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Algebraische Codierungstheorie und Compact Discs

Dietmar Dorninger

Dietmar Dorninger wurde 1945 in Oberosterreich geboren Er studierte Mathematik
und Physik an der Universität Wien, wo er 1969 promovierte Bereits 1976 wurde

er Professor an der Technischen Universität Wien, seit 1992 ist er dort Vorstand des

Institutes fur Algebra und Diskrete Mathematik Seine wissenschaftlichen Interessen

gelten ausser den Anwendungen der Algebra insbesondere Fragen der mathematischen

Biologie, gegenwartig vor allem im Bereich der Zell- und Molekularbiologie
In der Freizeit beschäftigt er sich gerne mit zeitgenossischer Literatur

1 Einleitung
Im Herbst 1982 wurde in Europa und Japan die Audio-CD eingeführt, im Frühling 1983

folgten die USA nach. Seither hat die CD einen unvergleichlichen Siegeszug um die

Welt angetreten. Obgleich jedem die hervorragende Wiedergabequalität der CD bekannt
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zu sein scheint, ist den wenigsten aber bewußt, daß hierbei die Algebra eine wesentliche
Rolle spielt. In welcher Weise algebraische Methoden bei der CD Verwendung finden
und um welche algebraischen Hilfsmittel es sich handelt, soll im folgenden ausgeführt
werden.

Zunächst werden an Hand der Gegenüberstellung der Übertragung von Bild und Ton das

Problem der Quellencodierung und die Frage nach einer Möglichkeit der Korrektur von
Fehlern bei der Übertragung besprochen. Dann werden Elemente der Codierungstheorie
unter besonderer Berücksichtigung der Anforderungen bei CDs behandelt. Es folgt eine

Vorstellung der CD von der technischen Seite her, wobei die Implementierung der bei
CDs verwendeten Codes, sogenannte RS-Codes, im Mittelpunkt des Interesses steht.
Wie sich die RS-Codes in das Gedankengebäude der algebraischen Codierungstheorie
einordnen, ist Gegenstand des letzten Abschnitts.

Beethovens 9. Symphonie stand dafür Pate, daß die Spieldauer einer Audio-CD 74
Minuten beträgt. Die Theorie der endlichen Körper und in ihrem Gefolge die algebraische
Codierungstheorie tragen dazu wesentlich bei, daß es möglich ist, Beethovens Neunte in
so hervorragender Wiedergabequalität von einer CD zu hören.

2 Codierung von Bild und Ton
Fast jeder von uns hat schon einmal eine Audio-CD in der Hand gehabt, und viele
kennen die gestochen scharfen Bilder aus dem Weltraum, die uns via Fernsehen in unsere
Wohnzimmer geliefert werden. (Abb. 1 zeigt eine CD von 12 cm Durchmesser, in Abb. 2

ist ein Bild vom Mars wiedergegeben, das durch die Marssonde Mariner 7 aufgenommen
wurde.) Fragt man sich, was CD und Bilder vom Mars gemeinsam haben, so erkennt man
sehr schnell, daß in jedem Fall Informationen über einen Kanal übertragen werden, der
starken Störungen unterworfen sein kann, daß die Informationen aber zumeist so gut wie
fehlerfrei reproduziert werden. Bei den enormen Entfernungen, die ein Signal aus dem
Weltall zurücklegt, ist ganz offensichtlich, daß stark störende Einflüsse wirksam werden
können, bei der CD hingegen muß man sich vor Augen halten, daß Einschlüsse beim
Prägen, Verunreinigungen, Fingerabdrücke und Kratzer ähnliche Auswirkungen haben
können.

Jeder digitalen Übertragung von Bild und Ton geht eine Quellencodierung über einem

gegebenen Alphabet Zeichenvorrat) A voraus. Bilder werden zumeist in einzelne

Bildpunkte zerlegt, welche sequentiell angeordnet werden. Wählt man _4 {0,1} und
ordnet jedem Bildpunkt eine Graustufe oder Farbe in Form eines r-tupels aus 0 und 1 zu,
so wird der Bildinhalt durch eine Folge über A der Länge r mal Anzahl der Bildpunkte
repräsentiert. (Bei den Aufnahmen durch die Mariner-Sonden 6 und 7 wurde jedes Bild
in 658240 Punkte zerlegt, und jeder Punkt hatte eine Helligkeitsabstufung zwischen 1

und 28, welche durch r 8 Bits wiedergegeben wurde, so daß pro Aufnahme etwa 5

Millionen Bits an Information notwendig waren.) Die durch die Quellencodierung eines

Bildes erhaltene Folge stellt dann die Grundlage für algebraische Verfahren der Fehlererkennung

und Fehlerkorrektur dar, durch welche die Folge in eine neue (längere) Folge
über A übergeführt wird, welche man überträgt. Die übertragenen Bits heißen Kanalbits.

