei Geoditen, die P und (Q verbinden, ndmlich
die beiden Grosskreise durch P und Q auf der Nord- und auf der Siid-Kalotte. Auf einer
Flache im differentialgeometrischen Sinn gibt es hingegen immer nur eine Geodite,
die zwei Punkte miteinander verbindet, wenn diese Punkte geniigend nahe beieinander
liegen.

Es bleibt hier nachzuweisen, dass mit der getroffenen allgemeinen Definition der Geo-
ddte mathematisch gearbeitet werden kann und dass mit ihr Fortschritte erzielt werden
konnen. Zu diesem Zweck erwidhnen wir zuerst ein grundlegendes Resultat und kom-
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Fig. 10  Zwei zusammengeklebte Kugelkalotten als Lingenraum

men anschliessend auf einige neuere mathematische Entwicklungen zu sprechen, wo die
Ideen der metrischen Geometrie eine grosse Rolle gespielt haben.

Beim erwiéhnten grundlegenden Resultat geht es um die Existenz von Geoditen. Sie lédsst
sich in unserem Rahmen unter allgemeinen Bedingungen mathematisch beweisen. Dies
ist im wesentlichen der Inhalt des Satzes von Hopf-Rinow.

Satz (Hopf-Rinow) Es sei (X,d) ein Lingenraum, der vollstindig und lokal kompakt
ist. Dann gibt es zu zwei Punkten P,Q € (X,d) eine P und Q verbindende minimale
Geoddte (der Ldange d(P,Q)).

Beweis Um das Wesentliche des Beweises besser hervortreten zu lassen, setzen wir (X, d)
als kompakt (und nicht nur als lokal kompakt) voraus. Da (X,d) ein Lingenraum ist,
gibt es zu jeder natiirlichen Zahl n > 1 eine stetige Kurve ¢, : [0,1] — (X,d) mit
c,(0) = P, ¢,(1) = Q und L(c,) < d(P,Q) + 1/n. Wir parametrisieren ausserdem ¢,
so, dass d(cn(t),cn(t')) < L(cn)|t — t'| gilt fiir alle ¢,#' € [0, 1]. Dies bedeutet, dass
die ¢, eine Familie von gleichgradig stetigen Abbildungen bilden. Nach dem Satz von
Ascoli-Arzela (siehe [Bu], p. 8-9) gibt es dann eine Teilfolge ¢y, , die fiir die sup-Norm
gegen eine Kurve ¢ : [0, 1] — (X,d) konvergiert. Benutzt man jetzt das untenstehende
Lemma, so folgt direkt L(c) < d(P,Q) , also L(c) = d(P,Q), und ¢ muss dann, wie
behauptet, eine minimale Geodite sein.

Lemma Es gilt L(c) < liminfx_ o L(cp, ).

Beweis Es sei
O=ty<ti<---<ty=1

eine Zerlegung des Intervalles [0, 1]. Aus der Definition der Kurve ¢ als Limes der Kurven
¢, (wir betrachten nur die gegen c konvergierende Teilfolge) folgt die Abschitzung

N N

S d(c(t:), c(tiz)) < 2Ne(n) + Y dlenlti), ealti-1))
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wobei e(n) — O fiir n — oco. Da laut Definition die Ungleichung

N
L(cy) sz(cn sCn(ti-1))

gilt, erhalten wir
L(c) < L(cn) +2Ne(n) .

Fiir n — oo folgt damit
L(c) <d(P,Q) = liminfL(c,) .

Dies war zu beweisen.

P 0
Fig. 11  Zum Satz von Hopf-Rinow

Im Satz von Hopf-Rinow kann die Voraussetzung ‘lokal kompakt’ nicht weggelassen
werden. Um dies einzusehen, betrachten wir den Raum X, der aus zwei Punkten P, Q
besteht und aus unendlich vielen Kurven o,, n = 1,2,..., die P und Q miteinander
verbinden und die Lidnge 1 + 1/n besitzen (siehe Figur 11). Nach unseren Definitionen
ist der Abstand d(P, Q) gleich 1; Es gibt aber keine minimale Geodite zwischen P und
Q der Linge 1. In der Tat ist X nicht lokal kompakt.

Schlussbemerkungen

Wir schliessen mit einigen allgemeinen Bemerkungen. Wir haben an einem ganz speziel-
len und einfachen Beispiel zu zeigen versucht, wie die Einfilhrung von Lingenrdumen zu
einer neuen allgemeineren und fruchtbaren Sichtweise fiihren kann. Natiirlich ist der hier
angesprochene Grund, mit dem Begriff des Langenraumes zu arbeiten, nicht der einzige;
es gibt andere, und vom mathematischen Standpunkt aus auch wesentlich wichtigere
Griinde dafiir. Denn nicht nur den Begriff der Geoditen kann man im Rahmen der Lin-
genrdume neu fassen, sondern es lassen sich auf dhnliche Weise auch andere wichtige
differentialgeometrische Begriffe iibertragen. Dies gilt insbesondere fiir den zentralen
Begriff der (Gaussschen) Kriimmung. Die zwei folgenden Beispiele mogen erahnen las-
sen, wie gross die Spannweite der Anwendungen ist, die mit der an sich einfachen Idee
des Lingenraumes verbunden sind. Auf die mathematischen Einzelheiten konnen wir
hier nicht eingehen.

