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Eine einheitliche Methode zur Behandlung
einer linearen Kongruenz mit Nebenbedingungen

Jiirgen Spilker

Jiirgen Spilker wurde 1935 geboren. Er studierte und promovierte in Gottingen und
ist seit 1970 Professor fiir Mathematik an der Universitit Freiburg (Breisgau). Sein
wissenschaftliches Interesse galt zundchst den automorphen Formen, heute der ele-
mentaren Zahlentheorie, insbesondere den arithmetischen Funktionen.

Seien 7 und r natiirliche Zahlen. Man nennt
X1 +x2+ -+ x =n(modr) (1)

eine lineare Kongruenz in s Verdnderlichen zum Modul r. Eine Losung ist ein s-Tupel
ganzer Zahlen x;,x»,...,xs, wobei 2 Losungstupel als gleich angesehen werden, wenn
ihre Komponenten modulo 7 gleich sind. Die Kongruenz (1) hat offenbar *~' Losungen.

In der elementaren Zahlentheorie bestimmt man Anzahlen von Losungen der Kongruenz
(1), welche Nebenbedingungen unterliegen, z.B. groBter gemeinsamer Teiler (x;,r) =
1 fir 1 < i < s. Diese Anzahlen sind in vielen Arbeiten behandelt worden. Eine
zusammenfassende Darstellung findet man in [4], Kap. 3. In diesem Aufsatz wird eine
einheitliche Methode zur Bestimmung derartiger Anzahlen vorgestellt:

e die Anzahlen sind das Cauchy-Produkt von einfachen Grundfunktionen;
e die Grundfunktionen sind arithmetische Funktionen in 2 Variabeln, welche in der
ersten Verdnderlichen r-gerade und in der anderen multiplikativ sind;

e diese Eigenschaften bleiben beim Cauchy-Produkt erhalten und fiihren somit direkt
zu Ramanujan-Entwicklungen und Produktdarstellungen der Losungsanzahlen; aus
diesen erkennt man z.B., wann eine Kongruenz (1) mit Nebenbedingungen 16sbar ist
und wann nicht.

Gegeben ist eine lineare Kongruenz x; + X3 + -+ + X5 = 1 (modr) und fiir jedes i,
1 € i < 3, ein Teiler d; von r. Wieviele Losungen modulo 7 der Kongruenz gibt es,
welche der Nebenbedingung (x;,r) = d;, 1 €1 < 5, geniigen? Diese hilufig auftretende
Frage fiihrt auf interessante zahlentheoretische Probleme. In der vorliegenden Arbeit
wird ein Verfahren angegeben, mit dessen Hilfe sich diese Anzahl auf eine einheitliche
Weise bestimmien ldsst. ust ' ’ ’
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1 r-gerade Funktionen und Ramanujan-Entwicklungen
Eine Funktion f : N — C heiit r-gerade (r € N), wenn

f(n) = f((n,r)) fir alle n € N

gilt. Eine derartige Funktion ist also durch ihre Werte auf allen Teilern von r bestimmit.
Typische r-gerade Funktionen sind die Ramanujan-Summen

C(Tl,l’) = Z eZvrinx/r.

1<x<r
(xn)=1

Weil die Funktionen n — c¢(n,d) fiir d|r r-gerade und linear unabhéngig sind und die Di-
mension des komplexen Vektorraumes aller r-geraden Funktionen gleich der Teileranzahl
von r ist, gilt

Satz 1 ([6], S. 124). Fiir jedes natiirliche r bilden die Ramanujan-Summen
c(-,d) mit d|r
eine Basis des Vektorraumes der r-geraden Funktionen.

Jede r-gerade Funktion f hat folglich eine Entwicklung

f(n) =" a(d,r)c(n,d)

d|r

mit eindeutig bestimmten komplexen ‘“Ramanujan-Koeffizienten”
1 r r
a(d,r) = - (-) (—,),d.
@n=-3f(5)e(5e). dir
elr
Diese Formel erhilt man aus den fiir alle Teiler ¢, {, von r giiltigen Orthogonalititsre-

lationen ([4], S. 78)
r _r~ . 0 falls t; # t,,
Zc<d’t1)c(t2’d) - {r sonst, )

djr

denn es gilt

Za(d,r)c(n,d) = Z —i— Zf (2) c (%,e) c(n,d)

dlr dir elr
_ ;g‘; f(e)%;c (5:2) eln,r),)
=f((n,7)

