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Metrische Geometrie

Bruno Colbois

Bruno Colbois wurde in Troyes (Frankreich) geboren, kam aber bald nach
Lausanne, wo er Schule und Universität besuchte Er doktorierte 1987 bei Peter Buser.
Nach einem Aufenhalt an der Universität Bonn wurde er 1992 Assistenzprofessor
an der ETHZ Seit 1994 ist er Professor an der Universit6 de Savoie in Chamböry.
Sem Forschungsgebiet ist die Riemannsche Geometne, insbesondere die Spektraltheone

des Laplace-Operators auf Mannigfaltigkeiten. In seiner Freizeit hebt er es,
Wanderungen zu unternehmen und die Natur zu beobachten.

Einleitung
Eines der Ziele der Raumgeometrie ist es, Flächen im dreidimensionalen Raum zu
beschreiben. So ausgesprochen bedarf dieses Ziel natürlich der Präzisierung, denn es ist von
vorneherein nicht klar, was als eine "Fläche" im dreidimensionalen Raum zu betrachten
und was genau mit dem Wort "beschreiben" gemeint ist.

Wenden wir uns zuerst dem Wort "beschreiben" zu. Dies meint zuerst einmal eine
mathematische Beschreibung der Fläche. Aber natürlich auch wesentlich mehr: die uns
intuitiv geläufigen Eigenschaften der Fläche sollen aus der Beschreibung abgeleitet werden

können. So soll zum Beispiel daraus ersichtlich sein, dass eine Sphäre überall gleich

Fortschritte in der Mathematik haben ihren Vinpmg ta vielen Fällen in einer neuen
Sicht auf alte Fragestellungen, Ein neuer Ansatz eine neue Idee fähren in neuen
Techniken, die dann oft nicht nur licht auf das alte Problem werfen, sondern mch überrden

angestammten Bereich hin» fruchtbar werden. Bin illustratives Betspiel für diene
Tatsache, das aus einer Entwicklung jüngsten Datums stammt, behandelt Bruno Cotboi» im
vorliegenden Beitrag< Es geht darum, den intuitiven geometrischen Begriff der kfae*
sten Verbindung mathematisch mit einem andern Amte Mimgehen, als dies Mstorisch,
vor fast 2ÖG Jahren, ta der Differentialgeomerte geschehen isi Die Um dittgesfeltat
Ideen haben bereits in vielen Gebieten der Matftens&tik Anwendungen jßftadta; sfe

haben m vielerlei mum Resultaten geführt und neue, unerwartete Vm^kdm^m m%»

sehen vermiedenen mathematischen Oebieten offengelegt, - Beta Beitrug handelt
es steh um eine Ausarbeitung eines Ertrages, dm Bruno Colbois im Wmzmmmz
94/95 im Rahmen des Seminars über Mathematik, Informatik und XfntmätM m der
BTH Ziridi gehaltet hat usf
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gekrümmt ist, wahrend die Krümmung eines Ellipsoides von Ort zu Ort variiert (siehe
Figur 1), und ähnliches Zu diesem Zweck müssen selbstverständlich alle diese intuitiv
gelaufigen Eigenschaften mathematisch formalisiert werden

Fig 1 Sphäre und Elhpsoid

Diesen Vorgang wollen wir im vorliegenden Text am Beispiel des Begriffs der Geodate
naher betrachten Intuitiv versteht man unter einer Geodate eine Kurve auf der Flache,
welche die kürzeste Verbindung zwischen zwei gegebenen Punkten der Flache herstellt
Jedermann, der schon die "Strecke" Zunch-New York geflogen ist, weiss, dass der Flug
uber Island fuhrt Die kürzeste Verbindung zwischen zwei Punkten auf der Erdkugel-
öberflache verlauft auf einem Grosskreis Die Grosskreisstucke sind in diesem Sinn die
Geodäten der Kugeloberflache

Die Geometrie hat nach dem, was wir oben gesagt haben, als erstes die Aufgabe, den

