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Elementare Abschitzungen
fiir das kleinste gemeinsame Vielfache

Robert Bil und Dieter Blessenohl

Robert Bil wurde 1945 in Radom/Polen geboren. Er studierte von 1964 bis 1968 an
der Hochschule der Kriegsmarine in Gdynia (Gdingen) und von 1970 bis 1974 an der
Universitit in Gdansk (Danzig). Anschlieend arbeitete er als Lehrbeauftragter an der
Hochschule der Kriegsmarine. Seit 1984 lebt Robert Bil in Kiel. Seine Gesundheit
erlaubt ihm nicht, weiter aktiv zu arbeiten. Privat interessiert er sich fiir analytische
Zahlentheorie, der er seine freie Zeit widmet.

Dieter Blessenohl wurde 1938 in Westfalen geboren. Er studierte in Freiburg und
Kiel, promovierte 1967 und habilitierte sich 1977 in Kiel fiir das Fach Mathematik.
Seit 1989 Akademischer Rat wurde er 1991 zum auflerplanméBigen Professor er-
nannt. Dieter Blessenohl veroffentlichte Aufsitze in den Gebieten Gruppentheorie,
Korpertheorie und — seit einigen Jahren — algebraische Kombinatorik. Sein beson-
deres Interesse gilt zur Zeit der Darstellungstheorie der symmetrischen Gruppen, der
Theorie der freien Liealgebren und kombinatorischen Problemen, die damit zusam-
menhéngen.

Es gibt in der Zahlentheorie viele Probleme, die sich auf einfachste Weise und ohne
grosse mathematische Vorbereitungen erkliren lassen. Ihre mathematische Behandlung
stellt sich dann allerdings oft als ausserordentlich schwierig heraus; das Fermat-Problem
ist in dieser Beziehung keine Ausnahme. — Robert Bil und Dieter Blessenohl beschiifti-
gen sich im vorliegenden Beitrag mit einem derartigen ‘einfachen’ zahlentheoretischen
Problem:

Man schérze die Folge ab, deren n-ter Term durch das kieinste gemeinsame Vielfache
der Zahlen 1,2,3,...,n gegeben ist.

Das kieinste gemeinsame Vielfache kann leicht angegeben werden, wenn die Primfak-
torzerlegung der einzelnen Zahlen bekannt ist. Die gestelite Frage ist also eng mit dem
schwierigen Problem der Primzahlverteilung verbunden, und es ist aus diesem Grund
nicht zu erwarten, dass sie eine einfache Antwort zuliisst. Trotz dieser schlechten Prog-
| nose gelingt es den beiden Autoren im vorliegenden Beitrag, mit ganz elementaren Mit-
teln eine Abschitzung fiir das Wachstum der Folge anzugeben. Als Korollar erhalten sie
daraus eine Verschirfung des Bertrandschen Postulates iiber die Primzahlverteilung. ust
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Einleitung
Fiir x € R bezeichnen wir wie iiblich mit [x] den ganzen Teil von x, also [x] := max{z €
Z | z < x}. Wir definieren
Vix) := {kgV von 1,2,...,[x] f?rx > 1,
1 fiir x < 1.
Die Funktion V spielt eine wichtige Rolle bei den elementaren Methoden zur Unter-

suchung der Primzahlverteilung. Dies hat seinen Grund darin (siehe [5], [6]), daBl der
Primzahlsatz

nl_l{glo n;rl(:g) _— 1 dquivalent ist zu nli)ngo vVin)=e.

In der Literatur findet man hiufig die Abschitzung 2" < V(n) < 4" fiirn > 7.
Felgner([2]) hat gezeigt, daf3

(2.2)" < V(n) < 3" fiir n> 13

gilt. Er stiitzte sich dabei auf Abschitzungen fiir geeignete Multinomialkoeffizienten.
Diese bringen wir ins Spiel durch die Formel

w=TIv ()

(2.51)" < V(n) < (2.95)" fir n > 41.

Hieraus kann man leicht ableiten, daB fiir alle n > 25 eine Primzahl p existiert mit

und zeigen

6
n<p<§n.