Bei der CD ist alles wesentlich komplizierter: Bei der Quellencodierung wird das

Audiosignal 44100 mal/sec (pro Audiokanal) abgetastet, und der beim Abtasten gefundene
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Abb. 1 Abb. 2

Wert wird in eines von 216 65536 Niveaus eingeordnet (siehe Abb. 3). Jedes Niveau
wird durch zwei Bytes (1 Byte 8 Bits) charakterisiert, so daß ein Datenstrom aus

Bytes entsteht, d.h., das Alphabet A, über dem die Quellencodierung erfolgt, besteht aus
256 Zeichen, nämlich den 28 256 verschiedenen Bytes. (Um das analoge Signal aus
der digitalen Information eindeutig rückgewinnen zu können, muß die Abtastfrequenz
mindestens doppelt so groß sein wie die größte vorkommende Frequenz; siehe z.B. [8].
Damit steht pro Kanal eine Bandbreite von 20 kHz zur Verfügung, was dem Hörbereich
eines Menschen entspricht. Höhere Frequenzen müssen vorweg ausgefiltert werden.)

Abb. 3
2 Bytes 16 Bits

Auf den die Audioinformation repräsentierenden Datenstrom aus Bytes werden anschließend

mehrere, in den nachstehenden Abschnitten ausführlich beschriebene Verfahren zur
Fehlerentdeckung und -korrektur angewandt, wodurch nach Hinzufügen von
Synchronisationsdaten aus der ursprünglichen Folge wieder eine Folge aus Bytes entsteht. Um
letztere auf der CD technisch zu realisieren (siehe Abschnitt 4), wird sie allerdings einer
weiteren Codierung unterworfen, welche Kanalcodierung heißt.

Bei der Kanalcodierung wird jedes Byte in eine Folge von Bits übergeführt, wobei
aber, nicht wie zu erwarten, jedes Byte durch 8 Bits dargestellt wird, sondern durch 14

Bits, wodurch man erreichen kann, daß zwischen zwei Einsen mindestens zwei, aber
maximal 10 Nullen zu stehen kommen, eine Forderung, die man durch Einschieben von
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drei weiteren "Verbindungsbits" zwischen zwei 14-tupeln auf den gesamten Datenstrom
ausdehnt. Diese Erweiterung auf Bit-Ebene, welche für die Datendichte auf der CD von
wesentlicher Bedeutung ist (siehe Abschnitt 4), wird EF-Modulation (eight to fourteen
modulation) genannt. Die EF-Modulation baut darauf auf, daß es 267 14-tupel mit der
Eigenschaft gibt, daß zwischen zwei Einsen mindestens zwei, maximal aber 10 Nullen
stehen. Die Zuordnung der 256 Bytes zu 256 dieser 267 14-tupel erfolgt dadurch, daß

an Hand eines ROM-Wörterbuches den Bytes 14-tupel zugewiesen werden. (Von den
11 nicht verwendeten 14-tupeln werden zwei als Synchronisationssymbole benützt; auch
eines der drei Verbindungsbits findet hierfür Verwendung.) - In Abb. 4 ist der Weg vom
Audiosignal bis hin zum Lochmuster auf der CD (siehe Abschnitt 4) wiedergegeben.
Schon hier sei darauf verwiesen, daß genau bei jedem Wechsel zwischen einer Vertiefung
und einer Erhebung eine 1 steht.

Audiosignal:

Audioinformation: 10111001,0110010,

Verfahren zur Fehlerkorrektur, Hinzufügen technischer Daten

Codierte Inf.:

Kanalbits:

Lochmuster:

01100001 01000111

100001001000100000010010010010 0001
~i i—uj—i r

Abb. 4

Zurück zur Quellencodierung über dem Alphabet A: So wie bei natürlichen Sprachen
wird der Datenstrom über A (die "Nachricht") in Wörter, welche auch Blöcke genannt
werden, unterteilt. Im Gegensatz zu natürlichen Sprachen nimmt man aber an, daß jedes
Wort gleichviele Symbole besitzt. Die Anzahl der Symbole eines Wortes (bzw. Blocks)
wird als Länge des Worts (bzw. Blocklänge) bezeichnet.

Warum verstehen wir den verballhornten Satz "Viela Leute heute tind am dif ETH Zsrich
kommen" völlig richtig? Die Antwort ist, weil unsere Sprache a) Redundanz besitzt

und b) nach grammatikalischen Regeln konstruiert ist, was gemeinsam die Rekonstruktion

des Textes ermöglicht. Dieselben beiden Prinzipien wendet man nun an, um bei
Übertragungen von Datenströmen über einen störanfälligen Kanal Fehler zu entdecken
bzw. zu korrigieren1). Um Redundanz zu erreichen, fügt man zu jedem Nachrichtenwort
der Länge k weitere n — k Symbole als "Prüfstellen" hinzu, so daß aus einem
Nachrichtenwort der Länge k ein Codewort der Länge n entsteht. O.B.d.A. nehmen wir an,
daß die Prüfstellen alle nach dem (oder vor das) Nachrichtenwort zu stehen kommen.
(Bei der Übertragung der Bilder vom Mars war z.B. k 6 und n 32, d.h., zu jedem

