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Algebraische Codierungstheorie und Compact Discs

Dietmar Dorninger

Dietmar Dorninger wurde 1945 in Oberosterreich geboren. Er studierte Mathematik
und Physik an der Universitit Wien, wo er 1969 promovierte. Bereits 1976 wurde
er Professor an der Technischen Universitit Wien; seit 1992 ist er dort Vorstand des
Institutes fiir Algebra und Diskrete Mathematik. Seine wissenschaftlichen Interessen
gelten ausser den Anwendungen der Algebra insbesondere Fragen der mathemati-
schen Biologie, gegenwirtig vor allem im Bereich der Zell- und Molekularbiologie.
In der Freizeit beschiiftigt er sich gerne mit zeitgendssischer Literatur.

1 Einleitung

Im Herbst 1982 wurde in Europa und Japan die Audio-CD eingefiihrt, im Friihling 1983
folgten die USA nach. Seither hat die CD einen unvergleichlichen Siegeszug um die
Welt angetreten. Obgleich jedem die hervorragende Wiedergabequalitit der CD bekannt

Im Jahr 1878 liess Thomas Alva Edison erstmals ein Gerat zur Tmaufmﬁmﬁg pamn
tieren, den Phonographen, Die Tonspeicherung geschah rein mechanisch, als Speicher-
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man mit Hilfe never Speichermedien und neuer Aufzeichnungsverfahren ei&ktmmw
gnetischer Art schrittweise Verbesserungen. Trotzdem vermochten die marktgﬁnmgan
Produkte die hohen Anspriiche der Benutzer nicht immer zu befriedigen. 1982, fast
genau 100 Jahre nach der Patentierung des Phonographen, wurde die Compact Ez&c
 eingefiihrt. Wurden bei allen bisherigen Verfahren die Tonsignale anak}g gespeiche
 so verwendete das neue System erstmals eine Aufzeichnung in chgita}ar Forth, ﬁaxmt
 wurde eine praktisch perfekte Audiowiedergabe technisch tachbar. Bei det dmtaien
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sche M&&wéen det algebr&sch&n Cadwtﬁngsﬁmﬁe heraagmgm ~ Wohl nur wenige
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zu sein scheint, ist den wenigsten aber bewuBt, daB hierbei die Algebra eine wesentliche
Rolle spielt. In welcher Weise algebraische Methoden bei der CD Verwendung finden
und um welche algebraischen Hilfsmittel es sich handelt, soll im folgenden ausgefiihrt
werden.

Zunichst werden an Hand der Gegeniiberstellung der Ubertragung von Bild und Ton das
Problem der Quellencodierung und die Frage nach einer Mdoglichkeit der Korrektur von
Fehlern bei der Ubertragung besprochen. Dann werden Elemente der Codierungstheorie
unter besonderer Beriicksichtigung der Anforderungen bei CDs behandelt. Es folgt eine
Vorstellung der CD von der technischen Seite her, wobei die Implementierung der bei
CDs verwendeten Codes, sogenannte RS-Codes, im Mittelpunkt des Interesses steht.
Wie sich die RS-Codes in das Gedankengebidude der algebraischen Codierungstheorie
einordnen, ist Gegenstand des letzten Abschnitts.

Beethovens 9. Symphonie stand dafiir Pate, dal die Spieldauer einer Audio-CD 74 Mi-
nuten betrdgt. Die Theorie der endlichen Korper und in ihrem Gefolge die algebraische
Codierungstheorie tragen dazu wesentlich bei, dall es moglich ist, Beethovens Neunte in
so hervorragender Wiedergabequalitit von einer CD zu horen.

2 Codierung von Bild und Ton

Fast jeder von uns hat schon einmal eine Audio-CD in der Hand gehabt, und viele
kennen die gestochen scharfen Bilder aus dem Weltraum, die uns via Fernsehen in unsere
Wohnzimmer geliefert werden. (Abb. 1 zeigt eine CD von 12 cm Durchmesser, in Abb. 2
ist ein Bild vom Mars wiedergegeben, das durch die Marssonde Mariner 7 aufgenommen
wurde.) Fragt man sich, was CD und Bilder vom Mars gemeinsam haben, so erkennt man
sehr schnell, daB in jedem Fall Informationen iiber einen Kanal iibertragen werden, der
starken Storungen unterworfen sein kann, dal die Informationen aber zumeist so gut wie
fehlerfrei reproduziert werden. Bei den enormen Entfernungen, die ein Signal aus dem
Weltall zuriicklegt, ist ganz offensichtlich, da} stark stérende Einfliisse wirksam werden
konnen, bei der CD hingegen mufl man sich vor Augen halten, dal Einschliisse beim
Prigen, Verunreinigungen, Fingerabdriicke und Kratzer dhnliche Auswirkungen haben
konnen.