(A) Eine Gruppe, genauer: den Cayley-Graphen der Gruppe, kann man als einen Ldn-
genraum verstehen (siche z.B. [CDP], §4). Es sei G eine Gruppe und S eine Menge von
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Elementen aus G, welche G erzeugt. Fiir das folgende ist es bequem vorauszusetzen,
dass S mit jedem Element x auch das Inverse x~! enthilt. Einem derartigen Paar (G, S)
ist der sogenante Cayley-Graph I' zugeordnet. Die Knoten von I' sind die Elemente
der Gruppe G. Zwei Elemente x,y € G sind genau dann durch eine Kante verbunden,
wenn ein s € S existiert mit xs = y. In der Figur 12 sind die Cayley-Graphen von
zwei Gruppen skizziert, ndmlich von der (additiv geschriebenen) Gruppe Z x Z mit
S = {(1,0),(-1,0),(0,1),(0,—1)}, und von der (multiplikativ geschriebenen) freien
Gruppe F, auf a,b und S := {a,b,a!,b~'}.

Wenn man voraussetzt, dass jede Kante des Cayley-Graphen I" zum reellen Einheitsinter-
vall [0, 1] isometrisch ist, so wird I zu einem Lingenraum im Sinne unserer Definition.
Der Abstand zweier Knoten x und y im Léngenraum I' ist gegeben durch die minimale
Anzahl Kanten, die im Graphen I' zu durchlaufen sind, um von x nach y zu gelangen.

10 00 (Lo

]
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= 2R

Fig. 12 Die Cayley-Graphen von Z X Z und von F, = F(a,b)

Es liegt auf der Hand, dass nun Eigenschaften dieses Lingenraumes als Eigenschaf-
ten der Gruppe interpretiert werden konnen und umgekehrt. Dieser Zusammenhang hat
sich in den letzten Jahren als &usserst fruchtbar erwiesen. Unter anderem ist daraus
die Theorie der sogenannten hyperbolischen Gruppen erwachsen. Zur Definition dieser
Gruppen zieht man “Kriimmungs”-Eigenschaften des Cayley-Graphen heran, die bei Rie-
mannschen Mannigfaltigkeiten der nichtpositiven Gausschen-Kriimmung entsprechen. In
der Geometrie treten solche Gruppen in natiirlicher Weise als Fundamentalgruppen von
kompakten Riemannschen Mannigfaltigkeiten negativer Kriimmung auf. In der Algebra
ergeben sich weitere Beispiele, die sich innerhalb der kombinatorischen Gruppentheorie
durch andersartige Eigenschaften charakterisieren lassen, welche ihrerseits ganz unerwar-
tete Konsequenzen haben. Sowohl in der Geometrie wie auch in der kombinatorischen
Gruppentheorie fiihrte der Ansatz, den Cayley-Graphen als Langenraum aufzufassen, zu
einer ganz neuen Sichtweise und lieferte eine Menge neuer Erkenntnisse. Fiir Niheres
verweisen wir auf die Literatur [CDP], [GH], [GHV], insbesondere auf die Einleitung
von [GH].

(B) Die Liingenrdume treten oft in natiirlicher Weise als Limes Riemannscher Man-
nigfaltigkeiten auf (siehe [P], [GLP]). Zu diesem Zweck fiihrt man auf der Menge der
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kompakten Mannigfaltigkeiten eine Topologie ein, indem man sie einbettet in den Raum
der kompakten metrischen Raume. Der Raum der kompakten Mannigfaltigkeiten ist
nicht vollsténdig; zu seiner Vervollstindigung kann man wie iiblich Cauchy-Folgen her-
anziehen. Als Limes derartiger Folgen treten unter gewissen, hier natiirlich nicht ndher
beschriebenen Bedingungen, Lingenrdume auf. Wir illustrieren diesen Vorgang in der
Figur 13.

Fig. 13 Der Lingenraum “Doppelkegel” als Limes von 2-dimensionalen Mannigfaltigkeiten

In diesem Sinn beinhaltet das Studium eines Lingenraums gleich das Studium einer
ganzen Folge von Riemannschen Mannigfaltigkeiten. Eigenschaften des Langenraumes
liefern in diesem Fall auch Informationen iiber die zugehdrigen Riemannschen Mannig-
faltigkeiten. Dieses Vorgehen wurde vor kurzem verwendet, um sogenannte Kollapsman-
nigfaltigkeiten zu untersuchen (siehe [Fu]).
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