1) Der Vergleich stammt von H.K. Kaiser (mündl. Mitteilung)
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Nachrichtenwort der Länge 6 wurden 26 Prüfbits hinzugefügt; bezüglich der CD siehe
Abschnitt 4.) Als Analogie zur Grammatik bei natürlichen Sprachen kann gesehen werden,

daß man dem Alphabet A eine algebraische Struktur aufprägt, mit deren Hilfe man
Ak (Menge der fc-tupel von Elementen aus A) und An (Menge der n-tupel von
Elementen aus A) ebenfalls zu algebraischen Strukturen machen kann. Ak stellt die Menge
aller Nachrichtenwörter dar, und An ist eine Obermenge der Menge C aller Codewörter.
Die injektive Abbildung fc : Ak —> An, welche jedem Nachrichtenwort (ai, ,ajt) das

zugehörige Codewort (a\,... ,ak,cK+i,... ,cn) zuordnet, heißt Codierungsfunktion, und
n wird als Länge des Codes bezeichnet. Ein Code der Länge n, genauer ein (n, k)-Code,
ist dann nichts anderes als die Teilmenge C {fc(ax,...,ak)\(ax,...,ak)eAk} von An.

+ 0 1

0
1

0 1

1 0

0 1

0
1

0 0
0 1Tab. 1

In den meisten Fällen verlangt man, daß A ein endlicher Körper GF(q) ist. (GF(q):
Galoisfeld mit q Elementen; siehe z.B. [2], [5]). Im einfachsten Fall ist q — 2. Dann
ist GF(^) der Restklassenring modulo 2 und hat die in Tab. 1 dargestellte Additionsund

Multiplikationstafel. (Da in GF(2) gilt 1 + 1 0, ist -x +x für jedes x.) Ist
A GF(2), so heißt der (n, fc)-Code binär. Der bei der Übertragung der Bilder vom
Mars verwendete Code ist binär. Bei der CD hingegen nimmt man für A das Galoisfeld
GF(256). (Ein solches Galoisfeld existiert, denn genau zu den Primzahlpotenzen q pm,

p prim, m > 1, gibt es einen (bis auf Isomorphie eindeutig bestimmten) endlichen Körper
mit pm Elementen, nämlich das Galoisfeld GF(pm), und 256 28; siehe z.B. [2].)

Wir bemerken, daß man Ak und An für jeden Körper A als Vektorräume über A auffassen

kann und daß bei den von uns im folgenden ausschließlich betrachteten linearen Codes,
bei denen fc als lineare Abbildung vorausgesetzt ist, C zu einem Untervektorraum wird.
Eine wesentliche Konsequenz davon ist z.B., daß mit zwei CodeWörtern auch deren

(komponentenweise definierte) Summe und Differenz wieder Codewörter sind, eine
andere, daß man die Codierung und Decodierung mit Hilfe von Matrizen beschreiben kann,
worauf wir hier aber nicht weiter eingehen wollen. (Für eine diesbezügliche Einführung
siehe z.B. [1].)

3 Elemente der algebraischen Codierungstheorie
Die folgenden Ausführungen orientieren sich an binären Codes, sämtliche Aussagen sind
aber für Codes über jedem beliebigen Alphabet A GF(q) gültig.

Zunächst zwei Beispiele:

1) Quersummenprüfcode über GF(2): Bei diesem Code ist n fc +1 und fc (fli,..., flj.)
k k

(fli,... ,0*;, Y^at), wobei £ß, in GF(2) zu bilden ist. Wählen wir z.B. fc 2, so ist
i=i i=i

fc die Funktion, die in Tab. 2 wiedergegeben ist, und wir können C wie folgt graphisch
veranschaulichen: Wir stellen die Elemente von A3, so wie aus Abb. 5 hervorgeht, als

Gitterpunkte in einem dreidimensionalen Koordinatensystem dar. Die durch volle Kreise
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(0,0)
(0,1)
(1,0)
(1,1)

(0,0,0)
(0,1,1)
(1,0,1)
(1,1,0)

(1,0,1) ^
Tab. 2.

/
Abb. 5

..(0,0,0)

h—Z

(0,1,1)

(1,1,0)

gekennzeichneten Knoten repräsentieren dann die Elemente des Codes C. Man sieht
dabei: Tritt höchstens ein Fehler bei der Übertragung der CodeWörter auf, so wird dieser
Fehler erkannt; das übertragene Wort gehört dann nämlich nicht zur Menge C.

Der Quersummenprüfcode wird beim Datentransfer zwischen den Komponenten eines

Computers verwendet.