Jeder digitalen Ubertragung von Bild und Ton geht eine Quellencodierung iiber einem
gegebenen Alphabet (= Zeichenvorrat) A voraus. Bilder werden zumeist in einzelne
Bildpunkte zerlegt, welche sequentiell angeordnet werden. Wahlt man A = {0, 1} und
ordnet jedem Bildpunkt eine Graustufe oder Farbe in Form eines r-tupels aus 0 und 1 zu,
so wird der Bildinhalt durch eine Folge iiber A der Lange » mal Anzahl der Bildpunkte
reprasentiert. (Bei den Aufnahmen durch die Mariner-Sonden 6 und 7 wurde jedes Bild
in 658240 Punkte zerlegt, und jeder Punkt hatte eine Helligkeitsabstufung zwischen 1
und 28, welche durch r = 8 Bits wiedergegeben wurde, so daB pro Aufnahme etwa 5
Millionen Bits an Information notwendig waren.) Die durch die Quellencodierung eines
Bildes erhaltene Folge stellt dann die Grundlage fiir algebraische Verfahren der Fehlerer-
kennung und Fehlerkorrektur dar, durch welche die Folge in eine neue (ldngere) Folge
iiber A iibergefiihrt wird, welche man iibertriagt. Die iibertragenen Bits heilen Kanalbits.

Bei der CD ist alles wesentlich komplizierter: Bei der Quellencodierung wird das Au-
diosignal 44100 mal/sec (pro Audiokanal) abgetastet, und der beim Abtasten gefundene
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Abb. 1 Abb. 2

Wert wird in eines von 2'® = 65536 Niveaus eingeordnet (sieche Abb. 3). Jedes Niveau
wird durch zwei Bytes (1 Byte = 8 Bits) charakterisiert, so da ein Datenstrom aus
Bytes entsteht, d.h., das Alphabet A, iiber dem die Quellencodierung erfolgt, besteht aus
256 Zeichen, nimlich den 2% = 256 verschiedenen Bytes. (Um das analoge Signal aus
der digitalen Information eindeutig riickgewinnen zu kénnen, mufl die Abtastfrequenz
mindestens doppelt so grofl sein wie die groBite vorkommende Frequenz; siehe z.B. [8].
Damit steht pro Kanal eine Bandbreite von 20 kHz zur Verfiigung, was dem Horbereich
eines Menschen entspricht. Hohere Frequenzen miissen vorweg ausgefiltert werden.)

T

Abb. 3 2 Bytes = 16 Bits

Auf den die Audioinformation reprisentierenden Datenstrom aus Bytes werden anschlie-
Bend mehrere, in den nachstehenden Abschnitten ausfiihrlich beschriebene Verfahren zur
Fehlerentdeckung und -korrektur angewandt, wodurch nach Hinzufiigen von Synchro-
nisationsdaten aus der urspriinglichen Folge wieder eine Folge aus Bytes entsteht. Um
letztere auf der CD technisch zu realisieren (siche Abschnitt 4), wird sie allerdings einer
weiteren Codierung unterworfen, welche Kanalcodierung heifit.

Bei der Kanalcodierung wird jedes Byte in eine Folge von Bits iibergefiihrt, wobei
aber, nicht wie zu erwarten, jedes Byte durch 8 Bits dargestellt wird, sondern durch 14
Bits, wodurch man erreichen kann, dafl zwischen zwei Einsen mindestens zwei, aber
maximal 10 Nullen zu stehen kommen, eine Forderung, die man durch Einschieben von
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drei weiteren “Verbindungsbits” zwischen zwei 14-tupeln auf den gesamten Datenstrom
ausdehnt. Diese Erweiterung auf Bit-Ebene, welche fiir die Datendichte auf der CD von
wesentlicher Bedeutung ist (siche Abschnitt 4), wird EF-Modulation (eight to fourteen
modulation) genannt. Die EF-Modulation baut darauf auf, daB es 267 14-tupel mit der
Eigenschaft gibt, da zwischen zwei Einsen mindestens zwei, maximal aber 10 Nullen
stehen. Die Zuordnung der 256 Bytes zu 256 dieser 267 14-tupel erfolgt dadurch, daB
an Hand eines ROM-Worterbuches den Bytes 14-tupel zugewiesen werden. (Von den
11 nicht verwendeten 14-tupeln werden zwei als Synchronisationssymbole beniitzt; auch
eines der drei Verbindungsbits findet hierfiir Verwendung.) — In Abb. 4 ist der Weg vom
Audiosignal bis hin zum Lochmuster auf der CD (siehe Abschnitt 4) wiedergegeben.
Schon hier sei darauf verwiesen, dafl genau bei jedem Wechsel zwischen einer Vertiefung
und einer Erhebung eine 1 steht.

Audiosignal:

Audioinformation: 10111001, 0110010, ...

Verfahren zur Fehlerkorrektur, Hinzufiigen technischer Daten

Codierte Inf: ... | 01100001 | 01000111
A AN
Kanalbits: 1000010010001000000100100100100001
- L 1 f L1 [~
Lochmuster:

Abb. 4

Zuriick zur Quellencodierung liber dem Alphabet A: So wie bei natiirlichen Sprachen
wird der Datenstrom iiber A (die “Nachricht”) in Wérter, welche auch Bldcke genannt
werden, unterteilt. Im Gegensatz zu natiirlichen Sprachen nimmt man aber an, daf jedes
Wort gleichviele Symbole besitzt. Die Anzahl der Symbole eines Wortes (bzw. Blocks)
wird als Ldnge des Worts (bzw. Blockldnge) bezeichnet.