Begriff der Geodate zu formalisieren, also aus der intuitiven eine mathematische
Definition zu machen Es ist anschliessend nachzuweisen, dass die Definition vernunftig ist,
insbesondere soll zum Beispiel die Existenz von Geodäten in den interessierenden Fallen

mathematisch bewiesen werden können Und schliesslich soll die Definition weitere
Resultate möglich machen, so sollen daraus allgemeine Satze uber Geodäten hergeleitet
werden können, zum Beispiel uber die Existenz von geschlossenen Geodäten oder uber
die Existenz einer auf der Flache dichten Geodate, oder andere

Beim Bemuhen, den Begriff der Geodate aus der intuitiven Vorstellung der kürzesten

Verbindung zu entwickeln, zeigen sich sehr rasch Schwierigkeiten Eine erste besteht

dann, dass die Definition der Lange einer Kurve auf der Fache bereits vorausgesetzt
wird Eine zweite wird durch die folgende Tatsache illustriert (siehe Figur 2) Das Gross-
kreisstuck PiP2P3 auf der Sphäre liefert zwar zu je zwei seiner Punkte, die genügend
nahe beieinander liegen, die kürzeste Verbindung, es ist aber selbst nicht die kürzeste

Verbindung zwischen Pi und P3 Es gehen somit in diese Art der Definition Eigenschaften
des globalen Aussehens der Flache em, die im allgemeinen nur schwer zu durchschauen
sind

Die Geometne hat hier die Wahl Sie kann versuchen, den durch die Intuition nahegelegten

Begnff der Geodate als kürzeste Verbindung genauer zu fassen, bis eine mathematisch

befnedigende Formalisierung erreicht ist, oder sie kann versuchen, einen völlig anderen

Standpunkt einzunehmen und andere, vielleicht schwächere Eigenschaften der kürzesten
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Fig 2 Das Grosskreisstuck P1P2P3 liefert lokal die kürzeste Verbindung zwischen zwei Punken, etwa zwi¬
schen Pi und P2 und zwischen P2 und P3, aber es bildet nicht die kürzeste Verbindung zwischen Px

und P3

Verbindungen zur Definition heranzuziehen. Der zweite Weg wurde historisch von der
Differentialgeometrie beschritten, der erste Weg entspricht der metrischen Geometrie.
Hier wollen wir uns zuerst kurz das Vorgehen in der Differentialgeometrie in Erinnerung
rufen und uns dann anschliessend mit den Ideen der metrischen Geometrie beschäftigen.

Der Weg der Differentialgeometrie
In der Ebene R2 ist die kürzeste Verbindung zwischen zwei Punkten die Gerade. Unter

den parametrisierten Kurven c(t) kann die Gerade durch c"(t) 0 charakterisiert
werden. In der Ebene können wir auf diese Weise das rein geometrische Konzept der
kürzesten Verbindung zwischen zwei Punkten analytisch fassen.

Fig. 3 In der Ebene ist die kürzeste Verbindung durch die Gerade gegeben

In der Differentialgeometrie zieht man dies zur Definition einer Geodate auf einer Fläche
heran: Man definiert eine Geodate im differentialgeometrischen Sinn als eine (parametri-
sierte) Kurve c(t) so, dass die "zweite Ableitung" verschwindet, wobei wir jetzt natürlich
die "zweite Ableitung" zu interpretieren haben. Am einfachsten dürfte dies mechanisch

zu veranschaulichen sein: Die Geodate entspricht der Bahn eines Massenpunktes auf der

Fläche, auf den keine tangential zur Fläche wirkenden Kräfte ausgeübt werden (sondern
höchstens solche, die senkrecht zur Fläche wirken). Diese Idee hat kaum mehr etwas mit
der ursprünglichen geometrischen Idee gemeinsam, ausser natürlich der Tatsache, dass

sie im Spezialfall der Ebene die kürzeste Verbindung liefert. Trotzdem führt sie in der

Differentialgeometrie zu einem grundlegenden Begriff, welcher den Weg zu interessanten

und wichtigen Resultaten öffnet.
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Die so getroffene Definition benötigt den Begriff der Ableitung auf der Fläche. Dies

impliziert natürlich, dass als Flächen für diese Theorie nur solche zugelassen werden
können, auf denen Differentialrechnung getrieben werden kann. Dies sind die
zweidimensionalen differenzierbaren Untermannigfaltigkeiten des dreidimensionalen Raumes.

