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Eine einheitliche Methode zur Behandlung
einer linearen Kongruenz mit Nebenbedingungen

Jürgen Spilker

Jürgen Spilker wurde 1935 geboren Er studierte und promovierte in Gottingen und

ist seit 1970 Professor fur Mathematik an der Universität Freiburg (Breisgau) Sem

wissenschaftliches Interesse galt zunächst den automorphen Formen, heute der
elementaren Zahlentheorie, insbesondere den arithmetischen Funktionen

Seien n und r natürliche Zahlen. Man nennt

xx+X2-\ \-xs n (modr) (1)

eine lineare Kongruenz in s Veränderlichen zum Modul r. Eine Lösung ist ein s-Tupel

ganzer Zahlen X\,X2,.. • ,x$9 wobei 2 Lösungstupel als gleich angesehen werden, wenn
ihre Komponenten modulo r gleich sind. Die Kongruenz (1) hat offenbar rs~] Lösungen.

In der elementaren Zahlentheorie bestimmt man Anzahlen von Lösungen der Kongruenz
(1), welche Nebenbedingungen unterliegen, z.B. größter gemeinsamer Teiler (xl9r)
1 für 1 < i < s. Diese Anzahlen sind in vielen Arbeiten behandelt worden. Eine
zusammenfassende Darstellung findet man in [4], Kap. 3. In diesem Aufsatz wird eine

einheitliche Methode zur Bestimmung derartiger Anzahlen vorgestellt:

• die Anzahlen sind das Cauchy-Produkt von einfachen Grundfunktionen;

• die Grundfunktionen sind arithmetische Funktionen in 2 Variabein, welche in der

ersten Veränderlichen r-gerade und in der anderen multiplikativ sind;

• diese Eigenschaften bleiben beim Cauchy-Produkt erhalten und führen somit direkt
zu Ramanujan-Entwicklungen und Produktdarstellungen der Lösungsanzahlen; aus

diesen erkennt man z.B., wann eine Kongruenz (1) mit Nebenbedingungen lösbar ist
und wann nicht.

Gegeben ist eine lineare Kongruenz %\ + #2 H + x9&n (modr) und für jedes if
1 < i < 5* ein Teiler d% von r. Wieviele Lösungen modulo r der Kongruenz gibt es,

welche der Nebenbedingung (x^t) - di, l<i<s9 gentigen? Diese häufig auftretende

Frage führt auf interessante lahlentheoretische Probleme. In der vorliegenden Arbeit
wird ein Verfahren angegeben, mit dessen Hilfe sieh diese Anzahl mf eine einheitliehe
Weise bestimmen lässt, mt
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1 r-gerade Funktionen und Ramanujan-Entwicklungen
Eine Funktion / N —? C heißt r-gerade (r e N), wenn

f(n) f((n,r)) fur alle neN
gilt Eine derartige Funktion ist also durch ihre Werte auf allen Teilern von r bestimmt

Typische r-gerade Funktionen sind die Ramanujan-Summen

:(n,r) J2 ^^
\<x<r
(xr) 1

Weil die Funktionen n i—> c(n, d) fur d\r r-gerade und linear unabhängig sind und die
Dimension des komplexen Vektorraumes aller r-geraden Funktionen gleich der Teileranzahl

von r ist, gilt

Satz 1 ([6], S 124) Fur jedes natürliche r bilden die Ramanujan-Summen

c( 9d) mit d\r

eine Basis des Vektorraumes der r-geraden Funktionen

Jede r-gerade Funktion / hat folglich eine Entwicklung

/(n) $^fl(d>rMM)
d\r

mit eindeutig bestimmten komplexen "Ramanujan-Koeffizienten"

e\r

Diese Formel erhalt man aus den fur alle Teiler t\, £2 von r gültigen Orthogonahtatsre-
lationen ([4], S 78)

2>(.*)•&')-{' SSL.'""* (2>

d\r

denn es gilt

d\r e\rd\r d\r e\r

T
e\r d\r

f((n,r))
/(«),

weil die innere Summe nach (2) fur e ^ (n,r) verschwindet und sonst den Wert r hat

Also gilt der
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Satz 2 ([4], S. 80). Jede r-gerade Funktion f hat eine Darstellung

/=£>(d,r)c(-,_i).
d\r

Die Koeffizienten sind eindeutig bestimmt und berechnen sich aus

»<m=;_:/(!MIk).<<|'-- (3>

*•" ;<(_ O-2^*-

e\r

Beispiele:
1. Für jedes natürliche r ist die Funktion

JK ' ; 10 sonst

r-gerade mit Ramanujan-Koeffizienten

np(d)

2. Seien r und k natürliche Zahlen und

/ \ / 1 falls (n,r) eine fc-te Potenz ist,
10 sonst.