Warum verstehen wir den verballhornten Satz “Viela Leute heute tind am dif ETH Zsrich
... kommen” vollig richtig? Die Antwort ist, weil unsere Sprache a) Redundanz besitzt
und b) nach grammatikalischen Regeln konstruiert ist, was gemeinsam die Rekonstruk-
tion des Textes ermdglicht. Dieselben beiden Prinzipien wendet man nun an, um bei
Ubertragungen von Datenstromen iiber einen storanfilligen Kanal Fehler zu entdecken
bzw. zu korrigieren!). Um Redundanz zu erreichen, fiigt man zu jedem Nachrichtenwort
der Linge k weitere n — k Symbole als “Priifstellen” hinzu, so daB aus einem Nach-
richtenwort der Lange k ein Codewort der Linge n entsteht. O.B.d.A. nehmen wir an,
daB die Priifstellen alle nach dem (oder vor das) Nachrichtenwort zu stehen kommen.
(Bei der Ubertragung der Bilder vom Mars war z.B. k = 6 und n = 32, d.h., zu jedem

1) Der Vergleich stammt von H.K. Kaiser (miindl. Mitteilung)
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Nachrichtenwort der Linge 6 wurden 26 Priifbits hinzugefiigt; beziiglich der CD siehe
Abschnitt 4.) Als Analogie zur Grammatik bei natiirlichen Sprachen kann gesehen wer-
den, dal man dem Alphabet A eine algebraische Struktur aufprigt, mit deren Hilfe man
AF (Menge der k-tupel von Elementen aus A) und A" (Menge der n-tupel von Ele-
menten aus A) ebenfalls zu algebraischen Strukturen machen kann. A* stellt die Menge
aller Nachrichtenworter dar, und A" ist eine Obermenge der Menge C aller Codeworter.
Die injektive Abbildung fc : A¥ — A", welche jedem Nachrichtenwort (a;,...,ax) das
zugehorige Codewort (ay, ..., ak,Ck41,- .. ,Cy) zuordnet, heiBt Codierungsfunktion, und
n wird als Ldnge des Codes bezeichnet. Ein Code der Lénge n, genauer ein (n, k)-Code,
ist dann nichts anderes als die Teilmenge C={fc(a,...,ax)|(ai,...,ax) € A¥} von A",

+ 0 1 . 0 1
0 0 1 0 0 0
Tab. 1 1 1 0 1 0 1

In den meisten Fillen verlangt man, dal A ein endlicher Korper GF(q) ist. (GF(q):
Galoisfeld mit g Elementen; siehe z.B. [2], [5]). Im einfachsten Fall ist g = 2. Dann
ist GF(g) der Restklassenring modulo 2 und hat die in Tab. 1 dargestellte Additions-
und Multiplikationstafel. (Da in GF(2) gilt 1 + 1 = 0, ist —x = +x fiir jedes x.) Ist
A = GF(2), so heiBt der (n, k)-Code bindr. Der bei der Ubertragung der Bilder vom
Mars verwendete Code ist binidr. Bei der CD hingegen nimmt man fiir A das Galoisfeld
GF(256). (Ein solches Galoisfeld existiert, denn genau zu den Primzahlpotenzen g = p™,
p prim, m > 1, gibt es einen (bis auf Isomorphie eindeutig bestimmten) endlichen Korper
mit p™ Elementen, nimlich das Galoisfeld GF(p™), und 256 = 28; siehe z.B. [2].)

Wir bemerken, da8 man A* und A" fiir jeden Korper A als Vektorrdume iiber A auffassen
kann und daB bei den von uns im folgenden ausschlieBlich betrachteten linearen Codes,
bei denen fc als lineare Abbildung vorausgesetzt ist, C zu einem Untervektorraum wird.
Eine wesentliche Konsequenz davon ist z.B., dal mit zwei Codewdrtern auch deren
(komponentenweise definierte) Summe und Differenz wieder Codeworter sind, eine an-
dere, dal man die Codierung und Decodierung mit Hilfe von Matrizen beschreiben kann,
worauf wir hier aber nicht weiter eingehen wollen. (Fiir eine diesbeziigliche Einfiihrung
siche z.B. [1].)

3 Elemente der algebraischen Codierungstheorie

Die folgenden Ausfiihrungen orientieren sich an bindren Codes, saimtliche Aussagen sind
aber fiir Codes iiber jedem beliebigen Alphabet A = GF(g) giiltig.

Zunichst zwei Beispiele:
1)) Quersummenprufcode uber GF(2): Bei diesem Code istn = k+1und fc(ay,...,ax) =
(a,...,ak, Zal wobei Zal in GF(2) zu bilden ist. Wihlen wir z.B. k = 2, so ist

fc die Funktlon, die in Tab 2 wiedergegeben ist, und wir konnen C wie folgt graphisch
veranschaulichen: Wir stellen die Elemente von A>, so wie aus Abb. 5 hervorgeht, als
Gitterpunkte in einem dreidimensionalen Koordinatensystem dar. Die durch volle Kreise
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(0,0) — (0,0,0)
(Oa 1) — (0,1, 1) (1,0,1)
(1,0) — (1,0,1)
(1,1) = (1,1,0)
r’d
Tab. 2. Abb. 5

gekennzeichneten Knoten reprisentieren dann die Elemente des Codes C. Man sieht
dabei: Tritt hochstens ein Fehler bei der Ubertragung der Codewdrter auf, so wird dieser
Fehler erkannt; das iibertragene Wort gehort dann nédmlich nicht zur Menge C.

