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Die Wärmeleitung auf dem Kreis und Thetafunktionen

Serge Lang

Serge Lang wurde 1927 in Paris geboren, wo er auch seine ersten Schuljahre absolvierte

Die weitere Ausbildung erhielt er dann allerdings in den Vereinigten Staaten,
wo er das California Institute of Technology (Caltech) und die University of
Pnnceton besuchte Hier erhielt er das Doktorat in Mathematik im Jahre 1951 Nach
Aufenthalten am Institute for Advanced Study in Princeton und an der University
of Chicago war er von 1955 bis 1970 Professor an der Columbia University in New
York Gastprofessuren in Princeton und Harvard folgten, und 1972 wurde er Professor

an der Yale University Seine Interessen sind weitgespannt, aber sein Hauptinteresse

gehorte immer der Mathematik, besonders der Zahlentheone Bis anhm hat er
34 Bucher und uber 70 Forschungsartikel veröffentlicht

1 Die Wärmeleitung auf dem Kreis

Der erste Teil dieses Beitrages schliesst an den früheren, in dieser Zeitschrift erschienenen
Artikel "Approximationssätze der Analysis" (siehe [L94]) an. Er behandelt mit den dort
eingeführten Methoden einen wichtigen Spezialfall, der einige neue Elemente aufweist,
die auch in anderen Situationen typisch sind.

In [L94] haben wir die Wärmeleitungsgleichung auf der reellen Geraden R mit Hilfe
einer Diracfamilie gelöst, nämlich des sogenannten Wärmeleitungskerns KR, den wir

Ein besonders einfaches und zugleich instruktives Beispiel zu partiellen Differential*
gieichungen und Founerreihen ist die Wärmeleitung auf der Kreislinie. Ein wichtiges
Gebiet der Funktionentheorie ist die Theorie der doppelt periodischen Punktionen« der
elliptischen Punktionen und der Thetafunktionen* Ein zentrales Gebiet dar analytischen
Zahlentheorie ist die Riemannsche Zetafunktion. In seinem Beitrag geltagt es Serge

Lang, eine Verbindung zwischen diesen so unterschiedlich scheinenden Dingen
herzustellen: Wird hier ein Stück des Netzwerkes von Ideen sichtbar, dm die Mathematik "im
Innersten mmnmrihMtfl — Der Beitrag basiert auf einem Vortrag» den Serge Lang
am 25, Mai 1994 an der ETH Zürich vor einem Publikum von Matihematiksttictenten
nnd Studentinnen gehalten hat Der Text wurde Mschliessend ins Dmmh® iberse&t
und von Seife Lang mehrmals überarbetet ust
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jetzt in der Form

yJWt

schreiben. Hier wollen wir uns mit dem Wärmeleitungsproblem auf der Kreislinie
beschäftigen. Zu diesem Zweck suchen wir ein dem Wärmeleitungskern KR entsprechendes
Objekt für Funktionen auf dem Kreis oder, anders ausgedrückt, für periodische
Funktionen der Periode 2w. Wir stehen damit vor der Aufgabe, eine Diracfamilie {Kt} von
27r-periodischen Funktionen zu finden, also eine Familie von Funktionen

K(t,x)=Kt(x) mit K(t9x + 2tt) K(t,x)

welche die drei nachfolgenden Bedingungen DIR 1, DIR 2, DIR 3 erfüllen und zugleich
Lösungen der Wärmeleitungsgleichung sind.

DIR 1. Kt > 0. (In unserem Fall wird für alle x sogar Kt(x) > 0 gelten.)

DIR 2. J^Kt(x)dx=l.
DIR 3. Zu e, 6 > 0 (e, 6 < 1) existiert ein to mit 0 < to < 1 so dass für 0 < t < to

gilt

/
— ö /*7T

Kt(x) dx+ Kt(x) dx <e
-TT Jö

Der Wärmeleitungsoperator lautet

dt \dxJ

so dass also

gelten soll.