=f (n),
weil die innere Summe nach (2) fiir e # (n,r) verschwindet und sonst den Wert r hat.
Also gilt der
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Satz 2 ([4], S. 80). Jede r-gerade Funktion f hat eine Darstellung
f = Zﬂ(d,T)C(',d).
dir

Die Koeffizienten sind eindeutig bestimmt und berechnen sich aus

a(d,r) = %Zf (g) c (—;—,e) , dir. (3)
elr

Beispiele:
1. Fiir jedes natiirliche r ist die Funktion

1 fall =1

r-gerade mit Ramanujan-Koeffizienten

1 d

a(d,r) = —c (i,r) _ #d)elr) )(‘O(r), d|r.

r \d ro(d)

2. Seien r und k natiirliche Zahlen und
o (n, ) = { 1 falls (n,r) eine k-te Potenz ist,
0 sonst.

Die Funktion gx(-,r) ist r-gerade und

ald,r) = %Zc (5. %) dir

ek|r

Mit der Funktion Ak (n) := 3", (Jr) wird ([2], S. 21)
1 r
(l(d,r) = ; %;t)\k ('{) .
7

3. Seien r und k natiirliche Zahlen und
1 falls (n,r) k-frei ist
hy(n,r) = { ’ ’
k(1) 0 sonst.

Dabei heiBit eine natiirliche Zahl a k-frei, wenn d*|a fiir kein d > 1 gilt. Die Funktionen
hi(-,r) sind r-gerade und

a(d,r) = % Z c (2, —E) , d|r;

elr
(er)g =1

dabei bezeichnet (e, r)x den groBten gemeinsamen Teiler von e und r, der eine k-Potenz

ist. Auch dieser Wert ist in [2], S. 21 berechnet worden, und zwar mittels px(n) :=
2 p(f)

(@dn)g=1

a(d,r) = %Ztuk (%)

Ha
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2 Cauchy-Produkt und Multiplikativitit
Von je zwei arithmetischen Funktionen f, ¢ kann man das Cauchy-Produkt

fogm:= Y fx

1<xy<r
x+y=n(mod r)

bilden. Es ist assoziativ und kommutativ. Aus den Orthogonalitétsrelationen ([4], S. 76)

3, ) ey 1

1<xy<r
x+y=n(mod r)

welche fiir alle Teiler ¢, ¢, von r gelten, folgt, daB fiir zwei r-gerade Funktionen f, g
auch f © g r-gerade ist und gilt

Satz 3 ([4], S. 84). Sind f und g r-gerade Funktionen mit Ramanujan-Koeffizienten
a(d,r) bzw. b(d,r), d|r, dann hat das Cauchy-Produkt f ©g die Ramanujan-Koeffizienten
ra(d,r)b(d,r), d|r.

Bei arithmetischen Funktionen in zwei Verédnderlichen gibt es einen zweifachen Zusam-
menhang von Ramanujan-Koeffizienten in der einen und Multiplikativitit in der anderen.

Satz 4. Sei f : N x N — C eine Funktion, und fiir jedes natiirliche r sei n — f(n,r)
eine r-gerade Funktion; ihre Ramanujan-Entwicklung laute

f(n,r) = Za(d,r)c(n,d), neN.

dir

Dann sind die folgenden beiden Eigenschaften dquivalent:
(4) r — f(n,r) ist multiplikativ fiir jedes natiirliche n;

(5) a(ddy,ri12) = a(dy,r)a(dy,12), falls di|ry, da|ra, (r1,12) = 1;
insbesondere a(1,1) = 1.

Beweis: (4) = (5): Sei gegeben (r,12) = 1, dy|ry,ds|r,. Wegen (3) gilt

a(didy,ri1y) = E:f(rlr2 r 2) (;1;22 )

err;

“wan (G @ie)

eilr ezl

Der f-Wert zerfillt wegen (4) in

rr ryn Tl "
f y ' f ——, =f —, 1 f —,"].
€1 6 € e €] (%)
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In analoger Weise kann man die Ramanujan-Summe zerlegen ([4], S. 89, Exercise 2.2).