2) r-fach Wiederholungscode: n rk, und fc ist gegeben durch /c(ß_,. • • ,fljt)
(fli,... ,fljt,0i,... ,flfc,... ,#i,... ,fljt) (ßi,... ,fljt r-mal wiederholt). Für fc 1 und r
3 erhalten wir über GF(2) die Codierungsfunktion: (0) -> (0,0,0) und (1) -» (1,1,1).
Wie die Veranschaulichung dieses Codes in Abb. 6 zeigt, kann der Code bis zu zwei
Fehler erkennen und einen Fehler korrigieren. (0,1,1) wird z.B. zu (1,1,1) korrigiert -
sofern wir von dem nachstehenden Prinzip zur Decodierung ausgehen, welches wir im
folgenden stets annehmen wollen:

Das zum empfangenen, eventuell fehlerbehafteten Wort nächstliegende Codewort ist
dasjenige Codewort, welches von der Nachrichtenquelle ausgesandt wurde.

Abb. 6

7?" (IX1,1,1)

(0,0,0)

/

(0,1,1)

Aus dem auf die beschriebene Weise bestimmten Codewort kann die ursprüngliche Nachricht

abgelesen werden. Voraussetzung für die Anwendbarkeit des Decodierungs-Prinzips
ist allerdings, daß die Wahrscheinlichkeit eines Übertragungsfehlers a —> b für alle
a,b e A gleich groß ist und daß Übertragungsfehler unabhängig voneinander erfolgen.

(Wir werden daher bei der CD darauf zu achten haben, "Bündelfehler", wie sie

dort zumeist auftreten, mit geeigneten Verfahren in den Griff zu bekommen.) Ferner

benötigen wir natürlich einen geeigneten Abstandsbegriff.
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Wir definieren: Der (Hamming-)Abstand d(39$) von a (ax,...,an) und $

(bx,...,bn) ist die Anzahl der Stellen i e {1,2,... ,n} mit at ^ bt. Z.B. ist
d((l, 1,0,1), (0,1,1,1)) =2.
An Hand der Abbildungen 7 und 8 ist unschwer einzusehen (was auch formal leicht zu
beweisen ist), daß stets gilt:
Ein Code kann genau dann jede Kombination von t oder weniger Fehlern entdecken
bzw. korrigieren, wenn der Hamming-Abstand zwischen zwei beliebigen verschiedenen
Codewörtern mindestens t + 1 bzw. 2t + 1 ist.

Or

t<d(a,b)-l 2t<d(aj)-l
Abb. 7 Abb. 8

Bezeichnen wir den minimalen Abstand zwischen zwei verschiedenen Codewörtern, die
sogenannte Minimaldistanz des Codes, mit d, so muß also für die Entdeckung von bis
zu t Fehlern gelten t < d - 1, und für die Fehlerkorrektur t < [^-]. ([x] bezeichnet
die nächstkleinere ganze Zahl zu x.) Da bei einem (n, fc)-Code stets Nachrichtenwörter
existieren, die sich in genau einer Komponente unterscheiden, und die zu den
Nachrichtenwörtern hinzugefügten n — fc Prüfstellen im günstigsten Fall sich in allen Komponenten

unterscheiden, gilt für die Minimaldistanz d eines (n, fc)-Codes d < n — k + 1.

Bei allen Codes ist nun wesentlich, daß d möglichst groß ist, damit der Code gute
Fehlererkennungs- und -korrektureigenschaften hat, und eine große Minimaldistanz ist
dadurch zu erreichen, daß man sehr viele Prüfstellen zu den Nachrichtenwörtern hinzufügt,

d.h., daß n — k groß wird. Im Gegensatz dazu muß man aber insbesondere bei den
bei CDs verwendeten Codes trachten, n-k möglichst klein zu halten, damit man soviel
wie nur möglich an Audio-Information auf der CD unterbringen kann. Beide einander

widersprechenden Forderungen lassen sich am besten vereinen, falls d n— k + l ist.
In diesem Fall heißt der Code optimal. - Für einen optimalen (w, fc)-Code gilt dann, daß

er bis zu n — fc Fehler entdecken und bis zu f11^] Fehler korrigieren kann.

Ein weiteres Anliegen an bei CDs verwendeten Codes ist, daß die Decodierung, für
welche es bei linearen Codes gute systematische Verfahren gibt, besonders schnell
vonstatten gehen soll. Dies ist am besten mit Hilfe von sogenannten Polynomcodes zu
erreichen, bei denen man ausnützt, daß die Multiplikation und Division von Polynomen
sehr einfach und effektiv mit Hilfe von Schieberegistern technisch zu realisieren ist.

