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Chance and Chaos

A.D. Barbour

Andrew Barbour wurde 1947 geboren. Er studierte Mathematik und Statistik an der
University of Cambridge, wo er 1974 promovierte und ein Fellowship am Gon-
ville and Caius College antrat. Seit 1983 ist er Professor fiir Biomathematik an der
Universitdt Ziirich. Er interessiert sich in erster Linie fiir angewandte Stochastik;
daneben hat er auch iiber Mathematik der Epidemiologie, insbesondere iiber die ma-
thematische Modellierung der Verbreitung von parasitischen Krankheiten gearbeitet.

In recent years, the idea of chaos produced by simple deterministic algorithms has come
to rival the classical concept of randomness as a model for the disorder observed in
nature. Indeed, the difficulty in distinguishing between them is happily exploited for the
generation of random numbers in computers. In this article, we show that the two can at
times be seen as different aspects of the same phenomenon, in which case randomness
can be used to explain chaos.

The example we consider is that of the map h: [0, 1] — [0, 1] defined by

h(x) = min{x/c, (1 —x)/(1 - ¢)},

Es gibt heutzutage zwei verschiedene Modelle, mit denen wir versuchen, das Unvorher-
gesehene zu beschreiben, Das erste, das 1494, also vor genau 500 Jahren in der Arbeit
von Pacioli entstand, jedoch erst 1933 von Kolmogorov die moderne Axiomatisierung
bekam, besteht aus dem fiblichen Begriff des “Zufalls”, Das zweite Modell beruht auf
der Erkenntnis, dass die Losungen von vielen Gleichungssystemen, die in der Physik’
auftauchen, #usserst empfindlich auf kleine Anderungen in den Anfangswerten reagie-
ren, so dass genaue Prognosen tiber lingere Zeit unrealistisch prizisé Information zum
Anfangszustand bendtigen wiirden. Im Prinzip sind solche Phiinomene genau vorher-
sehbar, in der Praxis jedoch nur fiir eine beschrinkte Zeit; die Wetterprognose bietet
ein wohlbekanntes Beispiel dafiir. Obwohl im zweiten Modell der Zufall im urspriingli-
chen Sirine gar nicht erscheint, haben die Abldufe in einem solchen “deterministischen
Chaos” viele Eigenschaften gemeinsam mit denjenigen von echten Zufallsexperimen-
ten. In diesem Beitrag wird ein System untersucht, wo sich die beiden Auffassungen
gleichzeitig als giiltig erweisen. adb ' :
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for some ¢ € (0, 1). Starting with any xo € [0, 1], we recursively define x, = h(x,—1),
writing x, = h,(xo) for short. Then it turns out that the set of values {x¢,x1,...,Xn},
ignoring the order of their generation, almost always looks statistically very like a random
sample from the uniform distribution on (0, 1).
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Fig. 1 The function h(x) and the beginning of the sequence xg, x|, x2,....

This is at first sight surprising. One might have expected that x, would converge to
one of the two fixed points 0 and 1/(2 — ¢) of h, or perhaps assume some periodic
behaviour, but it does not: for any x( outside a small exceptional set E, which includes
the fixed points of h and all their pre-images (for example, h,(c) = h(1) = 0), all the
many periodic points of h, and so on, the sequence x, keeps on hopping around, leaving
apparently random footprints on (0, 1). Try it on your computer, but don’t take ¢ = 1/2!
And the exceptional set E is so small that, if xo were chosen at random from the uniform
distribution on (0, 1), the chance that xy € E is zero.

In order to account for this apparent randomness, we shall explore in more detail one
of the key ingredients in one’s intuitive idea of chaos, that of unpredictability. A se-
quence X, X1, . . . might be said to be (asymptotically) unpredictable if knowledge of xg
gives (little or) no information about the value of x, (for large n). Clearly, the sequence
Xn = hn(xp) is not unpredictable in this sense, since, given xo, each x, can in principle
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be computed exactly. However, this argument presupposes that xo is known precisely,
whereas, in most practical circumstances, this will not be the case: limitations of mea-
surement reduce one’s knowledge at best to being certain that x¢ is in a known interval,
say (d — 6,d + 6), for some small §. What we shall now show is that, for large n, this
information is actually of almost no help at all in predicting x,,.