Man erhilt
a1 (20)- ()

= a(dl, rl)a(dz, 1’7_).
Ferner gilt

1=f(1,1) =a(1, )c(1,1) = a(1,1).
(5) = (4): Sein e N, (r,r;) = 1 gegeben. Es gilt
fln,rir) =" a(d,nr)e(n,d),

dlrir
— Z Z a(dldz, rlrz)C(n,dld2)'
d||r1 dz]f'z

Der Ramanujan-Koeffizient zerfillt nach (5), und d — c(n,d) ist multiplikativ ([6], S.
16). Es folgt

2
f(n,riry) = HZ (di,ri)c(n,d;) = f(n,r)f(n,r).

i=1d,|r,
Letztlich ist
f(n,1) =a(1,1)c(n, 1) =1,
also ist f(n, -) multiplikativ. O

Aus den letzten beiden Sitzen folgt der fiir unsere Anwendungen wichtige

Satz 5. Sind fi(n,r) komplexwertige Funktionen auf N x N, 1 <i <'s, und ist F (n,r)
ihr Cauchy-Produkt bzgl. der ersten Verdnderlichen, dann gilt:
a) Sind fiir jedes natiirliche v die Funktionen

n— fi(n,r), 1<i<s

r-gerade mit Ramanujan-Koeffizienten a;(d,r), d|r, dann hat F(-,r) die Ramanujan-

Koeffizienten
S
rs”IHai(d,r), d|r;
i=1

b) Sind zusdtzlich fiir jedes natiirliche n die Funktionen
re fi(n,r), 1<i<s
multiplikativ, dann ist auch F (n,-) multiplikativ fiir alle n, und es gilt

=[] Fnp™)

pelir

— H F (pmin{a,ﬁ} ’ pa)’
pelir
wobei p®||n.
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3 Anwendung auf lineare Kongruenzen
Wir betrachten jetzt die lineare Kongruenz

Xy +x24+ -+ x, =n (modr) (1)

unter verschiedenen Nebenbedingungen; dabei sind n, r, s natiirliche Zahlen. Die Lo6-
sungsanzahlen sind das Cauchy-Produkt von einfachen Grundfunktionen in 2 Variablen
n, r, welche in n r-gerade und in r multiplikativ sind. Mit Satz 5 ergeben sich sofort die
Ramanujan-Entwicklung sowie eine Produktdarstellung.

1. Zunichst betrachten wir alle Losungen, deren Komponenten zu r teilerfremd sind.
Wir betrachten also

N(n,r,s) :=#{(x1,...,xs) Losung von (1): 1 <x; <7, (x;,7r) =1 fir 1 <i <s}.
Es ist
N(n,r,s) = Z Z 1
Xg+y=n(modr) xj+---+xs_ | =y(modr)

(xs,r)=1 (x,,1)=1

- Y Nrs-1

xs+y=n(modr)
(xs,r)=1

= f(, ) ON(:,1,5 — 1)

mit der Funktion f(-,7) aus Abschnitt 1, Beispiel 1. Wegen N(n,r,1) = f(n,r) ist
N(-,1,s) das s-fache Cauchy-Produkt von f(-,7) mit sich selbst. Da f(:,r) r-gerade und
f(n,-) multiplikativ ist, ergibt Satz 5 direkt die Darstellung ([4], S. 117)

N(n,r,s) = %Zc (-;-,r)sc(n,d)
d|r
/Ld
A

d|r

sowie die Produktformel ([4], S. 118)

N(n,r,s) Han
pellr

Die Faktoren berechnen sich aus (6) zu ([4], S. 119)

als=1) E=D (="' = (=)
N(”?pa’s) = {p p pl ,

als—1) (p—1)° 1
p(s 1) )ps( )? P’fn‘

Hieraus ergibt sich: (1) hat genau dann keine Losung mit (x;,7) = 1, wenn einer der
drei folgenden Fille vorliegt:
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o(n,r)>1,s=1;
e 11, v gerade, s ungerade;
e 11 ungerade, r, s gerade.

2. Sei Py (n,r,s) die Anzahl der Losungen modulo r von (1), die den Bedingungen
(xi,r) ist eine k-te Potenz, 1 <i<s

geniigen. Diese Anzahl ist das s-fache Cauchy-Produkt der Funktion g (-,7) aus Ab-

schnitt 1, Beispiel 2, und gi (-, r) ist r-gerade und gk (1, -) multiplikativ. Satz 5 ergibt

S

Pk(n,r,s):—}z Zc(g,gk—) c(n,d)

dlr \ek|r

und

Px(n,r,s) = HPk(n,p“,s).
pelir
Fiir Px(n,p®,s) scheint keine explizite Formel bekannt zu sein.