Es liegt nahe zu versuchen, die Funktionen Kt dadurch zu konstruieren, dass man die

entsprechenden Funktionen für die reelle Gerade "mittelt". Wir definieren deshalb, t > 0,

xeR,

«(»>*) £ 4=7e~{X+2lTn)2

n€Z

/At
4<Kt'

Die (absolute) Konvergenz dieser Reihe von positiven Gliedern ergibt sich aus der expo-
nentiellen Abnahme der Beträge der Glieder mit wachsendem \n\. Für die so definierte

27r-periodische Funktion K gilt nun:
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Satz 1. Die Funktion K definiert eine Diracfamilie und erfüllt zusätzlich die
Wärmeleitungsgleichung HK 0.

Die Bedingung DIR 1 ist nach der obigen Bemerkung trivialerweise erfüllt. Als nächstes
weisen wir nach, dass K die Wärmeleitungsgleichung erfüllt. Die Ableitungen von K
erhalten wir, indem wir die Reihe gliedweise ableiten, denn die gliedweise abgeleitete
Reihe konvergiert absolut und gleichmässig in jedem beschränkten Gebiet von x und in
jedem beschränkten Intervall von t. Ist nun / eine Lösung der Wärmeleitungsgleichung,
so ist für jede relle Zahl c die Funktion g, definiert durch

g(t9x)=f(t,x + c)

ebenfalls eine Lösung der Wärmeleitungsgleichung. Demzufolge erfüllt jeder Term
unserer Reihe die Wärmeleitungsgleichung, und damit auch die Summe.

Es bleibt nachzuweisen, dass die Bedingungen DIR 2 und DIR 3 erfüllt sind. Auch dies

folgt direkt aus der Reihendarstellung von K.

Für DIR 2 haben wir
/*27r p2n[ *K(t,x) dx= T -^Ye-^2™?'« dx

Jo Jo v4irt ~
1 r2n-L= y / e-<*+2™)2/4' dx

V^ij-ih

47rf „ez

neZ

27r(n+l

/47Tt

/ e-fl« dy
./27m

/oo eS'" dy
-oo

1,
wobei wir im letzten Schritt DIR 2 für den Wärmeleitungskern KR benützt haben. Damit
ist für unsere Familie DIR 2 nachgewiesen.

Auch zum Nachweis von DIR 3 benützen wir die gleiche Idee. Um zu zeigen, dass der

Wert des über das Intervall [6, n] erstreckten Integrals klein ist, wenn nur t genügend

klein ist, gehen wir wie folgt vor. Es gilt
p7r oo oo t r2n{n+l)f -i— V <r(*+W/4t dx Y ~r= \ e~//4t dV

Js V4ni tr< Zi V4tt£ Jö+2im
n=0 n=0

KR(t,y)dy.<-[
16

Nach DIR 3 für den Wärmeleitungskern KR wissen wir, dass t0 existiert mit 0 < t0 < 1,

so dass dieser letzte Ausdruck für 0 < t < t0 kleiner als e ist. Ein analoges Argument
lässt sich auf das Intervall [-n, -S] anwenden. Damit ist auch DIR 3 nachgewiesen.

Wir haben damit, wie es unsere Aufgabe war, eine aus 27r-periodischen Funktionen

bestehende Diracfamilie gefunden, welche das Wärmeleitungsproblem auf dem Kreis

löst.
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2 Thetafunktionen
Jedermann kennt die periodischen Funktionen sin und cos, die mit der Geometrie des

Kreises eng verbunden sind. Die Differentialrechnung sagt, dass sie einer Differentialgleichung

t/^l-2/2 (1)

genügen. Im Laufe des 18. und 19. Jahrhunderts hat man sich die Frage nach Funktionen

/ gestellt, welche einer Differentialgleichung

f2=f+Af + B (2)

genügen. Dabei sind A und B Konstanten. In der Differentialgleichung (1) der Sinus-
und Cosinusfunktion ist die rechte Seite ein (einfaches) quadratisches Polynom, in der