Das Bertrandsche Postulat (bewiesen von Tschebyscheff 1852) besagt bekanntlich, dal
es zu jeder natiirlichen Zahl n > 2 eine Primzahl p mit n < p < 2n gibt.

Elementare Abschiatzung des kgV(1,2,...,n)

Wir beginnen mit einer unseren Zwecken angepafiten Version der Stirlingschen Formel
und zeigen zunéchst die folgende Aussage:

1 1 n 1
1 — < n-=Jlog— 1< —— N, >2
12n(n+1)<(" 2) 1 <o, nENnz2)

Beweis. Fir t € R, t > 1 setzen wir

1 2 t
t) = —1
O:= G ne-n T2=1 81
1 2 ¢
d t) := —1 .
und )= e T i =) T ar =1 B
Offenbar ist tlim r(t) =0= tlim £(t). AuBerdem ist
()= +2 _log2<0 und Q) =—+2_log2>0
“108 73 8 363 85T

Man rechnet leicht nach, daB ¢'(t) > 0, r'(t) < Oist fiir t € R, ¢ > 2. Zusammen ergibt
das £(t) <0, r(t) > O fir t € R, ¢+ > 2 und damit die Behauptung. O
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2 Die Folge ((2:) ﬁ2_2"> N ist streng monoton wachsend und konvergiert gegen
n

1

™ 2.

Beweis. Wir setzen x, := (2:) V1272, Dann ist

X ~~x2n+1 /1+1-—x - 1
n+l = n2n+2 o X 4n(ﬂ+l)>xn.

Weiter folgt daraus

1

(T BN VAROTAY
Xnt1 = X) (kH—l(l+m>) —_E(k,]m>
_(21’1—}-111—[ 2k—; (2n +1)) .

=1

Mit der Wallisschen Produktdarstellung fiir 5 folgt die Behauptung. O
3 Stirlingsche Formel Es gibt eine Folge (h(n))ncn mit

1

1 n
BT <M< g sodabfurallen> Lgit ot = amn (-’63) htm.

12n

Beweis. Fiir n = 1 ist die Behauptung leicht zu zeigen. Sei also n > 1. Wir setzen
Z1 := —1 und
1 k
= - =1 -1
Zk (k 2) - —

o
fir k € N, k > 1. Wegen 1ist ) zx konvergent. Sei z* := ) zx der Grenzwert dieser
k>1 k=1

n
Reihe und h(n) := z* — ) z. Aus 1 folgt
k=1

1 1
h —_—
4 D << 1,
Weiter ist
*—h(n) = -1 y k 11 : —1)=-n-logn!+ rHI—1 logn
2" —h(n) = — +k§_:2(~5)ogk_l = gn! 5 ) logn,
und also

5 n! _ n e (ﬂ+Z )+h(ﬂ)
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Daraus folgt

(2”> A2 = /37" —2hln)h(2m),
n

Wegen 2 und 4 ergibt das v/2¢* = 7% und daher z* = -—% log 27r. Mit § folgt nun die
Behauptung. L]

Die folgende Identitit, die den Zusammenhang zwischen n! und V(n) herstellt, findet
sich z.B. bei Winogradow [7], Apostol [1], Golomb [3].

O n
| n .
6 n! UV(k) fiir alle n € N.
Beweis. Fiir n € N sei U(n) := {p, wenn 7 Potenz der Primzahl p ist,
1 sonst.
[x]

Dann ist n = [[ U(%) und V(x) = V([x]) = [] U(k). Nun folgt:

kin k=1

n n (%] n 0o
v =TT () = e () = TV (D =TTV (5)- -
7 Fiir alle n > 41 ist (2.51)""! < V(n).

Beweis. Wir setzen

f(n) := v2mn (Z—)nem, g(n) := v2mn (g)neﬁ.
Nach 3 ist dann f(n) < n! < g(n) fiir alle n € N. Nun folgt fiir alle m € N:
(30m)!m! S f(30m)f(m)
(15m)!(10m)!(6m)! — g(15m)g(10m)g(6m)

Wegen 6 ist andererseits

> (60mm) 2 (2'43%5%)".