Grob gesprochen sind das diejenigen Flächen, die eine Überdeckung durch Umgebungen

Ua zulassen, wobei jedes Ua injektives Bild einer offenen Menge in R2 unter einer

C°°-Abbildung ha ist (siehe Figur 4; vergleiche auch [DC], Definition 1, p. 43).

o
Fig. 4 Zur Definition einer 2-dimensionalen Untermannigfalügkeit des U3

Beispiele von Flächen dieser Art sind Ebene, Sphäre, Zylinder, usw. Natürlich gibt es

neben diesen viele andere Gebilde, die in der Umgangssprache ebenfalls als Flächen

angesprochen, hier aber ausgeschlossen werden. In der Figur 5 sind einige derartige
Beispiele skizziert.

Fig. 5 Einige "Flächen", die keine 2-dimensionalen Mannigfaltigkeiten sind: die "Flächen" in der oberen

Reihe sind nicht glatt genug, die "Flächen" in der unteren Reihe lassen keine Überdeckung durch

Umgebungen zu, die offenen Mengen des R2 entsprechen.
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Fig 6 Zur Definition einer Geodäten auf einer 2-dimensionalen Mannigfaltigkeit

Differentialgeometrisch wird eine Geodate auf der Fläche S als eine Kurve c(t) definiert,
deren zweite Ableitung c"(t) senkrecht zur Fläche ist (siehe Figur 6; vergleiche auch
[DC], Definition 8, p. 187).

Ist die Fläche lokal durch eine Parametrisierung gegeben, so führt diese Geodätenbedingung

auf eine gewöhnliche Differentialgleichung zweiter Ordnung (siehe [DC], Proposition

5, p. 195). Die bekannten Existenz- und Eindeutigkeitssätze für derartige
Differentialgleichungen liefern dann sofort den ersten Teil des folgenden Satzes; der zweite
Teil liegt etwas tiefer, für einen Beweis vergleiche man [DC], Proposition 4, p. 227.

Satz (i) Durch die Vorgabe der Werte von c(to) und cf(to) wird eindeutig eine Geodate
bestimmt.

(ii) Lokal ist eine Geodate die kürzeste Verbindung zwischen je zwei ihrer Punkte.

Man beachte, dass in diesem Satz nichts über die Existenz einer Geodate zwischen
zwei gegebenen Punkten ausgesagt wird. In der Tat lassen sich leicht Beispiele angeben,

wo zwischen zwei gegebenen Punkten keine Geodate in unserem Sinn existiert. Ein
entsprechendes Beispiel ist in Figur 7 skizziert.

Fig. 7 Im Ring ohne Rand gibt es zwischen P und Q keine kürzeste Verbindung.
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Unser Satz zeigt, dass die analytische Definition einer Geodäten auf einer differenzierbaren

2-dimensionalen Mannigfaltigkeit S unserer intuitiven Erwartung entgegenkommt,
auch wenn diese Definition anfänglich sehr weit hergeholt schien: Geodäten sind, wenn
nicht global, so doch wenigstens lokal wirklich kürzeste Verbindungen, und durch jeden
Punkt von S gibt es in jeder Richtung genau eine Geodate. Die befriedigende
differentialgeometrische Theorie der Geodäten wurde allerdings durch die Beschränkung auf
differenzierbare 2-dimensionale Mannigfaltigkeiten erkauft. Dies führte dazu, dass viele
in der Anschauung durchaus als Flächen bezeichnete Gebilde von der Betrachtung
ausgeschlossen werden mussten.

Der Weg der metrischen Geometrie
Wir kehren jetzt zu diesen komplizierteren, vorher nicht näher betrachteten Flächen
zurück. Wir versuchen, auch in diesen allgemeineren Situationen vom intuitiven Begriff
der kürzesten Verbindung ausgehend zu einem mathematisch einwandfreien und
nützlichen Begriff der Geodate zu gelangen. Es ist dabei von vorneherein klar, dass wir in
unserem Raum Längen messen müssen. Wir legen deshalb unseren Überlegungen einen
metrischen Raum X mit Abstandsfunktion d zugrunde.