To express this fact cleanly, let 1;,¢4y be the function taking the value 1 if y € A and 0
otherwise. Then

1 d+6
‘55_/d . l{u<hn(x)§b}dx—(b—a) < 2a”6~1(b—a), (1)

for any values 0 < a < b < 1, where a = max{c,1 — ¢} < 1. In other words, the
fraction of starting points xo in the interval (d — 6,d + ¢) for which a < h,(xo) < b is
for large n very close to (b —a). But since (b — a) is just the probability that a randomly
chosen point of (0,1) would be in the interval (a,b), the estimate (1) confirms that,
for large n, the starting information that d — 6 < x9 < d + ¢ is of almost no help in
predicting the value of x,,: irrespective of the value of d, a blind guess at the value of x,,
does (almost) just as well as using the information that x,, = h,(x). Thus the recursion
X, = h(x,—1), in this specific sense, generates “unpredictable” sequences. What is more,
the predictive value of the initial information is seen to be at most of order §~!a”,
decaying geometrically fast with n, so that forecasting further ahead by increasing the
precision of the starting data is ineffective: doubling the precision by halving é achieves
a forecast with the previous accuracy only for an extra log2/log(1/a) steps.

Note, in passing, that rounding error in the computer introduces a little unexpected
“uncertainty” into any attempt to compute k1, (xo) numerically, so that the answer obtained
may be surprising: try ¢ = 1/2!

How should we prove the unpredictability (1)? Here, we shall do so using the prop-
erties of some simple random sequences, known as Markov chains. A random se-

quence Xg, Xq,... is called a Markov chain if, given the knowledge that Xy, = xo,
X =x1,...,Xj_1 = xj_; and X; = x, the distribution of X;j41 depends only on x, and
not on j or on the “past history” x, . .., x;_ of the chain. Our sequence {x,, n > 0} isa

Markov chain, since, with all this information, we know that X;,, = h(x) is determined
by x alone — the example is degenerate, in the sense that the distribution of X, assigns
probability 1 to the single possible outcome h(x), so that there is no real randomness
at all, but never mind: it is still a (purely deterministic) Markov chain. Now a Markov
chain is called stationary if the distribtuion of the (random) quantity X; is the same for
all j. This is clearly not normally the case for our sequence {x,} if Xo = xo is fixed,
because then X; = h(xg) # xo (if xo ¢ {0,1/(2—c)}), and so X; does not have the same
distribution as Xq: each takes a single certain value, and they are different. However,
if Xy is chosen uniformly at random from (0, 1) and X, = h,(Xo), the sequence {Xj}
is stationary. This is because

h™'(a,b) = (ca,cb) U (1 = (1 —c)b,1 — (1 —c)a),
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and hence, if Z is uniformly distributed on (0, 1),

Pla <h(Z) <b] =P|Z € h'(a,b)]
=(cb—ca)+ (1 —(1—c)a)— (1 — (1 —c)b)
=cb-—a)+(1-c)b—a)=b—a
=Pla< Z <],

(2)

so that h(Z) is also uniformly distributed on (0, 1) — now use induction!

A Y

0 cl 1-o)l 1
Fig. 2 The image of (a,b) under h~!,

A key feature of stationary Markov chains is that, if they are viewed backwards in time,
they are again stationary Markov chains, though usually with a different transition matrix.
That is, if we know that X; = x and X | = xj;1,..., Xy = X4, and want to speculate on
the most recent unknown value X;_{, then the conditional distribution of X;_; given all
this information once again depends only on x, and not on j or on Xj1,...,X,. Perhaps
surprising, but the calculation with conditional probabilities required to see that this is
true is actually very simple. So what happens if we time-reverse the stationary chain
X = hu(Xo)? The segment (Yp, Yi,...,Y,) of the time reversed chain has to have the
same distribution as a segment of the X-chain in reverse order, say (X, Xy—1,...,Xo),
so that immediately each Y; has to have the uniform distribution on (0, 1). All that is
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then needed is the joint distribution of a consecutive pair, say (Yo, Y]), to determine
the distribution of Y; for each value y of Yj, and hence, by induction, to specify the
whole Y-chain. Now the distribution of the pair (Yo, Y;) is the same as that of the pair
(X1, Xp) (time reversal), which is concentrated on the set H = {(h(x),x), x € (0,1)}.
Thus, given any y € (0, 1), there are two points (y,cy) and (y,1 — (1 —c)y) in H which
have first coordinate y, so that, given Yy = v, there are just two possible choices (y and
1 — (1 —c)y) for Y;, and the Y-chain will have been specified when the probabilities
associated with the two choices have been found. We claim that

PYi=cylYo=y]=c; PYi=1-(1-cy|Yo=y=1-c¢, (3)
for all y. To check this, observe that (X, Xy) gives probability b — a to the set H,p =
{(h(x),x), a < x < b} C H, because X is uniform on (0,1). f 0 <a < b < ¢, we
can rewrite Hyp as {(y,cy), a/c <y < b/c}. Because Y; is uniform on (0, 1), Yp gives
probability (b/c) — (a/c) = (b—a)/c to {y: a/c <y < b/c}, and if (3) is true it
follows that (Y, Y;) gives probability ((b —a)/c) - ¢ = (b — a) to H,p, as required by
time reversal. A similar argument works for ¢ < a < b < 1. Thus we have the following

Reversal Theorem. The reverse ordered segment (X, X,—1,...,Xo) of the stationary
X-chain has the same distribution as (Yo, Y1, ..., Yy), where Yy is uniformly distributed

n (0, 1) and, conditional on Y=y, Yj+1 takes the value cy with probability ¢ and the
value 1 — (1 — ¢)y with probability 1 — c.