Gleichung (2) ein Polynom dritten Grades. Und zwar ist trotz der speziellen Form des

Polynoms der allgemeine Fall abgedeckt, denn in einem Polynom dritten Grades kann der

quadratische Term immer durch eine einfache lineare Transformation zum Verschwinden

gebracht werden. Man war auf die Differentialgleichung (2) bei der Beschäftigung mit
elliptischen Integralen gestossen. Die Lösungen nannte man aus diesem Grunde elliptische

Funktionen. Aufgefasst als Funktionen einer komplexen Variablen sind sie doppelt
periodisch, d.h. es gibt komplexe Zahlen ujx und uj2, linear unabhängig über R, mit

f(z + ujx)=f(z)=f(z + uj2).

Im Laufe der intensiven Beschäftigung mit doppelt periodischen Funktionen, wie zum
Beispiel den elliptischen Funktionen hat man die Wichtigkeit der Thetafunktionen
entdeckt: Sie liefern einen generischen Prozess zur Konstruktion doppelt periodischer
Funktionen. Es ist zweifellos eine ganz bemerkenswerte Tatsache, dass dieser Prozess gleichzeitig

zu einer Lösung der Wärmeleitungsgleichung auf dem Kreis führt. Auf die
Thetafunktionen wollen wir in diesem Abschnitt näher eingehen, wobei wir uns auf den

wichtigsten und typischsten Spezialfall beschränken. Wir definieren die Riemannsche

Thetafunktion wie folgt:

Ox(r,z) Yjemnlr ' e2mnz
•

nez

Dabei sind r und z komplexe Zahlen, und für den Imaginärteil t Imr gelte t > 0.

Diese letztere Bedingung impliziert, dass mit zunehmendem \n\ der absolute Betrag der

Glieder der Reihe exponentiell abnimmt. Daraus folgt die absolute und für t > 6 > 0

gleichmassige Konvergenz der Reihe.

Die Riemannsche Thetafunktion 0X besitzt einfache Periodizitätseigenschaften, auf die

wir als erstes eingehen. Es gilt

PER 1 0i (r, z + 1) ]jr einlr - e2mn^l) 0X (r, z)
nei
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letzteres wegen elmn 1 für n e Z. Ferner erhält man

+2n+l)r
^ p—niT #

Jhnnz

PER 2 i (t, z + t) ^ emn T ¦ e2nnz ¦ e2

«GZ

n£Z

__ £-7n(r+2z) m

ST^ e7ri{n+l)2T > g27«(n+l)2

n£Z

ß-^+2z).öl(TjZ)

Der Zusammenhang mit doppelt periodischen Funktionen ist aus dem folgenden Ergebnis
ersichtlich, wobei wir der Einfachheit halber nur einen Spezialfall eines allgemeineren
Satzes aufführen. Es seien ax,a2,... ,ak und bx,b2,..., bk komplexe Zahlen mit der

Eigenschaft
ax+a2 + hfljc bx + b2 H \-bk.

Dann ist

J{ }
UjO^z-bj)

eine doppelt periodische Funktion mit Perioden 1 und r. Dies folgt unmittelbar aus

PER 2.

Man kann beweisen, dass sich alle doppelt periodischen Funktionen mit Hilfe der
Thetafunktionen beschreiben lassen, und zwar durch ein Verfahren, das nur um weniges
allgemeiner ist als das eben angegebene.

3 Zusammenhang mit der Wärmeleitungsgleichung
Wir betrachten hier, wie bereits in [L94] und §1, die Wärmeleitungsgleichung

H/(*,*)=0.