Die Funktion £*(-, r) ist r-gerade und

Mit der Funktion Xk(n) := £dMrß (Jr) wird ([2], S. 21)

«(d,r) ±E>tQ.
'15

3. Seien r und fc natürliche Zahlen und

hk(n,r):=ll f^s (n,r) fc-frei ist,
10 sonst.

Dabei heißt eine natürliche Zahl a fc-frei, wenn dk \a für kein d > 1 gilt. Die Funktionen

hk(-,r) sind r-gerade und

1

*&*) - E C(H)'d|r;
(")lfc=l

dabei bezeichnet (e, r)k den größten gemeinsamen Teiler von e und r, der eine /c-Potenz

ist. Auch dieser Wert ist in [2], S. 21 berechnet worden, und zwar mittels pic(n) :=
£ »il) zu
<f|n

(d»)jfc=l

«(d,r) ±5>_(£).
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2 Cauchy-Produkt und Multiplikativitat
Von je zwei arithmetischen Funktionen /, g kann man das Cauchy-Produkt

(f®g)(n):= E /to*(y)
\<xy<r

x+y=n (mod r]

bilden. Es ist assoziativ und kommutativ Aus den Orthogonahtatsrelationen ([4], S. 76)

E c{x,u)c{y,h) [°rc{
}

\
xy<*

x+y=n(mod

l^h
1=*2,

welche fur alle Teiler tx, t2 von r gelten, folgt, daß fur zwei r-gerade Funktionen /, g
auch /0g r-gerade ist und gilt

Satz 3 ([4], S. 84). Sind f und g r-gerade Funktionen mit Ramanujan-Koeffizienten
a(d, r) bzw b(d, r), d\r, dann hat das Cauchy-Produkt f®g die Ramanujan-Koeffizienten
ra(d9r)b(d,r), d\r

Bei arithmetischen Funktionen in zwei Veränderlichen gibt es einen zweifachen
Zusammenhang von Ramanujan-Koeffizienten in der einen und Multiphkativitat in der anderen.

Satz 4. Sei f : N x N —> C eine Funktion, und fur jedes natürliche r sei n i—> f(n9r)
eine r-gerade Funktion, ihre Ramanujan-Entwicklung laute

/(n,r) ^fl(d,r)c(n,d), neN
d\r

Dann sind die folgenden beiden Eigenschaften äquivalent

(4) r —> /(n, r) ist multiplikativ fur jedes natürliche n,

^ (a(dxd2,rxr2) a(dx,rx)a(d2,r2), falls dx\rx, d2\r2,(rx,r2) 1,
^ ' ^ insbesondere ß(l,1) 1

Beweis: (4) =» (5)- Sei gegeben (n,r2) 1, dx\rx,d2\r2 Wegen (3) gilt

«(„^r.^^E/^'HK^)
e\r{r2

— — y*yV[ — — ,nr2 Je [4-4-^xe2
n r2 ^ \^i ^2 / \did2

e\\rle2\r2

Der /-Wert zerfallt wegen (4) m
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In analoger Weise kann man die Ramanujan-Summe zerlegen ([4], S. 89, Exercise 2.2).
Man erhält

i=l et\rt

a(dx,rx)a(d2,r2).
Ferner gilt

l=/(l,l)=fl(l,l)c(l,l)=fl(l,l).
(5) => (4): Sei neN, (rx,r2) 1 gegeben. Es gilt

f(n,rxr2) ]T a(d,rxr2)c(n,d),
d\r\r2

- YlYla^dxd2jir2^n'd{d2^-
d\\rx d2\r2

Der Ramanujan-Koeffizient zerfällt nach (5), und d h-> c(n,d) ist multiplikativ ([6], S.