(30m)!m! B ﬁ 4ENYES
(15m)!(10m)l(6m)! 21 V(I )V (EEIV ()
> [T, V() V)
= V(30
( m) kIII HIMO V( 303I?m21) H i=0 V( 30319”131) H i=0 V( 303I?m51)
= V(30m)S(m).

Setzt man v; := V(52%), so ist nach geeignetem Kiirzen

o0
S(m)~.HU_il..zfl.ﬁl.?_ll.?£.ﬂZ.ﬁ?_.?E§
Up Ug Ui U2 U5 U1 Uy V24
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Da in dieser Darstellung von S(m) jeder Faktor < 1 ist, erhdlt man schlieBlich
L1 3, 1)\30m
((607rm)“m2T§3T555) < V(30m) .
Ist n € Nund 30m <n < 30(m+ 1) mit m > 1115, so ist

(2.51)"! < (2.51)00m+D) < ((60mm) @ 27537556 )3 < V(30m) < V(n).

Fir 41 <n <30-1115 — 1 = 33449 ist die Behauptung des Satzes durch Rechnung zu
iberpriifen. O

8 Korollar Fiir alle x € R mit x > 41 ist (2.51)* < V(x).
Beweis. (2.51)° < (2.5D)M+ <« V([x]) = V(x). O
9 Satz Fiir alle x € R" ist V(x) < (2.95)".

Beweis. Fiir alle m € N gilt nach 6:

(42m)!
(21m)!(14m)!(6m)!m!
_ V(42m) H V(&
Vim) 2 VIEEVERV(EEV (52s)

V(42m) 5 H T2 V(s
20 3 m 5
Vm) o T Vi) Iiko Vigz) T Vst V(zmits)
_ V(42m)
= Vm) (m).

Setzen wir zur Abkiirzung w; := V/( 4‘2%"‘ e ), s0 ist nach geeignetem Kiirzen

o0
. H W— W) Ws Wy W13 W7 Wyg Wo3 Wos Wag W3 Wiy

o] W—42 Wo Wo We W12 Wi4 Wig Way W4 Wog W3p W3e

Da in dieser Darstellung von T(m) jeder Faktor > 1 ist, folgt mit 3 — g und f wie im
Beweis von 7 —

g(42m)
f(21m)f(14m)f(6m)f(m)

< V(m) (2437 )42'".

V(42m) o V(m) . < V(m) (3367!‘37113)‘% (2_13]47(%)42"1

xR
Fiir k > 448 ist (2a3ﬁ7a) < (3.03)", Fiir 1 < n < 42 - 448 = 18816 priift

man durch Rechnung nach, daf3

10 V(n) < (3.03)"
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ist. Ist 10 fiir ein k > 448 und alle n < 42k bewiesen, so folgt weiter

V(42k +1) < V(@2k +2) < ... < V(42(k + 1))
)42(k+1)

~|--
NN

<V(k+1) ( 1347
< (3.03)*+1(3.03)41%
— (3.03)42k+1 < (3.03)42k+2 S

Vollstindige Induktion liefert nun, da 10 fiir alle n € N gilt. Fiir alle x € R mit x > 1
ist weiter

11 V(x) = V([x]) < (3.03) < (3.03)".

Andererseits ist fiir alle m € N

(Gomum_ g(30m)g(m)
(15m)!(10m)!(6m)! — f(15m)f(10m)f(6m)

= (243°5%)" (60mm) ~ 2 e 12 0%+ 35~ T — o ~ )

(21531056)30m .

Sind S(m) und v; wie im Beweis von 7, so gilt

(30m)!m!
(15m)!(10m)!(6m)!