Dabei bezeichnet

n=m~\dx)
den eindimensionalen Wärmeleitungsoperator. Wir setzen nun

wobei t und x als reelle Variablen aufzufassen sind. Dann folgt

ne(t,x) Y, (-"2 - (fM)2) e~nh ¦ e'm ° •

neZ
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Die Funktion 0, welche als Spezialfall der Riemannschen Thetafunktion definiert wurde,
ist also eine Lösung der Wärmeleitungsgleichung. Es ist klar, dass 0 in x 27r-periodisch
ist. In der physikalischen Interpretation ist deshalb 0 eine Lösung des Wärmeleitungsproblems

auf der Peripherie des (Einheits-)Kreises. Gerade für dieses Problem wurde in
§ 1 mit anderen Methoden ebenfalls eine Lösung K gefunden, der sogenannte Wärmeleitungskern:

K(t,x) Y -4= e-(*+2™)2/4'.
*-^ ^4ntn£Z

Wir behaupten nun

Satz 2. Es gilt K ±0.
Wie beweist man, dass zwei stetige 27r-periodische Funktionen gleich sind? Es genügt
zu zeigen, dass ihre Fourier-Koeffizienten übereinstimmen. Wir werden also beweisen,
dass für m eZ

„—imx j-, „—m2tf" Kt(x) e~imx dx e~
Jo

gilt, und für 0t(x) 9(t9x) werden wir zeigen, dass

L
2tt

0t(x) e~mx dx 2ne-

gilt. Daraus folgt K ±0.
Wir wenden uns zuerst der Funktion 0 zu. Hier erhalten wir, da wir die Reihe gliedweise
integrieren können,

p2ir p2n

/ 0t(x) e~imx dx Y e~nh • el{n~m)x dx ^c~mh
io neZJo

denn nur der Summand mit n m liefert einen von Null verschiedenen Beitrag.

Um die Fourier-Koeffizienten der Funktion Kt zu berechnen benötigen wir das folgende
Resultat der Analysis:

j —c

e-*/2.e-tuvjM=e-*/2m (3)
v2tt

Dieses Resultat besagt, dass die Funktion e~u I2 unter der Fourier-Transformation invariant

bleibt. Es handelt sich dabei um ein grundlegendes Standardresultat der Analysis.
Für einen Beweis konsultiere man z.B. [L], p. 301.

Wiederum können wir natürlich die Reihe für Kt gliedweise integrieren. Wir erhalten

/ K,(x)e-,mx dx Y -ß= / e-(x+2™f/4t ¦ e-'mx dx
Jo ^ VM Jo

£-4=/ e-^'-e-"»*dy,
ZTZ V47rr Jlnn
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wobei wir die Substitution y x + 2im durchgeführt und dabei eim2nn 1 benützt
haben. Der letzte Ausdruck ist aber gleich

Eine weitere Substitution, nämlich y y/2t u, dy y/2t du, liefert schliesslich zusammen

mit dem erwähnten Standardresultat (3)

L
2tt

Kt(x)e~imx dx e~

Damit ist die Gleichheit der beiden 27r-periodischen Funktionen Kt und 0t/2ir bewiesen:

_L V e~nh • emx
1 V e-(x+i™)2/*t (4)

2n ^—' \/4irtnez VH/U nez

Wir fügen hier die folgende Bemerkung an. Auf der linken Seite der Gleichung (4)
kommt t vor, während auf der rechten Seite l/t auftritt. Dies ist der Ansatzpunkt für die
berühmte Inversionsformel von Poisson. Setzen wir nämlich x — 0, so erhalten wir

'yr»!< ' ye-(2^. (5)
Ott Z-. A /TZ7 Z-_< v ;27r £-Z ^J4id ,.*,nez v nez

Die Inversionsformel von Poisson findet Anwendungen in vielen Gebieten der Analysis
und Zahlentheorie; eine dieser Anwendungen betrifft die wichtige Funktionalgleichung
der Riemannschen Zetafunktion. Darauf kommen wir im Addendum am Schlüsse dieses

Beitrages zurück. Die Formel (5) taucht auch im Zusammenhang mit der Spektraltheorie
von Operatoren auf. Für eine Übersicht siehe [JoL94].