3. Eine verwandte Losungszahl ist Q (n,7,s), die Anzahl der Losungen mod r von (1),
die den Bedingungen

(xi,7) ist k-frei, 1 <i <s

geniigen. Die Anzahl ist das s-fache Cauchy-Produkt der Funktion hi(-,7) (sieche Ab-
schnitt 1, Beispiel 3). Nach Satz 5 ist

sowie

pelir
Man berechnet ([5], S. 72)
pa(s——l) a < k,
k__ k__1ys=1_(_1y5~!
Qk(n,pa,s) — pa(S—l) 14 i)[(P ;:L =1 a >k, pkln’
pa(s—l) (g~1)p—s(——l) a >k, pk)(n_

Es gilt Qk(n,r,s) = 0 genau dann, wenn
e(n,r)xy=1,s=1,
e oder k = 1, n, r gerade, s ungerade,

e oder k = 1, n ungerade, 7, s gerade.
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4. Man kann auch Mischungen obiger Nebenbedingungen behandeln. Ein bekanntes
Beispiel ([2], S. 22) ist die Anzahl e¢(n,r) der Losungen mod 7 von x| +x; = n (modr)
mit

(x1,7) =1, (x2,r) ist k-Potenz.

Es gilt
€k('7 I‘) = f(',r) ng('a r)
und folglich

und

pellr
Die Faktoren berechnen sich zu ([2], S. 22)
AR VICAESSY pln,

(p* = Dex(n,p*) = po* ' p—-2) +p* ' +p*' =1 pin, klo,
pa+k-—1(p__2) _+_pa——l _pt~1(p_ 1) P)("’ kJ[C!,

dabei ist im 3. Fall ¢ bestimmt durch & =t (mod k), 1 <t < k — 1. Nur in diesem Fall
kann e (n,p®) = 0 sein.

Es folgt
ex(n,r) = 0 < n ungerade, 2|r, 24r.

5. Eine allgemeine Beispielklasse erhilt man, indem man fiir i € {1,2,...,s} nicht-
leere Mengen D;(r) von Teilern von r vorgibt und die Anzahl M(n,r,s) der Losungen
(x1,...,xs) modulo 7 von (1) mit

(xl-,r) € D,’(T), 1<i<s
eingefiihrt ([4], S. 121). Mit den Grundfunktionen

d,'(n,r) = { 1 (1’1,7‘) = Di(”)

0 sonst

wird M(-,7,8) =ds ©ds—; ®--- ©dy(+,r), und Satz 5a) ergibt ([3], S. 121)

M(n,r,s) = - ZHZ ( ) (n,d).

dr i=1 e
e€D,(r)

Wenn fiir alle teilerfremden Paare (r;,7;) und alle i die Eigenschaft

d] € Di(h), dz & D,’(Tz) & dldz - D,’(Tlrz)
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gilt, dann sind alle Funktionen d;(n, -) multiplikativ, und nach Satz 5b) gilt

M(n,r, S) = HM(pmin{a,ﬂ},pOt’s) )
pelir

wobei p”||n. Die Beispiele 1 bis 4 sind Spezialfille hiervon.

6. Zuletzt werden noch zwei weitere Beispiele angegeben, die sich dem aligemeinen Fall
5 unterordnen:

a) s =2, (x1,r) =1, (x2,7)x = 1; die zugehorigen Losungszahlen O (n,7) wurden in
[2], S. 22 behandelt; ©,(n,r) = N(n,r,2) ist die Nagell-Funktion ([4], S. 119).

b) Seien a; (1 <i < s) ganze Zahlen und sei A(n,r,s) die Anzahl der Losungen mod r
von

axy +axxy 4 -+ - + asxs =n (modr) mit (x;,7r) = 1.

Dann gilt ([1] Cor. 1.12)

A(n,r,s) ZH( ) ndH

mit d; := (a;,r).
Der Beweis folgt aus:

(i) die Anzahl der Losungen mod# von
Yi+wp+--+y =n(modr) mit (y;,r) =d;

ist

M(n,r,s) = ZHC( > n,d);

djr i=1

(i) #{1 <x <r:ax =ymodr, (x,7r) =1} = ‘p('), sofern (a,7) = (y,r) =d
Die Aussage in (i) ist ein Spezialfall von Beispiel 5 (D;(r) = {d;}, s.a. [4], S. 138,
Exercise 3.8).

Zur Aussage (ii) bemerken wir, dass der Reduktionshomomorphismus der primen Rest-
klassengruppen

r
fi 12y — 77, - xmodr xmoda

surjektiv ist und

. . r a r
foi 3y — L3y xmoda— - EmedE

bijektiv ist; also hat jedes Element von Z*/ ; unter der Abbildung f; o f| genau soviele
Urbilder, wie es Elemente im Kern von f; gibt, also ¢(r)/¢(5).
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