16). Es folgt
2

f(n,rxr2) Y[Y^a{dljl)c(n,dl) f(n,rx)f(n,r2).
i=l d,\rt

Letztlich ist

/(«,l)=fl(l,l)c(n,l) l,
also ist /(n, •) multiplikativ. D

Aus den letzten beiden Sätzen folgt der für unsere Anwendungen wichtige

Satz 5. Sind f(n,r) komplexwertige Funktionen aufN xN, l <i <s, und ist F(n9r)
ihr Cauchy-Produkt bzgl. der ersten Veränderlichen, dann gilt:
a) Sind für jedes natürliche r die Funktionen

n H^/(n,r), 1 < i < s

r-gerade mit Ramanujan-Koeffizienten at(d,r), d\r, dann hat F(-,r) die Ramanujan-

Koeffizienten
s

rs-'Y[ai(d,r), d\r,
1 1

b) Sind zusätzlich für jedes natürliche n die Funktionen

r i-^/(n,r), 1 < / < s

multiplikativ, dann ist auch F(n, •) multiplikativ für alle n, und es gilt

F(n,r) l[F(n1p«)
Va\V

Y\F(pmm{aß\pn),
v»\\r

wobei pß\\n.
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3 Anwendung auf lineare Kongruenzen
Wir betrachten jetzt die lineare Kongruenz

xx+x2-\ \-xs n (modr) (1)

unter verschiedenen Nebenbedingungen; dabei sind n, r, s natürliche Zahlen. Die
Lösungsanzahlen sind das Cauchy-Produkt von einfachen Grundfunktionen in 2 Variablen

n,r, welche in n r-gerade und in r multiplikativ sind. Mit Satz 5 ergeben sich sofort die

Ramanujan-Entwicklung sowie eine Produktdarstellung.

1. Zunächst betrachten wir alle Lösungen, deren Komponenten zu r teilerfremd sind.

Wir betrachten also

N(n,r,s) := #{(*i,... ,xs) Lösung von (1): 1 < xx < r, (xur) — 1 für 1 < i < s}

Es ist

N(n,r,s)= E E l
xs+y=n{modr) xx+ +xs _ j __y(mod r)

(*s »0=1 (x, r) l

E NÖ/,r,s-l)
xs+y=n{modr)

(xs 0=1

/(-,r)0N(-,r,s-l)
mit der Funktion /(-,r) aus Abschnitt 1, Beispiel 1. Wegen N(n,r, 1) f(n9r) ist

N(-, r, s) das s-fache Cauchy-Produkt von /(•, r) mit sich selbst. Da /(•, r) r-gerade und

/(n, •) multiplikativ ist, ergibt Satz 5 direkt die Darstellung ([4], S. 117)

N(n,r,s) -^c(^,r^ c(n,d)
d\r

(6)

sowie die Produktformel ([4], S. 118)

N(n,r,s) l[N(n,pa,s).

Die Faktoren berechnen sich aus (6) zu ([4], S. 119)

r„«(s-i)(p-i)((r-'r'-(-ir') v[n
N(n va s) lP P5 Pl('P'J \^(.-i)____^____ p|„.

Hieraus ergibt sich: (1) hat genau dann keine Lösung mit (xl9r) 1, wenn einer der
drei folgenden Fälle vorliegt:
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• (n,r) > l,s 1;

• n, r gerade, s ungerade;

• n ungerade, r, s gerade.

2. Sei Pjt(n,r,s) die Anzahl der Lösungen modulo r von (1), die den Bedingungen
(xl9r) ist eine k-te Potenz, 1 < i < s

genügen. Diese Anzahl ist das s-fache Cauchy-Produkt der Funktion #k(-,r) aus
Abschnitt 1, Beispiel 2, und gjt(-,r) ist r-gerade und gk(n, •) multiplikativ. Satz 5 ergibt

d|r \-Mr /
und

Pk(«,r,s) nPfc(n,pa,s).

Für Pk(n,pa,s) scheint keine explizite Formel bekannt zu sein.

3. Eine verwandte Lösungszahl ist Qjt(n,r,s), die Anzahl der Lösungen modr von (1),
die den Bedingungen

(xl9r) ist fc-frei, 1 < i < s

genügen. Die Anzahl ist das s-fache Cauchy-Produkt der Funktion ftjt(-,r) (siehe
Abschnitt 1, Beispiel 3). Nach Satz 5 ist

Q*(»,r,.) j£ EKH)
\

d\r \ >\*

c(n,d)
1

sowie

Qk(n,r,s) l[Qk(n,pa,s).
r\\r

Man berechnet ([5], S. 72)

y*(s-1} ol < k,

Q,(n,P^s)=<;^-^(^-1)^-;^1-(-lr,] a>k,pk\n,
ga(s-i)(p-ir-(-ir a>k9pk\n.