Wir kehren zurück zur Relation (4). Die Reihe der Thetafunktion auf der linken Seite
der Gleichung enthält Terme einx; diese oszillieren, sind also sicher nicht überall positiv.
Aber die Glieder der Reihe auf der rechten Seite der Gleichung sind alle positiv, so dass

auch deren Summe, die Thetafunktion, positiv ist.

Die Thetafunktion hat, ausser den schon besprochenen, weitere wichtige Eigenschaften,
auf die wir jetzt noch eingehen wollen. Wir erinnern zuerst daran, dass die Faltung
zweier periodischer Funktionen / und g durch die Formel

r2n

(f*g)(*)= [ f(x-u)-g(u)du
JO

gegeben ist. Diese Faltung definiert ein Produkt, das assoziativ, kommutativ und bilinear
in / und g ist, wie in [L94] nachgewiesen worden ist. Es gilt nun
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Satz 3. Für t,s eR+ gilt die Relation

0t*0s 0t+s

Der Beweis ist nicht schwierig. Wir schreiben

0t(x) ^e-n2t -einx

neZ

und

0s(x) ^e-mh -elmx

meZ

Im Integral, welches die Faltung darstellt, dürfen wir wegen der absoluten Konvergenz
gliedweise integrieren. In der entstehenden Reihe verschwinden die Glieder, die

[* ei(n-m)x dx
Jo

mit n^m enthalten. Daraus ergibt sich unmittelbar die Aussage von Satz 3.

Die Faltung mit einer periodischen stetigen Funktion 0 definiert auf periodischen
Funktionen / durch

f r-> eß * f
einen linearen Operator. Mit (/, g) bezeichnen wir das Skalarprodukt definiert durch

c2tv

</._¦>=rf(x)g(x)dx.
Jo

In der Folge nehmen wir der Einfachheit halber an, dass alle Funktionen reell sind; dies

bedeutet, dass die Konjugation weggelassen werden kann.

Satz 4. Es sei (j) eine reelle periodische stetige Funktion. Dann gilt

(<l>*f,g) {f,<l>*g) •

In der Sprache der Operatortheorie besagt die Aussage des Satzes 4, dass die Zuordnung

/ i-> $ * / (im algebraischen Sinn) selbstadjungiert ist.

Der Beweis folgt mit Hilfe des Satzes von Fubini, welcher sagt, dass unter geeigneten

Konvergenzbedingungen ein Doppelintegral durch iterierte Integration in beliebiger
Reihenfolge berechnet werden kann. Die Einzelheiten des Beweises überlassen wir dem
Leser.

Die Tatsache, dass die Thetafunktion nichtnegativ ist, 0(t,x) > 0, kann nun ohne Benutzung

der Gleichung (3) mit Hilfe der Sätze 3 und 4 auch wie folgt eingesehen werden.
Wir beweisen dazu zuerst das folgende Lemma.
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Lemma. Es sei cß eine reelle periodische stetige Funktion und h (ß * (ß Falls fur alle
27r periodischen stetigen (reellen) Funktionen f gilt (h*f,f) > 0, so folgt h(x) > 0 fur
alle x

Beweis Wir beweisen zuerst h(0) > 0 Wir gehen dabei indirekt vor und fuhren die
Annahme h(0) < 0 zu einem Widerspruch Dazu wählen wir eine Funktion /, die in
einer kleinen Umgebung von 0 den Wert 1 und ausserhalb einer 6-Umgebung den Wert
0 annimmt (siehe Figur 1)

Fig 1 Die Funktion /
Wir haben

2tt p2tt

(h •'¦»-FlJo Jo
h(ü)f(x — u)f(x) du dx

zu betrachten Der Ausdruck unter dem Integral ist nur dann von Null verschieden, wenn
sowohl x wie auch x — u im ^-Intervall liegen, wenn also — fur kleine <S's — sowohl
u wie auch x nahe bei 0 liegen Indem wir nun 6 klein wählen und beachten, dass unter
der getroffenen Voraussetzung fur u nahe bei Null h(ü) < 0 gilt, folgt, dass der Wert
(h */,/) negativ ist Dies widerspricht der Voraussetzung des Lemmas, und die Aussage
h(0) > 0 ist bewiesen