Ausgangspunkt der Definition von Polynomcodes ist, daß man jedem Vektor CS

(ü;0, u)\,..., Um-\) £ Am (man beachte, daß wir jetzt die Komponenten von 0 bis m - 1

indizieren) in umkehrbar eindeutiger Weise ein Polynom p$(x) uq + uxx + +
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a;m_ixw_1 zuordnen kann. Ein (n, fc)-Polynomcode C über GF(q) wird dann auf
folgende Weise festgelegt: Man wählt ein Polynom g(x) vom Grad n — k als sogenanntes
Generatorpolynom und berechnet zu jedem Nachrichtenwort a (öo, #i, • • •, ak-i) e Ak
das zugehörige Codewort c=fc(a) bzw. das entsprechende Polynom p?(x)9 indem man
Pc(x) pa(x)-xn~k -Rg(x)(pa(x)'Xn~k) bildet, wobei Rg^ den Rest bei Division durch

g(x) bedeutet. Da der Grad von pn(x) < fc — 1 ist, folgt für Polynome p$(x) ungleich dem

Nullpolynom (welchem als "Codepolynom" durch obige Vorschrift das Nullpolynom
zugeordnet wird), daß gilt: n— k < Grad von pu(x) • xn~k < fc — l+n— k =n— 1, d.h.,

fc(ao->ttx,... ,fljt-i) ist von der Gestalt (co,Ci,... ,cn_jt_i,flo?^i» • • • >ßfc-i)- Mit anderen

Worten: Die Prüfstellen kommen vor das Nachrichtenwort zu stehen. Im übrigen sei

bemerkt, daß auf Grund der Konstruktion von p?(x) jedes "Codepolynom" ein Vielfaches
des Generatorpolynoms g(x) ist, und weiters heben wir hervor, daß jeder Polynomcode
ein linearer Code ist (was allerdings nicht unmittelbar einzusehen ist).

Beispiel: Beim (7,4)-Polynomcode über GF (2) mit dem Generatorpolynom g(x) l +
x + x3 ist das Nachrichtenwort a (0,1,0,1) zu codieren. pa(x) x + x3, p^(x)xn~k
x4 + x6, und Rg(x)(x4 + x6) x + 1. Also ist p?(x) — xA + x6 - x — l, was wegen
-a +a in GF(2) zu p?(x) l+x + x4 + x6 führt. Damit ist das zu (0,1,0,1) gehörige
Codewort gleich (1,1,0,0,1,0,1). (Die Prüfstellen sind 1,1,0.)

Um unter den Polynomcodes, für welche sehr effektive Algorithmen zur Codierung
und Decodierung zur Verfügung stehen, solche mit guten Fehlerkorrektureigenschaften
konstruieren zu können (also insbesondere, um optimale Codes zu finden), ist ihre Klasse
noch zu allgemein. Man beschränkt sich hierbei auf sogenannte zyklische Codes:

Ein linearer (n, fc)-Code heißt zyklisch, wenn mit c (ci,C2,... ,cw) auch alle jene
Wörter in C liegen, welche durch zyklische Vertauschung der Symbole entstehen, also

(c„,Ci,C2,... ,c„_i), (c„_i,cn,Ci,C2,... ,cM_2),— Man kann beweisen, daß jeder
zyklische lineare Code ein Polynomcode ist und daß ein (n, fc)-Poynomcode genau dann

zyklisch ist, wenn sein erzeugendes Polynom g(x) das Polynom xn — 1 teilt. Damit ist
die in Frage kommende Menge von Generatorpolynomen g(x) wesentlich eingeschränkt
(aber immer noch sehr umfangreich). Wie wir in Abschnitt 5 genauer ausführen werden,
kann man unter den Teilern von xn — 1 Generatorpolynome g(x) finden, welche zu
optimalen Codes über GF(q) von vorgegebener Länge n und Minimaldistanz d führen und
welche sich noch dazu gut zur Korrektur von Fehlerbündeln eignen. Zu solchen Codes
zählen insbesondere die Reed-Solomon-Codes (RS-Codes) und die daraus hervorgehenden

verkürzten RS-Codes (siehe Abschnitt 5). Letztere finden bei der CD Anwendung.

4 Compact Discs

Zunächst einige technische Aspekte: Der Durchmesser einer CD ist 12 cm, so daß die
Disc mit einer Hand in den CD-Player eingeführt und wieder herausgenommen werden
kann. Überdies kann der Player klein sein. Auf einer Seite der Disc befindet sich,
geschützt durch eine 1,2 mm dicke lichtdurchlässige Schicht, eine spiralförmig angeordnete
Spur, welche eine Folge von verschieden langen Vertiefungen bzw. Erhebungen enthält
(siehe Abb. 9. - Abb. 9 sowie die beiden folgenden Abbildungen sind dem Konferenzbericht

[7] entnommen). Die minimale Länge einer Vertiefung ist 9 • 10~4mm, der Abstand
zwischen zwei Spurringen beträgt 1,6 • 10~3mm. Die Disc wird beim Abspielen durch
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Abb. 9

einen Laserstrahl, der durch ein Servosystem exakt in der Spur gehalten wird, abgetastet
(siehe Abb. 10). Fällt der Lichtstrahl auf eine Erhebung, wird das Licht fast total reflektiert

und der Strahl erreicht in fast voller Stärke eine Photodiode; fällt der Lichtstrahl in
eine Vertiefung (Tiefe w ^ der Wellenlänge des Lichtes), so wird er nur sehr wenig
reflektiert. Damit Fingerabdrücke, Staubpartikel usw. den Abtastvorgang möglichst wenig
beeinträchtigen, verjüngt sich der Lichtstrahl von 0,7 mm an der Oberfläche der Schutzschicht