Es sei c : [fl, b] C R -» (X9d) eine stetige Kurve in X. Wir können die Länge dieser

Kurve nicht wie üblich durch das Integral L(c) Ja \cf(t)\ dt geben, da ohne
differenzierbare Struktur im Raum X die Ableitung c'(t) nicht definiert werden kann. Wir
setzen deshalb allgemeiner fest:

Definition: Die Länge L(c) der Kurve c : [fl, b] —» (X,d) ist definiert durch

L(c) sup [Y,d(c(tk),c(tk„i))
\k=l /

wobei das Supremum über alle Zerlegungen

fl to < ti < t2 < • • • < tn b

des Intervalles [fl, b] zu nehmen ist.

Falls in X eine differenzierbare Struktur vorhanden ist und die Kurve c glatt ist, so liefert
diese neue Definition der Bogenlänge denselben Wert wie die übliche, oben erwähnte
Definition.

Mit Hilfe dieses neuen allgemeineren Begriffes der Länge einer Kurve kann man eine

Pseudo-Abstandsfunktion di definieren: Für je zwei Punkte P, Q eX setzt man

d_(P,Q) __f(d_(c)),

wobei das Infimum über alle stetigen Kurven c : [a,b] —> (X,d) mit c(a) P und

c(b) Q zu nehmen ist.

Mit dieser Festsetzung kann es vorkommen, dass der Wert di (P, Q) unendlich wird,
oder dass er null ist, auch wenn P und Q verschieden sind. Es ist also di nicht
notwendigerweise eine Abstandsfunktion. Deshalb sind die Fälle, wo di tatsächlich eine
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Abstandsfunktion ist, natürlich besonders interessant. Falls die so erhaltene Abstandsmessung

sogar mit der ursprünglichen Metrik übereinstimmt, falls also dL d gilt, so
nennen wir (X,d) einen Längenraum. Beizufügen ist hier, dass (X,dL) ein Längenraum
ist, wenn immer dL eine Abstandsfunktion ist; es gilt nämlich (dL)L dL.

Die Sphäre S2, aufgefasst als metrischer Raum, in dem der Abstand zwischen zwei
Punkten durch die Länge der verbindenden Sehne gegeben ist, ist kein Längenraum.
Definiert man hingegen den Abstand zweier Punkte auf S2 durch den von ihnen gebildeten
Zentriwinkel, so erhält man einen Längenraum. Es gilt (siehe Figur 8) dL(PuP2) tt
und dL(PuP3) tt/2, wo Pi den Nordpol, P2 den Südpol und P3 einen Punkt auf dem
Äquator bezeichnet.

Fig. 8 Die Sphäre mit der durch den Zentriwinkel gegebenen Metrik ist ein Langenraum

Alle Flächen, die in der Differentialgeometrie studiert werden, also die zweidimensionalen

Untermannigfaltigkeiten des R3, sind auch Längenräume im hier definierten Sinn.
Aber der Begriff des Längenraumes ist umfassender; so sind alle in Figur 5 skizzierten
Beispiele ebenfalls Längenräume.

Bevor wir uns nun den Geodäten zuwenden, bemerken wir noch, dass Kurven in Längenräumen

eine ausgezeichnete Parametrisierung besitzen: sie entspricht der Parametrisierung

durch die Bogenlänge in differenzierbaren Mannigfaltigkeiten. Ist c~: [fl, b] —> (X, d)
eine stetige Kurve im Längenraum (X, d), so lässt sich diese durch eine Parametrisierung
c : [0,L] —> (X,d) beschreiben, so dass für alle t e [0,L] gilt L(c\[0j}) t.

Indem wir uns eng an die intuitive Definition einer Geodäten als einer kürzesten
Verbindung halten, definieren wir jetzt:

Definition: Es sei (X,d) ein Längenraum. Eine Kurve c : [0,L] —> (X,d) heisst eine
minimale Geodate im metrischen Sinn, wenn für alle t\,t2 e [0,L] gilt d(c(ti),c(t2)) —

di(c(tx),c(t2)) — \t2 — tx\. Eine Geodate im metrischen Sinn in (X,d) ist eine Kurve
c : [0,L] —> (X,d), die lokal eine minimale Geodate ist.