Fur den nächsten Schritt benotigen wir auch die bis anhin noch nicht benutzte Voraussetzung

h cß * (p Es sei a e R und g ha, d h g(x) h(x + a) Um h(a) > 0 zu

zeigen genügt es g(0) > 0 nachzuweisen Nun gilt aber

ha (4>* <j>)a Va/2 * Pa/2
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und für alle /
(ha */,/> (<ßa/2 * 4/2 */,/> \\4>aß */l|2 > 0

Folglich gilt nach dem ersten Teil des Beweises, ha(0) g(Ö) > 0. Damit ist das Lemma
vollständig bewiesen.

Mit Hilfe des Lemmas lässt sich nun ein zweiter Beweis für die Tatsache liefern, dass

die Thetafunktion nichtnegativ ist. Wir haben nämlich

(Ot */,/) (Ot/i * et/2 */,/) (et/2 *M/2 */) \\9t/2 */||2 > o,

und mit dem Lemma folgt 0t > 0. Dies war zu beweisen.

Wir bemerken zum Schluss, dass dieses hier dargestellte funktionalanalytische Argument
nur die Ungleichung 0(t,x) > 0 liefert, während sich aus dem Satz 2 die strikte
Ungleichung 0(t,x) > 0 ergibt, da K als unendliche Summe von strikt positiven Gliedern
erhalten wird.

Addendum
Wir wollen in diesem Zusatzabschnitt noch einiges über die Anwendung der Inversionsformel

von Poisson (5) auf die Riemannsche Zetafunktion sagen. Es geht dabei um die

Herleitung der wichtigen Funktionalgleichung der Zetafunktion.

Wir führen als erstes die Funktion tp durch

ii>(x) J2 e~n2nx

neL

ein. Gemäss unseren in Abschnitt 3 getroffenen Definitionen gilt ip(x) — 9(irx,0). In
dieser Bezeichnung entspricht die Inversionsformel von Poisson (5) der Formel

iß(x-1) x{/2ip(x)

Wir wenden uns jetzt der Riemannschen Zetafunktion zu. Diese ist bekanntlich definiert
durch

oo

n=0

wobei die komplexe Zahl s durch s o + ir mit er, r e R und o > 1 gegeben ist.
Wie man zeigen kann, konvergiert die angegebene Reihe absolut und gleichmässig für
o > a > 1. Wir betrachten nun für o > 1 die Funktion

F(s) 7r-/2r(i) C(s).

Dabei ist die Gammafunktion wie üblich durch
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definiert. Wir benutzen ausserdem die Bezeichnungen
oo

g(x) Y^e-^x -^(x)-l) (6)
n=l

und

I(s) / x^gixf-^ (7)
Jo x

Zur direkten Berechnung von I(s) setzen wir fur g(x) die Reihe em und vertauschen die

Reihenfolge von Integration und Summation, was wegen der guten Konvergenz ohne

weiteres möglich ist. Dies liefert
oo «oo

.-1 Jo
s/2 p—nixx_

•n—1 w u -n I

n=\

Mit der Substitution n2irx t, n2ir dx dt erhalten wir weiter

,.u
¦tS7TS/2e * - „u -«=1 u u n=l

Andererseits lasst sich I(s) in zwei Integrale aufspalten, namhch

Nun gilt wegen des in (6) ausgedruckten Zusammenhanges zwischen g(x) und ip(x):

*G)=KHj)-0=?"vw-5""to+5'"2-i
Einsetzen in das Integral des zweiten Summanden liefert schliesslich

F(s) i^-l + f(x^2 + x^2)g(x)^
An dieser Formel lasst sich nun direkt das anvisierte Resultat ablesen, namhch

F(s) F(l-s)
Dies ist die berühmte Funktionalgleichung der Zetafunktion.

Acknowledgment: I am very grateful to U. Stammbach for the care he has given to the

translation and the pubhcation of my talk.
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