auf 10~3mm bei Erreichen der Spur (siehe Abb. 11). Jedesmal wenn ein Wechsel
zwischen einer Vertiefung und einer Erhebung stattfindet, d.h., wenn von der Photodiode
ein Wechsel zwischen sehr starker und geringfügiger Reflexion registriert wird, wird eine
Eins angenommen, dazwischen Nullen. Die Spur stellt den Informationsstrom aus Nullen
und Einsen dar, der durch die in Abschnitt 2 erklärte Kanalcodierung entsteht. Wie dort
ausgeführt, bewirkt die EF-Modulation, daß zwischen zwei Einsen mindestens zwei, aber
höchstens 10 Nullen zu stehen kommen, was ein Bit-Muster mit einer geringeren Anzahl
von Übergängen zwischen 0 und 1 als ohne EF-Modulation entstehen läßt. Dadurch ist
auf der CD eine kleinere Anzahl von Vertiefungen erforderlich, was bedeutet, daß die
Datendichte auf der CD erhöht werden kann, wodurch eine längere Spielzeit erreicht
wird. (Darüber hinaus werden bei der Manipulation des Frequenzspektrums durch die
EF-Modulation noch einige weitere Zielsetzungen verfolgt; siehe z.B. [4] und [8].)

t__^

vy

Abb. 10 Abb. 11
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Wir beschreiben nun im Detail, wie die Folge der Kanal-Bits aus der ursprünglichen
Folge jener Bytes entsteht, welche man durch Digitalisierung der Audio-Information
erhält (wobei jeweils zwei Bytes vom linken und dann zwei Bytes vom rechten Kanal

genommen werden). Zunächst wird der Datenstrom von Bytes in Wörter der Länge 24,
welche hier Frames heißen, unterteilt. Dann wird auf diese Frames der Wortlänge 24
ein (28,24)-Code Cx über GF(256) angewandt, und zwar ein verkürzter Reed-Solomon-
Code. Dieser ist optimal und kann daher bis zu [^j^] 2 Byte-Fehler korrigieren und
bis zu n — k =4 Byte-Fehler erkennen. Die Korrekturmöglichkeit von zwei Byte-Fehlern
bedeutet auf Bit-Ebene, daß im günstigsten Fall ein Fehlerbündel von bis zu 16 und im
schlechtesten Fall ein Fehlerbündel von bis zu 9 aufeinanderfolgenden Bits korrigiert
werden kann. Im nächsten Schritt wird der mit Cx codierte Datenstrom auf Byte-Ebene
neu organisiert. Aus jeweils 28 hintereinanderfolgenden Codewörtern C\, ci,..., C28 werden

28 neue Codewörter c*, c\,..., c\% dadurch gewonnen, daß aus cx, C2,..., C28 die
ersten Buchstaben entnommen werden und damit c\ gebildet wird, dann aus cx, C2,..., C28

die zweiten Buchstaben entnommen werden und c\ gebildet wird, u.s.f. Dieser Vorgang
heißt Interleaving und dient dem Zweck, Fehlerbündel, wie sie vornehmlich bei CDs zu
erwarten sind, möglichst auseinanderzureißen.

Auf den neu organisierten Datenstrom wird nun nochmals ein verkürzter Reed-Solomon-
Code angewendet, und zwar ein (32,28)-Code über GF(256), den wir mit C2 bezeichnen.
Auch der Code C2 kann Fehler bis zu zwei Bytes korrigieren und bis zu vier Bytes
erkennen. Nach der Codierung durch C2 wird der Datenstrom noch durch Abspielinformationen

ergänzt, indem jedem Wort der Länge 32 eines von zwei bestimmten Bytes (meist
mit P und Q bezeichnet) angefügt wird. Der nächste Schritt ist dann die EF-Modulation,
bei der aus den 33 Bytes 33 x 17 Kanalbits werden (Aufblähen eines jeden Bytes auf
14 Bits und Einfügen von drei Verbindungsbits). Zu den 33 x 17 Kanalbits kommen
schließlich noch jeweils 27 Synchronisations-Bits, mit deren Hilfe gleichsam wie mit
einer dem Datenstrom innewohnenden Uhr die Bitrate beim Auslesen der Daten von der
CD bestimmt wird, so daß schlußendlich ein Frame von ursprünglich 24 Bytes Länge
aus 588 Kanalbits besteht.

Beim Abspielen der CD geschieht folgendes: Als erstes werden von der durch den
Laserstrahl mit einer Durchschnittsgeschwindigkeit von 4,3 Megabits/sec abgetasteten
(und vorverstärkten) Information jeweils die Synchronisationsdaten ausgelesen, womit
die Dauer der einzelnen Kanalbits, codierten Bytes bzw. Frames festgelegt wird und
wodurch auch die Umdrehungsgeschwindigkeit der CD (durch ein Referenzsignal zum
Datenpuffer; siehe später) kontrolliert wird. Anschließend wird im Demodulator die EF-
Modulation rückgängig gemacht, und die Abspielinformationen werden dem "Display"
bzw. "Memory" zugänglich. Dann wird der Datenstrom, der nur noch codierte
Audioinformation enthält, in den Datenpuffer gelenkt, durch den sichergestellt wird, daß der
Datenstrom höchst gleichmäßig, d.h. mit der Genauigkeit eines Quarzkristalles, weiterfließt.