Der Quersummenpriifcode wird beim Datentransfer zwischen den Komponenten eines
Computers verwendet.

2) r-fach Wiederholungscode: n = rk, und fc ist gegeben durch fc(ay,...,ar) =
(@1y...,0k,81,...,8k,...,41,...,04¢) (41,...,ax r-mal wiederholt). Fiir k = 1 und r =
3 erhalten wir iiber GF(2) die Codierungsfunktion: (0) — (0,0,0) und (1) — (1,1, 1).
Wie die Veranschaulichung dieses Codes in Abb. 6 zeigt, kann der Code bis zu zwei
Fehler erkennen und einen Fehler korrigieren. (0, 1,1) wird z.B. zu (1, 1, 1) korrigiert —
sofern wir von dem nachstehenden Prinzip zur Decodierung ausgehen, welches wir im
folgenden stets annehmen wollen:

Das zum empfangenen, eventuell fehlerbehafteten Wort ndchstliegende Codewort ist das-
jenige Codewort, welches von der Nachrichtenquelle ausgesandt wurde.

Abb. 6

Aus dem auf die beschriebene Weise bestimmten Codewort kann die urspriingliche Nach-
richt abgelesen werden. Voraussetzung fiir die Anwendbarkeit des Decodierungs-Prinzips
ist allerdings, daB die Wahrscheinlichkeit eines Ubertragungsfehlers a — b fiir alle
a,b € A gleich groB ist und daB Ubertragungsfehler unabhiingig voneinander erfol-
gen. (Wir werden daher bei der CD darauf zu achten haben, “Biindelfehler”, wie sie
dort zumeist auftreten, mit geeigneten Verfahren in den Griff zu bekommen.) Ferner
benétigen wir natiirlich einen geeigneten Abstandsbegriff.
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Wir definieren: Der (Hamming-)Abstand d(@,b) von @ = (a;,...,a,) und b =
(b1,...,by) ist die Anzahl der Stellen i € {1,2,...,n} mit a; # b;. Z.B. ist
d((1,1,0,1),(0,1,1,1)) = 2.

An Hand der Abbildungen 7 und 8 ist unschwer einzusehen (was auch formal leicht zu
beweisen ist), daB stets gilt:

Ein Code kann genau dann jede Kombination von t oder weniger Fehlern entdecken

bzw. korrigieren, wenn der Hamming-Abstand zwischen zwei beliebigen verschiedenen
Codewortern mindestens t + 1 bzw. 2t + 1 ist.

O - t t
3 b .
- b
a
t <d(@b)—1 2t < d(@,b) -1
Abb. 7 Abb. 8

Bezeichnen wir den minimalen Abstand zwischen zwei verschiedenen Codewdértern, die
sogenannte Minimaldistanz des Codes, mit d, so muf} also fiir die Entdeckung von bis
zu t Fehlern gelten t < d — 1, und fiir die Fehlerkorrektur t < [d—g—l] ([x] bezeichnet
die néchstkleinere ganze Zahl zu x.) Da bei einem (n, k)-Code stets Nachrichtenworter
existieren, die sich in genau einer Komponente unterscheiden, und die zu den Nachrich-
tenwortern hinzugefiigten n — k Priifstellen im giinstigsten Fall sich in allen Kompo-
nenten unterscheiden, gilt fiir die Minimaldistanz d eines (n, k)-Codes d < n — k + 1.
Bei allen Codes ist nun wesentlich, da d mdoglichst groB ist, damit der Code gute
Fehlererkennungs- und -korrektureigenschaften hat, und eine groe Minimaldistanz ist
dadurch zu erreichen, daB man sehr viele Priifstellen zu den Nachrichtenwortern hinzu-
fiigt, d.h., daB n — k groB wird. Im Gegensatz dazu mufl man aber insbesondere bei den
bei CDs verwendeten Codes trachten, n — k moglichst klein zu halten, damit man soviel
wie nur moglich an Audio-Information auf der CD unterbringen kann. Beide einander
widersprechenden Forderungen lassen sich am besten vereinen, falls d =n — k + 1 ist.
In diesem Fall heiBt der Code optimal. — Fiir einen optimalen (n, k )-Code gilt dann, da

er bis zu n — k Fehler entdecken und bis zu [%5%] Fehler korrigieren kann.

Ein weiteres Anliegen an bei CDs verwendeten Codes ist, da die Decodierung, fiir
welche es bei linearen Codes gute systematische Verfahren gibt, besonders schnell von-
statten gehen soll. Dies ist am besten mit Hilfe von sogenannten Polynomcodes zu
erreichen, bei denen man ausniitzt, daB die Multiplikation und Division von Polynomen
sehr einfach und effektiv mit Hilfe von Schieberegistern technisch zu realisieren ist.

