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Three-Dimensional Non-Commutative Algebras

Gunter Heimbeck and Alfred H. Kamupingene
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As it is well-known, for any pnme p, there exists, up to isomorphism, exactly one non-
commutative ring of order p3 ([1], p. 195, Further exercises (6)). The purpose of this
short note is to generalize this result to algebras.

Theorem. For any field F, there exists, up to isomorphism, exactly one 3-dimensional
non-commutative F-algebra, namely

{(; ?)h<^F}
In jeder axiomatischen Theorie bemüht sich die Mathematik, über die verschiedenen

(nichtisomorphen) "kleinen*' Modelle einen Überblick zu gewinnen, So versucht man
etwa in der Gruppentheorie» alle Gruppen von kleiner Ordung aufzuzählen, oder man
versucht, für eine Primzahl p, die p-Gruppen der Ordung p9 p29p%9 etc. der Reihe nach

zu beschreiben. Ein derartiges Vorgehen liefert in jeder axiomatischen Theorie eine
Reihe von interessanten Beispielen. Auch wenn ein tieferes Verständnis gewöhnlich
erst auf Grund weiterführender theoretischer Methoden möglich ist, so handelt es sich
bei der Behandlung "kleiner" Modelle immer um einen wichtigen Teilschritt* — Der
vorliegende Text liefert einen Beitrag zur Aufzählung kleiner Modelle für die Theorie

der nichtkommutativen assoziativen Algebren: Es wird gezeigt, dass es eu einem
vorgegebenen Körper F bis auf Isomorphie nur eine niehtkommtitative Algebra der
Dimension 3 gibt mt
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Proof Let A be a 3-dimensional non-commutative F-algebra. F will be considered as a

subalgebra of A. For any a e A, let La: A —> _4 be defined by La(x) := ax. The map
a e A h-> La e End A is obviously an injective algebra homomorphism of A into the

F-algebra of the endomorphisms of the F-vector space A. We are going to break up the

following proof into several small steps.

a) For any a e A\F,

F[a} {\ + pü\\,peF}
F xF,
F[x]/(x2).

Moreover, F[a] contains some u e F[a] such that rkLu 1.

Proof. Since F[a] is commutative, F[a] ^ A. On the other hand, F[a] ^ F. Therefore,
F[a] is 2-dimensional and (l,fl) is a basis of F[a\. The minimum polynomial m e F[x]
of a over F is of degree 2, and since F[a] F[x]/(ra) is not a field, ra is reducible. If
m has two distinct roots, by the Chinese Remainder Theorem, F[x)/(m) F x F. If
ra has a double root, F[x]/(ra) F[x)/(x2). Since ra is also the minimum polynomial
of La9 La has an eigenvalue A of geometrie multiplicity 2. Now u := a - X e F[a] and

Lu La~x — La — XidA is of rank 1.

b) The commutators of A form a 1-dimensional nilpotent ideal C.

Proo/. We choose fl,b e A\F such that F[a] ^ F[b]. By a), there exist u e F[a]
and v e F[b] such that Lu and L^ are both of rank 1. Then (\9u9v) is a basis of
A. Since [a + ßu + -fv,af + ß'u + iv) ßi[u,v) + 7/3/[ü,m] (ßi - iß')[u9v)
for all a,/3,7,a'',/?'',7' € F, any commutator of A is a multiple of c \— [u9v] 7^ 0.

Since rklc rkL^j rk(LuoLv — LvoLu) < 2, I := imLc {cx| x € _4} and

X := kerLc {x e A\ cx 0} are proper non-trivial right ideals of A. For any a e A,
[a9c] is a multiple of c, i.e. [fl, c] Xc for some X e F. Hence ac c(a + X) and

therefore, I is also a left ideal of A. Similarly, ca (a — X)c shows that K is a left
ideal. Therefore, I and K are ideals and none of them is equal to the zero ideal. Thus the

algebras A/I and A/K are of dimension at most 2 and hence commutative. This implies
span{c} C I9K. Since dim/ ~f dimK 3, one of the ideals I and K is 1-dimensional
and hence equal to span{c}. Therefore, C := span{c} is an ideal. Since c e K, c2 0

and hence C is nilpotent.

c) A contains an idempotent element unequal to 0 or 1.

Proof The proof will be carried out by assuming the converse, i.e. that 0 and 1 are the

only idempotent elements of A. By a), we obtain F[a] F[x]/(x2) for each ae A\F.
In particular, if a e A is a non-unit, then a2 0 and rkLfl < 1. If fl, b e A are any two
non-units, rkLa+b rk(Lfl + Lb) < rkLa + rkLb < 2 and hence, a + b is a non-unit.
Therefore, 0 (a + b)2 a2 + ab + ba + b2 ab + ba, i.e. ab -ba. Now we choose

non-zero non-units fl, b e A and c G C\{0} such that F[a],F [b], F [c] are distinct in pairs.
Then a and bc commute and hence bc e F[a]DC {0}. Therefore, b and c commute
as bc —cb. Since (l,b,c) is a basis of A9 A is commutative and this constitutes a

contradiction.
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d)

A^ a ß
0 7

a^ß^eF

Proof Let c e C\ {0} By c), there exists some idempotent element p e A \ F. Since

pc e C, pc £c for some £ e F. Smce £c pc — p2c p(pc) p(£c) £(pc)
£,(&) £2c and c ^ 0, £2 £ and hence, £ 0 or £ 1 Therefore, pc e {0,c}.
Similarly, we obtain cp e {0, c} We may assume that pc — 0 because otherwise we
are going to replace p by 1 - p. Then cp c as cp ^ pc. The 2-dimensional subspace
U span{c,p} is obviously an ideal and hence agAh La\U e End U is an algebra
homomorphism The matrices representing Lx\u with respect to the basis (c9p) of U for

x e {l- p,p,c} are I
n )' n i)'(n n )' ^1S su^ces t0 ensure me existence

of the asserted isomorphism.

The result about rings of order p3 mentioned at the beginning of this note becomes, of
course, a corollary to our Theorem

Corollary. For any prime p, there exists, up to isomorphism, exactly one non-commuta-
tive ring of order p3

Proof If jR is a non-commutative ring of order p3, then the additive group of R is an

elementary-abelian p-group and hence, jR is a 3-dimensional non-commmutative GF(p)-
algebra
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