Eine Kurve c : [0, L] —? (X9d) ist also eine minimale Geodate (Geodate), wenn die

Abbildung c eine Isometrie (lokale Isometrie) ist (siehe z.B. [CDP], p. 4). Anzumerken

ist hier, dass nach dieser Definition der Begriff der Geodate ihre Parametrisierung
miteinschliesst.
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Fig. 9 Zwei senkrecht zueinander stehende Ebenen als Langenraum

Wir betrachten zur Illustration das Beispiel zweier senkrecht zueinander stehenden Ebenen.

Es sei Pi ein Punkt auf der (vertikalen) Ebene Ei und P2 ein Punkt auf der
(horizontalen) Ebene E2.

Die Geodate zwischen den Punkten Pi und P2 entspricht offensichtlich der Geraden
zwischen Pi und P3, wo P3 aus P2 erhalten wird, indem die Ebene E2 um die Schnittgerade
nach unten geklappt wird. Wir betrachten zusätzlich noch den Spezialfall (siehe Figur
9), wo Pi und P3 symmetrisch zur Schnittgeraden der beiden Ebenen zu liegen kommen.

Wir bezeichnen in diesem Fall mit Q den Schnittpunkt der Geraden P1P3 mit der

Schnittgeraden der beiden Ebenen. Dann sind PXQP2 und P1QP3 beides Geodäten. Sie

stimmen zwischen Pi und Q überein, sind aber global verschieden. Dies ist ein drastischer

Unterschied zum Sachverhalt, wie wir ihn oben in der differentialgeometrischen
Teil beschrieben haben; dort ist das globale Verhalten der Geodäten vollständig durch
die lokalen Eigenschaften, also durch c(to) und c'(fo), festgelegt.

Einen anderen wesentlichen Unterschied illustriert das folgende Beispiel, das uns von
Herrn Prof. K. Voss mitgeteilt wurde (siehe Figur 10). Wir betrachten zwei symmetrisch
zueinander liegende Parallelkreise auf der Sphäre und kleben die Nord- und die Süd-
Kalotte längs der isometrischen Parallelkreise zusammen. Damit entsteht — wie man
beweisen kann — ein Längenraum, der zwar zu einer Sphäre homöomorph ist, aber
keine Fläche im Sinn der Differentialgeometrie ist. Der gemeinsame Parallelkreis ist
eine Singularität der Metrik, wie man etwa aus folgender Überlegung entnehmen kann.
Sind P und Q zwei verschiedene, beliebig nahe beieinander liegende Punkte auf dem

gemeinsamen Parallelkreis, so gibt es zwei Geodäten, die P und Q verbinden, nämlich
die beiden Grosskreise durch P und Q auf der Nord- und auf der Süd-Kalotte. Auf einer
Fläche im differentialgeometrischen Sinn gibt es hingegen immer nur eine Geodate,
die zwei Punkte miteinander verbindet, wenn diese Punkte genügend nahe beieinander

liegen.

Es bleibt hier nachzuweisen, dass mit der getroffenen allgemeinen Definition der Geodate

mathematisch gearbeitet werden kann und dass mit ihr Fortschritte erzielt werden
können. Zu diesem Zweck erwähnen wir zuerst ein grundlegendes Resultat und kom-
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Fig 10 Zwei zusammengeklebte Kugelkalotten als Langenraum

men anschliessend auf einige neuere mathematische Entwicklungen zu sprechen, wo die
Ideen der metrischen Geometrie eine grosse Rolle gespielt haben.

Beim erwähnten grundlegenden Resultat geht es um die Existenz von Geodäten. Sie lässt
sich in unserem Rahmen unter allgemeinen Bedingungen mathematisch beweisen. Dies
ist im wesentlichen der Inhalt des Satzes von Hopf-Rinow.