Ausgangspunkt der Definition von Polynomcodes ist, daB man jedem Vektor & =
(wo,wr, ..., wy—1) € A™ (man beachte, daB wir jetzt die Komponenten von 0 bis m — 1
indizieren) in umkehrbar eindeutiger Weise ein Polynom pg(x) = wp + wix + ... +
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wm—1X™"! zuordnen kann. Ein (1, k)-Polynomcode C iiber GF(g) wird dann auf fol-

gende Weise festgelegt: Man wihlt ein Polynom g(x) vom Grad n — k als sogenanntes
Generatorpolynom und berechnet zu jedem Nachrichtenwort @ = (ag, a1, .. .,ak—1) € Ak
das zugehorige Codewort ¢ = fc (@) bzw. das entsprechende Polynom pz(x), indem man
pe(x) = pa(x) - x" ¥ — Ry(x) (pa(x) - x"*) bildet, wobei Rg(x) den Rest bei Division durch
g(x) bedeutet. Da der Grad von pz(x) < k —1 ist, folgt fiir Polynome pz(x) ungleich dem
Nullpolynom (welchem als “Codepolynom” durch obige Vorschrift das Nullpolynom zu-
geordnet wird), daB gilt: n — k < Grad von pz(x) ax"k<k—-14n—-k=n-1,dh,
fc(ao, a1, ...,ak—1) ist von der Gestalt (co,C1,...,Cn—k—1,d0,41,---,dk—1). Mit ande-
ren Worten: Die Priifstellen kommen vor das Nachrichtenwort zu stehen. Im iibrigen sei
bemerkt, da3 auf Grund der Konstruktion von pz(x) jedes “Codepolynom” ein Vielfaches
des Generatorpolynoms g(x) ist, und weiters heben wir hervor, daB jeder Polynomcode
ein linearer Code ist (was allerdings nicht unmittelbar einzusehen ist).

Beispiel: Beim (7,4)-Polynomcode iiber GF (2) mit dem Generatorpolynom g(x) = 1+
x +x3 ist das Nachrichtenwort @ = (0, 1,0, 1) zu codieren. pz(x) = x + x>, pa(x)x" % =
x* + 28, und Ry (x* +x8) = x + 1. Also ist ps(x) = x* + 2% — x — 1, was wegen
—a = +a in GF(2) zu pz(x) = 1+ x + x* + x5 fiithrt. Damit ist das zu (0,1,0,1) gehorige
Codewort gleich (1,1,0,0,1,0,1). (Die Priifstellen sind 1,1,0.)

Um unter den Polynomcodes, fiir welche sehr effektive Algorithmen zur Codierung
und Decodierung zur Verfiigung stehen, solche mit guten Fehlerkorrektureigenschaften
konstruieren zu konnen (also insbesondere, um optimale Codes zu finden), ist ihre Klasse
noch zu allgemein. Man beschrénkt sich hierbei auf sogenannte zyklische Codes:

Ein linearer (n, k)-Code heiBt zyklisch, wenn mit ¢ = (cy,c2,...,¢,) auch alle jene
Worter in C liegen, welche durch zyklische Vertauschung der Symbole entstehen, also
(Cny€15€2y vy Cn—1)s (Cn—1,CnsC1,C24+-.,Cn—2),. ... Man kann beweisen, daB jeder zy-
klische lineare Code ein Polynomcode ist und daB ein (n, k )-Poynomcode genau dann
zyklisch ist, wenn sein erzeugendes Polynom g(x) das Polynom x" — 1 teilt. Damit ist
die in Frage kommende Menge von Generatorpolynomen g(x) wesentlich eingeschrinkt
(aber immer noch sehr umfangreich). Wie wir in Abschnitt 5 genauer ausfiihren werden,
kann man unter den Teilern von x" — 1 Generatorpolynome g(x) finden, welche zu op-
timalen Codes iiber GF(g) von vorgegebener Lange n und Minimaldistanz d fiihren und
welche sich noch dazu gut zur Korrektur von Fehlerbiindeln eignen. Zu solchen Codes
zdhlen insbesondere die Reed-Solomon-Codes (RS-Codes) und die daraus hervorgehen-
den verkiirzten RS-Codes (siehe Abschnitt 5). Letztere finden bei der CD Anwendung.

4 Compact Discs

Zunichst einige technische Aspekte: Der Durchmesser einer CD ist 12 c¢cm, so daf} die
Disc mit einer Hand in den CD-Player eingefiihrt und wieder herausgenommen werden
kann. Uberdies kann der Player klein sein. Auf einer Seite der Disc befindet sich, ge-
schiitzt durch eine 1,2 mm dicke lichtdurchléssige Schicht, eine spiralférmig angeordnete
Spur, welche eine Folge von verschieden langen Vertiefungen bzw. Erhebungen enthilt
(siche Abb. 9. — Abb. 9 sowie die beiden folgenden Abbildungen sind dem Konferenzbe-
richt [7] entnommen). Die minimale Linge einer Vertiefung ist 9- 10~*mm, der Abstand
zwischen zwei Spurringen betriigt 1,6 - 10~>mm. Die Disc wird beim Abspielen durch
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Abb. 9