Der Datenpuffer steuert auch die Umdrehungsgeschwindigkeit der CD, welche im
Gegensatz zum Schallplattenspieler aber innerhalb gewisser Toleranzen von untergeordneter

Bedeutung ist. Das System ist so ausgelegt, daß der Datenpuffer im Durchschnitt
halb voll ist.
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Abb. 12

Als nächstes folgen die Decodierung mittels C2, die Umkehrung des Interleaving und die
Decodierung mittels C\. Dabei werden Fehler, soweit dies möglich ist, ausgebessert und
erkannt, bzw., es wird festgestellt, daß eine Decodierung (etwa auf Grund eines unsicheren

Erkennens von Bits) nicht erfolgen kann. Bytes, die als fehlerhaft oder unverläßlich
eingestuft wurden, werden dem Interpolator zugeführt, wo sie linear interpoliert werden
(siehe Abb. 12). Schließlich wird der digitale Informationsstrom wieder in Audiosignale
umgewandelt. Das Endprodukt ist die bekannte ausgezeichnete Wiedergabequalität von
CDs. Bezüglich genauerer Informationen verweisen wir auf [8].

5 Reed-Solomon-Codes
Bei der Lösung des Problems, Codes mit vorgegebenen Fehlerkorrektureigenschaften zu
konstruieren, konzentriert man sich vor allem auf zyklische Linearcodes, welche stets

Polynomcodes sind und sich daher sehr gut implementieren lassen.

Für den Fall, daß nur t 1 Fehler korrigiert werden muß, haben sich die binären

Hamming-Codes bewährt. Es sind dies (2m — 1,2m — 1 — m)-Polynomcodes über GF(2),
bei denen das Generatorpolynom g(x) das Minimalpolynom M^(x) eines primitiven
Elements a von GF(2m) ist. (Jedes Element 7 7^ 0 eines Galoisfeldes GF(pm), p prim,
ist Nullstelle eines Polynoms mit Koeffizienten aus GF(p), und unter diesen Polynomen
gibt es stets ein eindeutig bestimmtes Polynom My(x) von minimalem Grad und mit
Koeffizient 1 bei der höchsten Potenz von x. My(x) heißt das Minimalpolynom von 7;
es ist Teiler von xpm~l — 1. - Ein primitives Element a von GF(pm) ist nichts anderes

als ein erzeugendes Element der multiphkativen Gruppe der Elemente ^ 0 von GF(pm);
sein Minimalpolynom M^(x) hat den Grad m; siehe z.B.[5].)

Beispiel für einen binären Hammingeode der Länge n 7: Wegen 2m — 1 7 ist m 3.

Das Polynom g(x) x3 + x + 1 über GF(2) ist, wie man zeigen kann, Minimalpolynom
eines primitiven Elements a von GF(8). g(x) erzeugt daher einen zyklischen (7,4)-
Polynomcode über GF(2), welcher einen Fehler korrigiert.
Ist a ein primitives Element von GF(pm) und sind M^t(x) für i 1,2,... die

Minimalpolynome der Elemente al von GF(pm), dann gilt für den speziellen Fall p 2,

daß Mtf(x) Mai,(x) für f 1,2, Damit ergibt sich für das erzeugende Polynom
g(x) Ma(x) eines binären Hamming-Codes die folgende im Hinblick auf eine spätere

Verallgemeinerung benötigte Darstellung: g(x) k.g.V. (Ma(x),Mai(x)), wo k.g.V.
abkürzend für "kleinstes gemeinsames Vielfaches" steht.

Sucht man für t 2 binäre zyklische (n, fc)-Polynomcodes der Länge n 2m-1, welche

t oder weniger Fehler korrigieren, so kann man in Verallgemeinerung des Falls t — 1

beweisen, daßg(x) - k.g.Y.(M^(x),Ma2(x),^(x),Ma4(x)),= k.g.V.(Mu(x),Ma3(x))
das Gewünschte leistet, und für allgemeines t erhält man einen binären zyklischen (w, fc)-

Polynomcode der Länge n — 2m-l,der bis zu t Fehler korrigiert, wenn man als

Generatorpolynom g(x) k.g.V. (Ma(x),Mcti(x), Ma2t(x)) k.g.V.(Ma(x),M^i(x),
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Ma2t-i(x)) wählt. Für diesen Code ist dann fc n — gradg(x), wo gradg(x) den Grad
von g(x) bezeichnet. Setzen wir t [^] für ein 6 e N, so bedeutet dies bei der Wahl
eines ungeraden 6, daß 6-1 =2t ist, und für ein gerades 6, daß 6—l 2t — l ist. Damit
können wir das Generatorpolynom g(x) stets in der Form g(x) k.g.V.(Ma(x)9Mai(x)9

Mas-i (x)) schreiben. Wegen 2t + 1 < d ist 6 eine untere Schranke für die Minimaldistanz

d.

