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An elementary proof of the convergence of
iterated exponentials

Helmut Langer
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What are the Solutions of the equations

Yx 1 Yx
xx — - or x — 2,

2

respectively (cf. [2])? Questions of such a type lead in a natural way to the problem of
determining the convergence behaviour of the sequence

a,<fy, (1)

for a positive real number a. Here we are concerned with an iteration process with
starting point a > 0 and iteration function f(x) :=ax.

Für welche Werte von a ist der iterative Process gegeben durch x
welche Werte von a ist die Folge

~~* n* stabil? Für

a9tf9är %tf ,*««

konvergent? Und was ist der Limes? Einfache, reizvolle Fragen Mit einfachen, mh-
voDen Antworten! mt
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Local stability analysis of the iteration process x i—? ax (a > 0). Since / is

continuous, the possible (finite) limits of (1) must be fixed points of/. Put g(x) := X* for
all x > 0. Then limg(x) 0, g is strictly increasing on (0,e], g is strictly decreasing

on [e,oc) and lim g(x) 1. Put h\ := (g\ (0,e])_1 and h2 := (g\ [e,oc))-1. It is easy

to see that the fixed points of / are exactly the positive real numbers b with g(b) a.

Moreover, /' (b) ln b for every fixed point b of /. Hence we have the following six
cases:

(i) If a e (0, ~) then hx(a) e (0, \) is the unique fixed point of / and hx(a) is unstable.

(ii) If ß ^ then hx(a) ^ is the unique fixed point of /.
(iii) If a e (p, 1] then hx(a) e (\, 1] is the unique fixed point of / and h\(a) is asymp¬

totically stable.

(iv) \f a e (\,e~e) then there exist exactly two fixed points of/, namely hx(a) e (l9e)
and h2(a) e (e, oc), h\(a) is asymptotically stable and h2(a) is unstable.

(v) If a e~e then hx(a) h2(a) e is the unique fixed point of /.
(vi) If a e (e~e, oo) then / has no fixed point.

Now we prove the following

Theorem.Let a be apositive real number. Then the sequence (1) converges iffa e [^, £'].
In this case the corresponding limit is hx(a).

Proof. In the following let x,y,z denote (arbitrary) positive real numbers. Put ax := a,

a2 := aa, a^ := a**, Define f1(x) := f(f(x)). Then we have

(f)'(x) <fxax In2 a and (f)"(x) a*V(ln3 a)(ax lna+ l).

Observe that in case x < y we have

xz <tf
zx >zy if z < 1

zx <zy if z > 1

If a e (1,ee] then / is strictly increasing and hence

1 < ax < a2 < 03 <

Moreover, an < e for all n (which can be proved by induction on n), and therefore (1)

converges to h\(a).

Now consider the only non-trivial remaining case a e (0,1). Since ot < la — 1,

h\(d) < 1 and / is strictly decreasing, we have

a\ < A3 < a5 < < h\(a) < < ae < a4 < a2. (2)
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If a e (0, je) then f(h\(a)) < -1 and hence (1) is divergent. If a e [£, 1) then we have

-1 in - lnfci(^) < lnhx(a) /l(fl) Ina < aulna < 0

for all u > h\(a) and hence (f2)" < 0 on (h\(a)9 oc). Therefore

0<(f2)f(u)<(f)f(hx(a))=ln2hx(a)<l

for all u > h\(a) which shows that the sequence a2, a*9 a§, and therefore also (1)
converges to hx(a).

Remarks

(i) The sequence |, |4, |4 converges to \, i. e. xx% \ has the unique Solution

x= 1x 4.

-v/2 /-v^
(11) The sequence V% \/2 y/2 converges to 2 (cf. [2]), i. e. xx* 2 has

the unique Solution x y/2 which is somewhat surprismg.

(in) If (1) contains an element > e then (1) is divergent

(iv) If a e (0, ^) then (1) converges to a limit cycle of order 2.
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