The interest of the Reversal Theorem is that features of a chain Y in which random-
ness keeps occurring at every step can be used to deduce results about the essentially
deterministic X-sequence: a “chaotic” sequence is mirrored by a “random” sequence.

We now make a construction known as a coupling of Y-chains. Take any two starting
points YO(I) and YO(Z) in (0, 1), and define sequences (Yo(l), ., YY) and (YO(Z), ey Yn(z))
recursively as follows. Given the values (YO(I), N Yj(l)) and (YO(Z), e ,ij), choose at
random L, with probability ¢, or R, with probability 1 —c. If L, define
Y(l1 = CY(1 and Y 1 = cY(z)
if R, define
1 1 (2) 2.
Y =1-0-09v" and Y7 =1-(01-0Y;
so that, in either case, ” )
! ]+1 ]+1|< |Y] _Yj ‘7

with @ = max{c, 1 — c} as above. This construction yields our next resuit.

Coupling Theorem. If YO(I) and YO(Z) are chosen independently at random from
the uniform distribution on (0,1), then each of the sequences (YO(I),..., n(l)) and

(Yo(z), N Yn(z)) is a stationary Y -chain, and hence by the Reversal Theorem has the
same distribution as that of (Xy, Xu—1,...,Xo) in the stationary X-chain. Furthermore,
by construction,

YO - Y@ <oy - | < o,

and YO(I) is independent of Y,?



62 El. Math. 57 (1996)
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Fig. 3 The coupling construction.

What does this arcane construction tell us? The Reversal Theorem tells us that the se-
quence (X, X,_1,...,Xo) behaves just like the sequence (Yo, Yi, ..., Yy). The coupling
construction tells us that the randomness in the step by step choices of the Markov
chain Y determines the value of Y, to within an error of ", irrespective of the value
of Yy. Thus the distribution of Y, is the same, modulo errors of order o, whatever the
value of Y, and hence, in this sense, Y, and Yy are effectively independent. By time
reversal, we thus have Xy and X, effectively independent, implying the unpredictability
of X, when Xj is (nearly) known.

That this is more than just a heuristic is shown by the completion of the proof of (1).
Observe that, in probabilistic notation,

1 d+6 1
Ly = % /d y L{achy(x)<b) 4% = -2-5[5 [1(x,e@—6d+6)}  {(Xuc(@p]})

is just an expectation involving Xy and X,,. Therefore, by the Reversal Theorem,

%EP 1

Loy = {Y,,(”e(d—é,d+6)}] ’

vVe@h)}
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also. Now, for any y1,¥, and (u,v), the difference |1y, cquv)} — 1{pewo)}] is either 0

or 1, and can only take the value 1 if y; and i, are on opposite sides of one of the end
points # or v. Thus, if [y; — 1| <&,

Lyew)} — Hpewn)}l £ lpe@——cute)up—cote)}-

Puttingu =d — 6, v =d + 6 and € = ", it follows that

Liype@—6d+s)} — Lpe—sd+ory| < lpecy (4)

with
G=@d-6—-a"d-6+a")Ud+6—a",d+6+a").

Hence, using the Coupling Theorem to replace Y, by Yn(z) in the formula for I, 5, with
an error bounded because of (4), we find that

Iy — —E[1

Y [ {Yo(l)e(“vb]}I{Yn(z)é(d—ﬁ,dﬂﬁ)}j'|
1

= ZS'[E[I{YJ”E(a,bJ}1{Y,52)ec}]

(5)

But now, by the Coupling Theorem, Yo(l) and Y,?) are independent and uniform on (0, 1),
so that we can compute all the expectations in (5) exactly, giving

1
— (b — ). 26| £ — a).40"
o = 55(b — @):28 < (b — ) 4o,

1

26
as claimed in (1).
The Reversal and Coupling Theorems can be used for much more than proving (1); al-
most any “random” feature of the sequences xo, X1, . . ., X, can be derived from them. Nor
is the method restricted only to functions h of the form we have considered here, though,
for more complicated functions, the technicalities can obscure the essential simplicity
of the argument. But the real aim of the paper is to illustrate three more fundamental
facts; that, in this example, the difference between chaos and randomness is merely a
difference of viewpoint; that methods from one branch of mathematics can find fruit-
ful application in another; and that the “coupling method” in the theory of stochastic
processes is a wonderful tool for constructing simple and illuminating proofs.

A.D. Barbour
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Universitat Ziirich
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