einen Laserstrahl, der durch ein Servosystem exakt in der Spur gehalten wird, abgetastet
(siche Abb. 10). Fillt der Lichtstrahl auf eine Erhebung, wird das Licht fast total reflek-
tiert und der Strahl erreicht in fast voller Stidrke eine Photodiode; fallt der Lichtstrahl in
eine Vertiefung (Tiefe ~ % der Wellenlidnge des Lichtes), so wird er nur sehr wenig re-
flektiert. Damit Fingerabdriicke, Staubpartikel usw. den Abtastvorgang moglichst wenig
beeintriachtigen, verjiingt sich der Lichtstrahl von 0,7 mm an der Oberfliche der Schutz-
schicht auf 10~ *mm bei Erreichen der Spur (sieche Abb. 11). Jedesmal wenn ein Wechsel
zwischen einer Vertiefung und einer Erhebung stattfindet, d.h., wenn von der Photodiode
ein Wechsel zwischen sehr starker und geringfiigiger Reflexion registriert wird, wird eine
Eins angenommen, dazwischen Nullen. Die Spur stellt den Informationsstrom aus Nullen
und Einsen dar, der durch die in Abschnitt 2 erklidrte Kanalcodierung entsteht. Wie dort
ausgefiihrt, bewirkt die EF-Modulation, dafl zwischen zwei Einsen mindestens zwel, aber
hochstens 10 Nullen zu stehen kommen, was ein Bit-Muster mit einer geringeren Anzahl
von Ubergiingen zwischen 0 und 1 als ohne EF-Modulation entstehen 148t. Dadurch ist
auf der CD eine kleinere Anzahl von Vertiefungen erforderlich, was bedeutet, dal die
Datendichte auf der CD erhoht werden kann, wodurch eine ldngere Spielzeit erreicht
wird. (Dariiber hinaus werden bei der Manipulation des Frequenzspektrums durch die
EF-Modulation noch einige weitere Zielsetzungen verfolgt; siehe z.B. [4] und [8].)
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Wir beschreiben nun im Detail, wie die Folge der Kanal-Bits aus der urspriinglichen
Folge jener Bytes entsteht, welche man durch Digitalisierung der Audio-Information er-
hilt (wobei jeweils zwei Bytes vom linken und dann zwei Bytes vom rechten Kanal
genommen werden). Zunéchst wird der Datenstrom von Bytes in Worter der Linge 24,
welche hier Frames heiflen, unterteilt. Dann wird auf diese Frames der Wortlinge 24
ein (28,24)-Code C; iiber GF(256) angewandt, und zwar ein verkiirzter Reed-Solomon-
Code. Dieser ist optimal und kann daher bis zu [%5%] = 2 Byte-Fehler korrigieren und
bis zu n— k = 4 Byte-Fehler erkennen. Die Korrekturméglichkeit von zwei Byte-Fehlern
bedeutet auf Bit-Ebene, daBl im giinstigsten Fall ein Fehlerbiindel von bis zu 16 und im
schlechtesten Fall ein Fehlerbiindel von bis zu 9 aufeinanderfolgenden Bits korrigiert

werden kann. Im nédchsten Schritt wird der mit C; codierte Datenstrom auf Byte-Ebene

neu organisiert. Aus jeweils 28 hintereinanderfolgenden Codewdrtern ¢y, ¢z, . . . , C2g Wer-
den 28 neue Codeworter c}, 5, ..., 5 dadurch gewonnen, dafl aus cy,ca,. .., cog die er-
sten Buchstaben entnommen werden und damit ¢} gebildet wird, dann aus cy,c2, ... ,C23

die zweiten Buchstaben entnommen werden und c; gebildet wird, u.s.f. Dieser Vorgang
heiBt Interleaving und dient dem Zweck, Fehlerbiindel, wie sie vornehmlich bei CDs zu
erwarten sind, moglichst auseinanderzurei3en.

Auf den neu organisierten Datenstrom wird nun nochmals ein verkiirzter Reed-Solomon-
Code angewendet, und zwar ein (32,28)-Code iiber GF(256), den wir mit C, bezeichnen.
Auch der Code C, kann Fehler bis zu zwei Bytes korrigieren und bis zu vier Bytes er-
kennen. Nach der Codierung durch C, wird der Datenstrom noch durch Abspielinforma-
tionen ergéinzt, indem jedem Wort der Liange 32 eines von zwei bestimmten Bytes (meist
mit P und Q bezeichnet) angefiigt wird. Der nichste Schritt ist dann die EF-Modulation,
bei der aus den 33 Bytes 33 x 17 Kanalbits werden (Aufbldhen eines jeden Bytes auf
14 Bits und Einfiigen von drei Verbindungsbits). Zu den 33 x 17 Kanalbits kommen
schlieBlich noch jeweils 27 Synchronisations-Bits, mit deren Hilfe gleichsam wie mit
einer dem Datenstrom innewohnenden Uhr die Bitrate beim Auslesen der Daten von der
CD bestimmt wird, so dal schluBendlich ein Frame von urspriinglich 24 Bytes Lénge
aus 588 Kanalbits besteht.