Es gilt QA:(n, r,s) 0 genau dann, wenn

• (n,r)k 1, s= 1,

• oder k — l,n,r gerade, s ungerade,

• oder k 1, n ungerade, r, s gerade.
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4. Man kann auch Mischungen obiger Nebenbedingungen behandeln. Ein bekanntes

Beispiel ([2], S. 22) ist die Anzahl ek(n, r) der Lösungen modr von xx +x2 n (modr)
mit

(*i,r) 1, (*2,r) ist k-Potenz.

Es gilt

und folglich

und

ejk(-,r)=/(.,r)©gifc(.,r)

,fc(n,r)^i^cG'r)Ec(5'?)C(n'd)
d\r ek\r

£k(n,r) Y[ek(n,pa).
Pa\\r

Die Faktoren berechnen sich zu ([2], S. 22)

(pp-l(p-l)(pk-l) p|n,
(pk - l)ek(n,pa) l pa+k-l(p~2)+pa-l+pk-1 -l p\n, k\a,

[pa+k-{(p~2)+pa-1 -pt~x(p- l) p\n, k\a,

dabei ist im 3. Fall t bestimmt durch a t (mod k), l <t < k — l. Nur in diesem Fall
kann ek(n,pa) 0 sein.

Es folgt
sk(n, r) 0 <=^> n ungerade, 2|r,2k\r.

5. Eine allgemeine Beispielklasse erhält man, indem man für i e {1,2, ...,s} nichtleere

Mengen Dt(r) von Teilern von r vorgibt und die Anzahl M^^r.s) der Lösungen

(xXl... ,xs) modulo r von (1) mit

(xtlr)eDt(r), l<i<s
eingeführt ([4], S. 121). Mit den Grundfunktionen

d^rW1 (»>')€ D,(r)
v ; lO sonst

wird M(-,r,s) =dsQds-X 0 • • • 0di(-,r), und Satz 5a) ergibt ([3], S. 121)

M("''-'s) 7EIlEc(„'Dc(n'd)-
d\T 1 1 e\r

e&Dt(r)

Wenn für alle teilerfremden Paare (n,r2) und alle i die Eigenschaft

dx e Df(ri), d2 e Dt(r2) & dxd2 e Dt(rxr2)
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gilt, dann sind alle Funktionen dt(n, •) multiplikativ, und nach Satz 5b) gilt

M(n,r,s) Y[M(pmm^ß\pa,s)
r\v

wobei pß\\n. Die Beispiele 1 bis 4 sind Spezialfälle hiervon.

6. Zuletzt werden noch zwei weitere Beispiele angegeben, die sich dem allgemeinen Fall
5 unterordnen:

a) s 2, (x\9r) — 1, (x2lr)k 1; die zugehörigen Lösungszahlen 6jt(n,r) wurden in
[2], S. 22 behandelt; Bi(n,r) N(n,r,2) ist die Nagell-Funktion ([4], S. 119).

b) Seien at (1 < i < s) ganze Zahlen und sei A(nj,s) die Anzahl der Lösungen modr
von

axxx +a2x2 H \-asxs n (modr) mit (xl9r) 1.

Dann gilt ([1] Cor. 1.12)

d\r i=l X XJ i l ^Kd'J

mit dt \— (aur).
Der Beweis folgt aus:

(i) die Anzahl der Lösungen mod r von

yi + y_ H Vys n (modr) mit (yl9r) dt

ist

M(n,r,s) iEIIc(^)c("'d)-'
d\r i=l V *7

(ii) #{1 < x < r: ax ymodr, (x, r) 1} ^, sofern (a,r) (y,r) d.

Die Aussage in (i) ist ein Spezialfall von Beispiel 5 (Dt(r) — {dt}, s.a. [4], S. 138,

Exercise 3.8).

Zur Aussage (ii) bemerken wir, dass der Reduktionshomomorphismus der primen
Restklassengruppen

/i : Z* —? Z*ß : x mod r *-> x mod -
surjektiv ist und

h • Z*r/d -> Zr*/c/ : xmod "- h- |xmod ~

bijektiv ist; also hat jedes Element von Z*/d unter der Abbildung f2 o /! genau soviele

Urbilder, wie es Elemente im Kern von / gibt, also <^(r)/V(^)-
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