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Three-Dimensional Non-Commutative Algebras

Giinter Heimbeck and Alfred H. Kamupingene

Born in 1946, Giinter Heimbeck studied at Wiirzburg University where he attained
his Dr.rer.nathabil. in 1981. After having lectured for two and a half years at
Wiirzburg University he joined the University of the Witwatersrand, Johannesburg
in 1984. Since 1987 he is a member of the Department of Mathematics of the Uni-
versity of Namibia in Windhoek. His main interest pertains to geometric algebra and
translation planes.

Alfred H. Kamupingene was born in 1956 in Namibia. He studied at Sofia Uni-
versity specializing in mathematical physics. After completing his Ph.D. in 1988
on representations of Lie superalgebras and their applications to Wigner quantum
systems he spent two years at the Bulgarian Academy of Sciences as a post-doctoral
fellow. Currently he is an Associate Professor at the University of Namibia. His
main interest is in algebra, topology and mathematical physics.

As it is well-known, for any prime p, there exists, up to isomorphism, exactly one non-
commutative ring of order p3 ([1], p. 195, Further exercises (6)). The purpose of this
short note is to generalize this result to algebras.

Theorem. For any field F, there exists, up to isomorphism, exactly one 3-dimensional
non-commutative F-algebra, namely

{(g 5) | a,mep}.

In jeder axiomatischen Theorie bemiiht sich die Mathematik, tiber die verschiedenen
(nichtisomorphen) “kleinen” Modelle einen Uberblick zu gewinnen. So versucht man
etwa in der Gruppentheorie, alle Gruppen von kleiner Ordung aufzuziihlen, oder man
versucht, fiir eine Primzahl p, die p-Gruppen der Ordung p, p?, p°, etc. der Reihe nach
zu beschreiben. Ein derartiges Vorgehen liefert in jeder axiomatischen Theorie eine
Reihe von interessanten Beispielen. Auch wenn ein tieferes Verstdndnis gewthnlich
erst auf Grund weiterfiihrender theoretischer Methoden méglich ist, so handelt es sich
bei der Behandlung “kleiner” Modelle immer um einen wichtigen Teilschritt, ~ Der
| vorliegende Text liefert einen Beitrag zur Aufziihlung kleiner Modelle fiir die Theo-
rie der nichtkommutativen assoziativen Algebren: Es wird gezeigt, dass es zu einem
vorgegebenen Korper F bis auf Isomorphie nur eine nichtkommutative Algebra der
Dimension 3 gibt. ust
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Proof. Let A be a 3-dimensional non-commutative F-algebra. F will be considered as a
subalgebra of A. For any a € A, let L,: A — A be defined by L,(x) := ax. The map
a€ Aw— L, € EndA is obviously an injective algebra homomorphism of A into the
F -algebra of the endomorphisms of the F-vector space A. We are going to break up the
following proof into several small steps.

a) Foranyae€ A\F,

F x F,

Fla] = {A+ pal A p e F} = {F[x]/(xz).

Moreover, F[a] contains some u € F[a] such that tk L, = 1.

Proof. Since Fla] is commutative, F[a] # A. On the other hand, F[a] # F. Therefore,
F[a] is 2-dimensional and (1,4) is a basis of F[4]. The minimum polynomial m € F [x]
of a over F is of degree 2, and since F[a] = F[x]/(m) is not a field, m is reducible. If
m has two distinct roots, by the Chinese Remainder Theorem, F[x]/(m) = F x F. If
m has a double root, F|x]/(m) = F|x]/(x?). Since m is also the minimum polynomial
of L,, L, has an eigenvalue A of geometric multiplicity 2. Now u :=a — A € F[a| and
L,=L,_»=L,— \ida is of rank 1.

b) The commutators of A form a 1-dimensional nilpotent ideal C.

Proof. We choose a,b € A\ F such that F[a] # F[b]. By a), there exist u € F|a]
and v € F[b] such that L, and L, are both of rank 1. Then (1,u,v) is a basis of
A. Since [a + Bu + 0,0’ + Bu +7'0] = By'[u,0] +v8'[o,u] = (8y — v8")[u,v]
for all ,3,7v,d/,8',v € F, any commutator of A is a multiple of ¢ := [u,v] # 0.
Since kL. = rkLy,, = tk(LyoLy — LyoLy) < 2,1 := imL, = {cx| x € A} and
K :=kerL. = {x € A| cx = 0} are proper non-trivial right ideals of A. For any a € A,
[a,c] is a multiple of c, i.e. [a,c] = Ac for some A\ € F. Hence ac = c(a + A) and
therefore, I is also a left ideal of A. Similarly, ca = (a — A)c shows that K is a left
ideal. Therefore, I and K are ideals and none of them is equal to the zero ideal. Thus the
algebras A/I and A/K are of dimension at most 2 and hence commutative. This implies
span{c} C I, K. Since dimI + dimK = 3, one of the ideals I and K is 1-dimensional
and hence equal to span{c}. Therefore, C := span{c} is an ideal. Since c € K, ¢> = 0
and hence C is nilpotent.

c) A contains an idempotent element unequal to O or 1.

Proof. The proof will be carried out by assuming the converse, i.e. that 0 and 1 are the
only idempotent elements of A. By a), we obtain F[a] = F[x]/(x?) for eacha € A\ F.
In particular, if 2 € A is a non-unit, then 4> = 0 and kL, < 1. If a,b € A are any two
non-units, rk L,y = tk(L, + Lp) < tkL, + kL, < 2 and hence, a + b is a non-unit.
Therefore, 0 = (a + b)?* = a®> + ab + ba + b> = ab + ba, i.e. ab = —ba. Now we choose
non-zero non-units 4,b € A and ¢ € C\ {0} such that F [g], F [b], F [c] are distinct in pairs.
Then a and bc commute and hence bc € Fla] N C = {0}. Therefore, b and ¢ commute
as bc = —cb. Since (1,b,c) is a basis of A, A is commutative and this constitutes a

contradiction.
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A%{<g g)la,ﬁ,vél-’}.

Proof. Let ¢ € C \ {0}. By c), there exists some idempotent element p € A \ F. Since
pc € C, pc = &c for some € € F. Since &c = pe = pPc = p(pc) = p(&c) = &(pe) =
£(éc) = Ec and ¢ # 0, €2 = £ and hence, ¢ = 0 or £ = 1. Therefore, pc € {0,c}.
Similarly, we obtain cp € {0,c}. We may assume that pc = 0 because otherwise we
are going to replace p by 1 — p. Then cp = ¢ as cp # pc. The 2-dimensional subspace
U := span{c,p} is obviously an ideal and hence a € A — L,y € EndU is an algebra
homomorphism. The matrices representing L ;; with respect to the basis (c, p) of U for

1 0 0 O 0 1 . .
x € {l—p,p,c} are (0 O)’ (O X ), <O 0). This suffices to ensure the existence
of the asserted isomorphism.

d)

The result about rings of order p*> mentioned at the beginning of this note becomes, of
course, a corollary to our Theorem.

Corollary. For any prime p, there exists, up to isomorphism, exactly one non-commuta-
tive ring of order p°.
Proof. If R is a non-commutative ring of order p°, then the additive group of R is an

elementary-abelian p-group and hence, R is a 3-dimensional non-commmutative GF(p)-
algebra.
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