Beim Abspielen der CD geschieht folgendes: Als erstes werden von der durch den
Laserstrahl mit einer Durchschnittsgeschwindigkeit von 4,3 Megabits/sec abgetasteten
(und vorverstirkten) Information jeweils die Synchronisationsdaten ausgelesen, womit
die Dauer der einzelnen Kanalbits, codierten Bytes bzw. Frames festgelegt wird und
wodurch auch die Umdrehungsgeschwindigkeit der CD (durch ein Referenzsignal zum
Datenpuffer; siehe spiter) kontrolliert wird. Anschlieend wird im Demodulator die EF-
Modulation riickgéngig gemacht, und die Abspielinformationen werden dem “Display”
bzw. “Memory” zuginglich. Dann wird der Datenstrom, der nur noch codierte Audioin-
formation enthélt, in den Datenpuffer gelenkt, durch den sichergestellt wird, dal der
Datenstrom hochst gleichmiBig, d.h. mit der Genauigkeit eines Quarzkristalles, weiter-
flieBt. Der Datenpuffer steuert auch die Umdrehungsgeschwindigkeit der CD, welche im
Gegensatz zum Schallplattenspieler aber innerhalb gewisser Toleranzen von untergeord-
neter Bedeutung ist. Das System ist so ausgelegt, da3 der Datenpuffer im Durchschnitt
halb voll ist.
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Abb. 12

Als nichstes folgen die Decodierung mittels C,, die Umkehrung des Interleaving und die
Decodierung mittels C;. Dabei werden Fehler, soweit dies moglich ist, ausgebessert und
erkannt, bzw., es wird festgestellt, da eine Decodierung (etwa auf Grund eines unsiche-
ren Erkennens von Bits) nicht erfolgen kann. Bytes, die als fehlerhaft oder unverlidBlich
eingestuft wurden, werden dem Interpolator zugefiihrt, wo sie linear interpoliert werden
(siche Abb. 12). SchlieBlich wird der digitale Informationsstrom wieder in Audiosignale
umgewandelt. Das Endprodukt ist die bekannte ausgezeichnete Wiedergabequalitit von
CDs. Beziiglich genauerer Informationen verweisen wir auf [8].

5 Reed-Solomon-Codes

Bei der Losung des Problems, Codes mit vorgegebenen Fehlerkorrektureigenschaften zu
konstruieren, konzentriert man sich vor allem auf zyklische Linearcodes, welche stets
Polynomcodes sind und sich daher sehr gut implementieren lassen.

Fiir den Fall, da nur ¢ = 1 Fehler korrigiert werden muB, haben sich die bindren
Hamming-Codes bewihrt. Es sind dies (2™ — 1,2™ — 1 — m)-Polynomcodes iiber GF(2),
bei denen das Generatorpolynom g(x) das Minimalpolynom M,(x) eines primitiven
Elements o von GF(2™) ist. (Jedes Element v # 0 eines Galoisfeldes GF(p™), p prim,
ist Nullstelle eines Polynoms mit Koeffizienten aus GF(p), und unter diesen Polynomen
gibt es stets ein eindeutig bestimmtes Polynom M, (x) von minimalem Grad und mit
Koeffizient 1 bei der hochsten Potenz von x. M, (x) heift das Minimalpolynom von ~;
es ist Teiler von x?" —! — 1. — Ein primitives Element o von GF(p™) ist nichts anderes
als ein erzeugendes Element der multiplikativen Gruppe der Elemente # 0 von GF(p™);
sein Minimalpolynom M, (x) hat den Grad m; siehe z.B.[5].)

Beispiel fiir einen bindren Hammingcode der Linge n = 7: Wegen 2" —1 = 7 ist m = 3.
Das Polynom g(x) = x* +x + 1 iiber GF(2) ist, wie man zeigen kann, Minimalpolynom
eines primitiven Elements o von GF(8). g(x) erzeugt daher einen zyklischen (7,4)-
Polynomcode iiber GF(2), welcher einen Fehler korrigiert.

Ist « ein primitives Element von GF(p™) und sind M, (x) fiir i = 1,2,... die Mini-
malpolynome der Elemente o/ von GF(p™), dann gilt fiir den speziellen Fall p = 2,
daB M, (x) = M, (x) fiir i = 1,2,.... Damit ergibt sich fiir das erzeugende Polynom
g(x) = M,(x) eines bindren Hamming-Codes die folgende im Hinblick auf eine spé-
tere Verallgemeinerung benétigte Darstellung: g(x) = k.g.V.(Ma(x), M2 (x)), wo k.g.V.
abkiirzend fiir “kleinstes gemeinsames Vielfaches” steht.

Sucht man fiir t = 2 binire zyklische (1, k )-Polynomcodes der Linge n = 2™ —1, welche
t oder weniger Fehler korrigieren, so kann man in Verallgemeinerung des Falls £ = 1 be-
weisen, daB g(x) = k.g.V.(M,(x), M2 (x), My (x), Ms (%)), = k.g8.V.(Ma(x), My (%))
das Gewiinschte leistet, und fiir allgemeines ¢ erhilt man einen binidren zyklischen (n, k)-
Polynomcode der Linge n = 2™ —1, der bis zu ¢ Fehler korrigiert, wenn man als Genera-

torpolynom g(x) = k.g.V. (My(x), Ma2 (%), ..., Max(x)) = k.g.V.(My(x), M3 (%), ..,



100 El. Math. 57 (1996)

M,2-1(x)) wihlt. Fiir diesen Code ist dann k = n — gradg(x), wo gradg(x) den Grad
von g(x) bezeichnet. Setzen wir t = [251] fiir ein 6 € N, so bedeutet dies bei der Wahl
eines ungeraden 6, dall 6 — 1 = 2t ist, und fiir ein gerades §, daBl 6 — 1 = 2t —1 ist. Damit
konnen wir das Generatorpolynom g(x) stets in der Form g(x) = k.g.V.(M,(x), M2 (x),
..+, Mys-1(x)) schreiben. Wegen 2t + 1 < d ist § eine untere Schranke fiir die Minimal-
distanz d.