Gibt man bei der Konstruktion eines zyklischen (n, fc)-Polynomcodes über GF(2) der

Länge n 2m — 1 an Stelle der Anzahl t der zu korrigierenden Fehler eine untere
Schranke 6 für d vor, so läßt sich das bisher Gesagte unmittelbar auf beliebige Galois-
felder GF(q), q eine Primzahlpotenz > 2, übertragen.

Gegeben sei ein 6 e N mit 2 < 6 < n und n — qm — l. Wählt man für ein primitives
Element cx über GF(q) als Generatorpolynomg(x) k.g.V.(Ma(x)9Mai(x)9... ^M^-i (x))9
wo M^ (x) für i 1,2,..., 6— 1 das Minimalpolynom von al über GF(q) bezeichnet, so
erhält man einen zyklischen (n, fc)-Polynomcode über GF(^), für dessen Minimaldistanz
d gilt d > 6. Dieser Code kann 6 — 1 oder weniger Fehler entdecken und [^r-] oder

weniger Fehler korrigieren. Für seine Wortlänge fc gilt fc n — gradg(x). Man kann
zeigen, daß k >n — m(Ö — l) ist.

Eine weitere Verallgemeinerung ist wie folgt möglich: Sei n eine beliebige nichtnegative
ganze Zahl, welche zu q teilerfremd ist. Dann kann man beweisen, daß es eine kleinste
natürliche Zahl m > 0 gibt, so daß n die Zahl qm - 1 teilt. Ferner kann man zeigen (siehe

z.B.[5]): Die Nullstellen von xn — 1 in GF(qm) bilden eine Untergrupe der zyklischen
Gruppe der Elemente ^ 0 von GF(^m); diese Untergruppe ist daher ebenfalls zyklisch.
Ist nun a ein beliebiges erzeugendes Element dieser Untergruppe und b eine beliebige
nichtnegative ganze Zahl, dann wählen wir

g(x) k.g.V.(Mab(x),Mc,b+i(x)1... ,_H^-2(x))

als Generatorpolynom. Der dadurch definierte (n, fc)-Code ist ein zyklischer Polynomcode,

für den gilt d > 6 und k n — gradg(x) > n — m(6 — l). Der Code wird nach
seinen Entdeckern Böse, Chaudhuri und Hocquenghem ein BCH-Code der Länge n und
der designierten Distanz 6 genannt.

Wählt man n q — 1, dann ist m 1 und a ein primitives Element von GF(q). Das

Minimalpolynom von ah+l über GF(q) ist daher gegeben durch Mab+t(x) x — ab+l,
und es folgt

g(x) (x- ah) (x - ab+l) ...(x- aM~2).

Ferner ergibt sich: fc n—gradg(x) n—6+l. Daher ist n—fc + 1 6 < d <n — k + l,
was bedeutet, daß 6 d n + k — 1 ist. D.h., der Code ist optimal und seine designierte
Distanz 6 ist gleich seiner Minimaldistanz d. Es handelt sich dabei um den von uns bereits
mehrfach angesprochenen Reed-Solomon-Code, den wir mit RS (n9d) bezeichnen. Der
Code hängt natürlich auch noch von der Wahl des primitiven Elements a und von b ab;
zumeist wird b 1 gewählt. Die RS-Codes wurden unabhängig von den BCH-Codes
gefunden und erst im nachhinein den BCH-Codes untergeordnet. Sie geben Anlaß zu
einer Fülle von neuen optimalen Codes durch das im folgenden beschriebene Prinzip der

Verkürzung, bei dem die Optimalität des Codes unberührt bleibt.



El Math 57 (1996) 101

Sei C ein beliebiger zyklischer (n, fc)-Code der Minimaldistanz d Setzt man in jedem
Nachrichtenwort und in jedem Codewort die ersten r Stellen gleich 0, so erhalt man
einen linearen (n - r, fc - r)-Code, dessen Minimaldistanz > d ist Dieser Code ist
wohl nicht mehr zyklisch, er kann aber technisch auf dieselbe Weise wie der zugehörige
zyklische Code C implementiert werden (Im Gegenteil Es ergeben sich sogar gewisse
Vereinfachungen)

Die bei der CD verwendeten Codes entstehen beide durch Verkürzung von Reed-Solo-
mon-Codes RS(255,5) uber GF(256) und haben daher das Generatorpolynom g(x)
(x — a) (x — a2) (x - a3) (x - a4). Üblicherweise nimmt man fur a jenes primitive
Element, dessen Minimalpolynom gegeben ist durch M^(x) l+x2 + x3 + x4 + x%
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