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An elementary proof of the convergence of
iterated exponentials

Helmut Langer

Helmut Langer, born in 1951, obtained his doctoral degree in mathematics at the
University of Technology in Vienna as a student of Professor Nobauer. After spend-
ing a year in Darmstadt he returned to Vienna in 1977 where he is now working as
an associate professor at the Institute of Algebra and Discrete Mathematics of the
University of Technology. In the beginning of his career his main research interest
was algebra, but in recent years he has also done work on discrete problems arising
in biology and in axiomatic quantum mechanics.

What are the solutions of the equations

respectively (cf. [2])? Questions of such a type lead in a natural way to the problem of
determining the convergence behaviour of the sequence

a,dd, ... (1)

for a positive real number 4. Here we are concerned with an iteration process with
starting point a > 0 and iteration function f(x) := a*.

Fiir welche Werte von & ist der iterative Prozess gegeben durch x — 4* stabil? Fiir
welche Werte von 4 ist die Folge

a,d‘,a"”,a“ﬂ,.‘.

konvergent? Und was ist der Limes? Einfache, reizvolle Fragen mit einfachen, reiz-
vollen Antworten! ust
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Local stability analysis of the iteration process x — a* (a > 0). Since f is con-

tinuous, the possible (finite) limits of (1) must be fixed points of f. Put g(x) := x+ for

all x > 0. Then lirr}) g(x) = 0, g is strictly increasing on (0, €], g is strictly decreasing
X—

on [e, c0) and Jim g(x) = 1. Put by := (g](0,e])~! and hy := (g| e, 00)) !, Tt is easy
— 00

to see that the fixed points of f are exactly the positive real numbers b with g(b) = a.
Moreover, f'(b) = Inb for every fixed point b of f. Hence we have the following six
cases:

(i) Ifa € (0,21) then hy(a) € (0,1) is the unique fixed point of f and h; (a) is unstable.
(ii) If a = L then hy(a) = 1 is the unique fixed point of f.

(iii) If 2 € (£,1] then hy(a) € (3, 1] is the unique fixed point of f and hy(a) is asymp-
totically stable.

(iv) If 2 € (1,e%) then there exist exactly two fixed points of f, namely hi(a) € (1,e)
and hy(a) € (e, ), hj(a) is asymptotically stable and h;(a) is unstable.

(v) If a = e¢ then h;(a) = hy(a) = e is the unique fixed point of f.
(vi) Ifa e (e% ,00) then f has no fixed point.

Now we prove the following

o=

Theorem. Let a be a positive real number. Then the sequence (1) converges iff a € [e%,, e
In this case the corresponding limit is h;(a).

.

Proof. In the following let x,y,z denote (arbitrary) positive real numbers. Put a; := 4,
@ :=a* a3 :=a", .... Define f2(x) := f(f(x)). Then we have

(Y (x)=da"a*In*a and (f*)"(x) =a" a*(In’ a)(a" Ina + 1).
Observe that in case x < y we have

x* <y
2>V if z<1
X<y if z>1.

If a € (1,e7] then f is strictly increasing and hence
<o <m<ay<....

Moreover, a, < e for all n (which can be proved by induction on 7n), and therefore (1)
converges to h;(a).

Now consider the only non-trivial remaining case a € (0,1). Since ¢ < 1* = 1,
hi(a) < 1 and f is strictly decreasing, we have

QG <a<as<...<h@)<... <as<as<a. ‘ (2)
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If a € (0, elc) then f’(h;(a)) < —1 and hence (1) is divergent. If a € [el—e, 1) then we have

1 1
—1=In_ =Inh(=) <Inh(a) = d"@na < alna<0

for all u > h;(a) and hence (f2)” < 0 on (h;(a), c0). Therefore

0 < (f*)'(u) < () (hi(a)) = In*hy(a) < 1

for all u > h;(a) which shows that the sequence a,, a4, ag, ... and therefore also (1)
converges to h(a).

Remarks.

1

. . X . .
(i) The sequence %, , ... converges to %, i.e.x* = 5 has the unique solution

_ 1
X = -
) NP : x
(ii) The sequence V2,2 ,\/5 ,... converges to 2 (cf. [2]),i. e. x¥ = 2 has

the unique solution x = /2 which is somewhat surprising.
(iii) If (1) contains an element > ¢ then (1) is divergent.
(iv) If a € (0, é) then (1) converges to a limit cycle of order 2.
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