30my ©°
V(30m)V(T H U7 U_y Uy U7 Ui U3 U17 Uy
V_oio v—6 To Us Uip Uiz Uis Uig

A=
Sl
\ll'—

=) 7 3 30m
V(30m)<(2153105 1 <(2—s3—05 (3.03)%(2.51)" )

< (2.961)%™,
Fiir m > 358 und 30m <n < 30(m+ 1) ist
12 V(n) < V(30(m + 1)) < (2.961)X0m+) « (2.97)30m < (2.97)",

Fir 1 < n < 19110 = 30 - 637 priift man die Behauptung in 9 durch Rechnung nach.
Insbesondere gilt 12 dann fiir alle n € N und wegen

V(x) = V([x]) < (297" < (2.97)F
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schlieBlich auch fiir alle x € R mit x > 1. Wie vorher folgt nun fiir m > 10

A

7,3 _1 1 30m
V(30m) < (233%56(2.97) 5(2.51)-7) < (2.945)30m
Fiir m > 637 und 30m <n < 30(m + 1) ist
V(n) <V (30(m+ 1)) < (2.945)300m+D < (2.95)30m < (2.95),

Wie oben folgt V(x) < (2.95)* fir x € R, x > 1. Fiir 0 < x < 1 ist die Behauptung
klar. Damit ist 9 bewiesen. tl

Mit anderen Methoden haben Rosser und Schoenfeld ([4], Theorem 12) gezeigt, daB fiir
alle x € R™ sogar

V(x) < (2.826)°  gilt.

13 Korollar Zu jeder natiirlichen Zahl n > 25 gibt es eine Primzahl p mitn < p < 1.2n.

Beweis. Fiir alle x,y € R™ ist
14 Vixy) < VOV [] p-
p<xy
Ist nimlich p eine Primzahl und p* < x < p**!, p* <y < p!) so ist pF+ < xy <

p**+¢+2, woraus 14 leicht folgt. Fiir 0 < x < y setzen wir P(x;y) := H p. Fir x > 41

x<p<y
erhilt man mit 8 und 9

(2.51)F < V(x) < V(Vx)V(VX)P(1;x) < (2.95)2V*P(1;x).
Fiir x > 27081 ist
(2.97)72(2.95)2V% < (2.51)%,
zusammen also
(2.97)77 < P(1;x).
Ist n € N mit 27081 < 1.2#n, so folgt wegen P(1;x) < V(x) mit 9
P(1;1.2n) _ (2.97)"

P(n;1.2n) = > > 1.
(1 1.20) = =525 > (2.95)
Fir1 <n < 27—08—1 ist die Behauptung in 13 leicht mit einer Primzahltabelle zu {iber-
priifen. Beachtet man noch, daB3 1.2n niemals eine Primzahl ist, so ist 13 bewiesen.

O
(6n)!

Der naheliegende Versuch, die oben vorgefiithrte Methode auf Bam anzuwenden,
fiihrt auf die folgenden beiden Probleme:

st (n!) 1HV(6k_1) (2:) fiiir 11> 12

6n N
Ist "')2HV<1<—1> (6k+]>21 fiir n > 1000?

Positive Antworten auf diese Fragen wiirden zu besseren Abschitzungen als den in 7
und 9 angegebenen fiihren.




124 El. Math. 57 (1996)

Literatur

[1]1 T.M. Apostol, Introduction to analytic number theory, New York, Heidelberg, Berlin 1976.
[2] U. Felgner, Estimates for the sequence of primes, El. Math. 46 (1991), 17-25.

[3] S.W. Golomb, An identity for (2:), Amer. Math. Monthly 99 (1992), 746-748.

[4] J.B. Rosser und L. Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J.
Math. 6 (1962), 64-94.

[S] W. Sierpinski, Elementary theory of numbers, Amsterdam, New York, Oxford 1988.
[6] E. Trost, Primzahlen, Basel 1968.
[71 LM. Winogradow, Elemente der Zahlentheorie, Miinchen 1956.

Robert Bil
Ellerbeker Weg 7
D-24147 Kiel

Dieter Blessenohl
Mathematisches Seminar der
Christian-Albrechts-Universitét
Ludewig-Meyn-Strafie 4
D-24098 Kiel



	Elementare Abschätzungen für das kleinste gemeinsame Vielfache