Satz (Hopf-Rinow) Es sei (X, d) ein Längenraum, der vollständig und lokal kompakt
ist. Dann gibt es zu zwei Punkten P,Q e (X, d) eine P und Q verbindende minimale
Geodate (der Länge d(P, Q)).

Beweis Um das Wesentliche des Beweises besser hervortreten zu lassen, setzen wir (X, d)
als kompakt (und nicht nur als lokal kompakt) voraus. Da (X, d) ein Längenraum ist,

gibt es zu jeder natürlichen Zahl n > 1 eine stetige Kurve cn : [0,1] —> (X,d) mit
cn(0) P, cn(l) — Q und L(cn) < d(P,Q) + l/n. Wir parametrisieren ausserdem cn

so, dass d(cn(t)9cn(t')) < L(cn)\t - t'\ gilt für alle t,t' e [0,1]. Dies bedeutet, dass

die cn eine Familie von gleichgradig stetigen Abbildungen bilden. Nach dem Satz von
Ascoli-Arzela (siehe [Bu], p. 8-9) gibt es dann eine Teilfolge cnk, die für die sup-Norm

gegen eine Kurve c : [0,1] —? (X,d) konvergiert. Benutzt man jetzt das untenstehende

Lemma, so folgt direkt L(c) < d(P,Q) also L(c) d(P,Q), und c muss dann, wie
behauptet, eine minimale Geodate sein.

Lemma Es gilt L(c) < liminf^oo L(cnk).

Beweis Es sei

0 t0 < 11 < • • • < tN 1

eine Zerlegung des Intervalles [0,1]. Aus der Definition der Kurve c als Limes der Kurven

cn (wir betrachten nur die gegen c konvergierende Teilfolge) folgt die Abschätzung

N N

Y,d(c(U)AU-i)) <2Ne(n) + Y,d(cn(tt),cn(tt-i))
1=1 1=1
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wobei e(n) —? 0 für n —> oc. Da laut Definition die Ungleichung

N

L(Cn)>Y,d(Cn(ti),Cn(tt-i))

gilt, erhalten wir

i=i

Für n —? oo folgt damit

Dies war zu beweisen.

L(c) <L(cn) + 2Ne(n)

L(c) < d(P,Q) lim infL(cn)

Fig. 11 Zum Satz von Hopf-Rinow

Im Satz von Hopf-Rinow kann die Voraussetzung 'lokal kompakt' nicht weggelassen
werden. Um dies einzusehen, betrachten wir den Raum X, der aus zwei Punkten P, Q
besteht und aus unendlich vielen Kurven on, n 1,2,..., die P und Q miteinander
verbinden und die Länge l + l/n besitzen (siehe Figur 11). Nach unseren Definitionen
ist der Abstand d(P, Q) gleich 1; Es gibt aber keine minimale Geodate zwischen P und
Q der Länge 1. In der Tat ist X nicht lokal kompakt.

Schlussbemerkungen
Wir schhessen mit einigen allgemeinen Bemerkungen. Wir haben an einem ganz speziellen

und einfachen Beispiel zu zeigen versucht, wie die Einführung von Längenräumen zu
einer neuen allgemeineren und fruchtbaren Sichtweise führen kann. Natürlich ist der hier
angesprochene Grund, mit dem Begriff des Längenraumes zu arbeiten, nicht der einzige;
es gibt andere, und vom mathematischen Standpunkt aus auch wesentlich wichtigere
Gründe dafür. Denn nicht nur den Begriff der Geodäten kann man im Rahmen der
Längenräume neu fassen, sondern es lassen sich auf ähnliche Weise auch andere wichtige
differentialgeometrische Begriffe übertragen. Dies gilt insbesondere für den zentralen

Begriff der (Gaussschen) Krümmung. Die zwei folgenden Beispiele mögen erahnen
lassen, wie gross die Spannweite der Anwendungen ist, die mit der an sich einfachen Idee
des Längenraumes verbunden sind. Auf die mathematischen Einzelheiten können wir
hier nicht eingehen.