Gibt man bei der Konstruktion eines zyklischen (1, k)-Polynomcodes iiber GF(2) der
Liange n = 2™ — 1 an Stelle der Anzahl t der zu korrigierenden Fehler eine untere
Schranke ¢ fiir d vor, so 148t sich das bisher Gesagte unmittelbar auf beliebige Galois-
felder GF(g), q eine Primzahlpotenz > 2, iibertragen.

Gegeben seiein 6 € Nmit2 < 6 < nund n = g™ — 1. Wihlt man fiir ein primitives Ele-
ment « iiber GF(g) als Generatorpolynom g(x) = k.g.V.(M,(x), M2 (x), ..., Mus-1(x)),
wo M, (x) fiiri = 1,2,...,8—1 das Minimalpolynom von o' iiber GF(g) bezeichnet, so
erhilt man einen zyklischen (7, k )-Polynomcode iiber GF(g), fiir dessen Minimaldistanz
d gilt d > 6. Dieser Code kann 6 — 1 oder weniger Fehler entdecken und [9‘2‘—1] oder
weniger Fehler korrigieren. Fiir seine Wortldnge k gilt k = n — grad g(x). Man kann
zeigen, daB k > n —m(6 — 1) ist.

Eine weitere Verallgemeinerung ist wie folgt moglich: Sei n eine beliebige nichtnegative
ganze Zahl, welche zu g teilerfremd ist. Dann kann man beweisen, da3 es eine kleinste
natiirliche Zahl m > 0 gibt, so daB3 n die Zahl 4" — 1 teilt. Ferner kann man zeigen (siehe
z.B.[5]): Die Nullstellen von x" — 1 in GF(g™) bilden eine Untergrupe der zyklischen
Gruppe der Elemente # 0 von GF(q™); diese Untergruppe ist daher ebenfalls zyklisch.
Ist nun « ein beliebiges erzeugendes Element dieser Untergruppe und b eine beliebige
nichtnegative ganze Zahl, dann wéhlen wir

g(x) =k.g.V.(Mp (x), Mpp1 (x), . .., Mypss—2(x))

als Generatorpolynom. Der dadurch definierte (n, k)-Code ist ein zyklischer Polynom-
code, fiir den gilt d > § und k = n — gradg(x) > n — m(6 — 1). Der Code wird nach
seinen Entdeckern Bose, Chaudhuri und Hocquenghem ein BCH-Code der Linge n und
der designierten Distanz 6 genannt.

Wihlt man n = g — 1, dann ist m = 1 und « ein primitives Element von GF(g). Das
Minimalpolynom von a?*! iiber GF(g) ist daher gegeben durch My (x) = x — ab*,
und es folgt

g(x) = (x —a®) (x =) ... (x — aP*72),

Ferner ergibt sich: k = n—gradg(x) = n—46+1.Daheristn—k+1=6 <d <n—k+1,
was bedeutet, daB 6 = d = n+ k — 1 ist. D.h., der Code ist optimal und seine designierte
Distanz § ist gleich seiner Minimaldistanz d. Es handelt sich dabei um den von uns bereits
mehrfach angesprochenen Reed-Solomon-Code, den wir mit RS(n,d) bezeichnen. Der
Code hingt natiirlich auch noch von der Wahl des primitiven Elements o und von b ab;
zumeist wird b = 1 gewihlt. Die RS-Codes wurden unabhingig von den BCH-Codes
gefunden und erst im nachhinein den BCH-Codes untergeordnet. Sie geben AnlaB zu
einer Fiille von neuen optimalen Codes durch das im folgenden beschriebene Prinzip der
Verkiirzung, bei dem die Optimalitét des Codes unberiihrt bleibt.
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Sei C ein beliebiger zyklischer (n, k)-Code der Minimaldistanz d. Setzt man in jedem
Nachrichtenwort und in jedem Codewort die ersten r Stellen gleich 0, so erhilt man
einen linearen (n — r,k — r)-Code, dessen Minimaldistanz > d ist. Dieser Code ist
wohl nicht mehr zyklisch, er kann aber technisch auf dieselbe Weise wie der zugehorige

zyklische Code C implementiert werden. (Im Gegenteil: Es ergeben sich sogar gewisse
Vereinfachungen.)

Die bei der CD verwendeten Codes entstehen beide durch Verkiirzung von Reed-Solo-
mon-Codes RS(255,5) iiber GF(256) und haben daher das Generatorpolynom g(x) =
(x — a)(x — a?) (x — &®) (x — o*). Ublicherweise nimmt man fiir o jenes primitive
Element, dessen Minimalpolynom gegeben ist durch M, (x) = 1 4+ x2 + x3 4+ x* + x3.
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