(A) Eine Gruppe, genauer: den Cayley-Graphen der Gruppe, kann man als einen

Längenraum verstehen (siehe z.B. [CDP], §4). Es sei G eine Gruppe und S eine Menge von
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Elementen aus G, welche G erzeugt. Für das folgende ist es bequem vorauszusetzen,
dass S mit jedem Element x auch das Inverse x~l enthält. Einem derartigen Paar (G,S)
ist der sogenante Cayley-Graph T zugeordnet. Die Knoten von T sind die Elemente
der Gruppe G. Zwei Elemente x,y e G sind genau dann durch eine Kante verbunden,
wenn ein s e S existiert mit xs y. In der Figur 12 sind die Cayley-Graphen von
zwei Gruppen skizziert, nämlich von der (additiv geschriebenen) Gruppe Z x Z mit
S := {(1,0), (-1,0), (0,1), (0, -1)}, und von der (multiplikativ geschriebenen) freien
Gruppe F2 auf fl, b und S := {fl, b,a~l,b~1}.
Wenn man voraussetzt, dass jede Kante des Cayley-Graphen T zum reellen Einheitsintervall

[0,1] isometrisch ist, so wird T zu einem Längenraum im Sinne unserer Definition.
Der Abstand zweier Knoten x und y im Längenraum T ist gegeben durch die minimale
Anzahl Kanten, die im Graphen T zu durchlaufen sind, um von x nach y zu gelangen.
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Fig. 12 Die Cayley-Graphen von Z x Z und von F2 — F(fl, b)

Es liegt auf der Hand, dass nun Eigenschaften dieses Längenraumes als Eigenschaften

der Gruppe interpretiert werden können und umgekehrt. Dieser Zusammenhang hat
sich in den letzten Jahren als äusserst fruchtbar erwiesen. Unter anderem ist daraus

die Theorie der sogenannten hyperbolischen Gruppen erwachsen. Zur Definition dieser

Gruppen zieht man "Krümmungs"-Eigenschaften des Cayley-Graphen heran, die bei
Riemannschen Mannigfaltigkeiten der nichtpositiven Gausschen-Krümmung entsprechen. In
der Geometrie treten solche Gruppen in natürlicher Weise als Fundamentalgruppen von
kompakten Riemannschen Mannigfaltigkeiten negativer Krümmung auf. In der Algebra
ergeben sich weitere Beispiele, die sich innerhalb der kombinatorischen Gruppentheorie
durch andersartige Eigenschaften charakterisieren lassen, welche ihrerseits ganz unerwartete

Konsequenzen haben. Sowohl in der Geometrie wie auch in der kombinatorischen

Gruppentheorie führte der Ansatz, den Cayley-Graphen als Längenraum aufzufassen, zu
einer ganz neuen Sichtweise und lieferte eine Menge neuer Erkenntnisse. Für Näheres

verweisen wir auf die Literatur [CDP], [GH], [GHV], insbesondere auf die Einleitung
von [GH].

(B) Die Längenräume treten oft in natürlicher Weise als Limes Riemannscher

Mannigfaltigkeiten auf (siehe [P], [GLP]). Zu diesem Zweck führt man auf der Menge der
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kompakten Mannigfaltigkeiten eine Topologie ein, indem man sie einbettet m den Raum
der kompakten metrischen Räume. Der Raum der kompakten Mannigfaltigkeiten ist
nicht vollständig; zu seiner Vervollständigung kann man wie üblich Cauchy-Folgen
heranziehen. Als Limes derartiger Folgen treten unter gewissen, hier naturlich nicht naher
beschnebenen Bedingungen, Langenraume auf. Wir illustrieren diesen Vorgang in der

Figur 13

Fig 13 Der Langenraum "Doppelkegel" als Limes von 2-dimensionalen Mannigfaltigkeiten

In diesem Sinn beinhaltet das Studium eines Langenraums gleich das Studium einer

ganzen Folge von Riemannschen Mannigfaltigkeiten. Eigenschaften des Langenraumes
liefern in diesem Fall auch Informationen uber die zugehörigen Riemannschen
Mannigfaltigkeiten. Dieses Vorgehen wurde vor kurzem verwendet, um sogenannte Kollapsman-
nigfaltigkeiten zu untersuchen (siehe [Fu]).
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