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Die Wiarmeleitung auf dem Kreis und Thetafunktionen

Serge Lang

Serge Lang wurde 1927 in Paris geboren, wo er auch seine ersten Schuljahre absol-
vierte. Die weitere Ausbildung erhielt er dann allerdings in den Vereinigten Staaten,
wo er das California Institute of Technology (Caltech) und die University of Prin-
ceton besuchte. Hier erhielt er das Doktorat in Mathematik im Jahre 1951. Nach
Aufenthalten am Institute for Advanced Study in Princeton und an der University
of Chicago war er von 1955 bis 1970 Professor an der Columbia University in New
York. Gastprofessuren in Princeton und Harvard folgten, und 1972 wurde er Profes-
sor an der Yale University. Seine Interessen sind weitgespannt, aber sein Hauptinte-
resse gehorte immer der Mathematik, besonders der Zahlentheorie. Bis anhin hat er
34 Biicher und iiber 70 Forschungsartikel vertffentlicht.

1 Die Wirmeleitung auf dem Kreis

Der erste Teil dieses Beitrages schliesst an den friiheren, in dieser Zeitschrift erschienenen
Artikel “Approximationssétze der Analysis” (siehe [L.94]) an. Er behandelt mit den dort
eingefiihrten Methoden einen wichtigen Spezialfall, der einige neue Elemente aufweist,
die auch in anderen Situationen typisch sind.

In [L94] haben wir die Wirmeleitungsgleichung auf der reellen Geraden R mit Hilfe
einer Diracfamilie gelost, nimlich des sogenannten Wirmeleitungskerns KR, den wir

Ein besonders einfaches und zugleich instruktives Beispiel zu partiellen Differential-
gleichungen und Fourierreihen ist die Warmeleitung auf der Kreislinie. Ein wichtiges
Gebiet der Funktionentheorie ist die Theorie der doppelt periodischen Funktionen, der
 elliptischen Funktionen und der Thetafunktionen. Ein zentrales Gebiet der analytischen
Zahlentheorie ist die Riemannsche Zetafunktion. In seinem Beitrag gelingt es Serge
Lang, eine Verbindung zwischen diesen so unterschiedlich scheinenden Dingen herzu-
stellen: Wird hier ein Stiick des Netzwerkes von Ideen sichtbar, das die Mathematik “im
Innersten zusammenhilt”? — Der Beitrag basiert auf einem Vortrag, den Serge Lang
am 25. Mai 1994 an der ETH Ziirich vor einem Publikum von Mathematikstudenten
und -studentinnen gehalten hat, Der Text wurde anschliessend ins Dentsche {ibersetzt
und von Serge Lang mehrmals iiberarbeitet. ust
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jetzt in der Form

1 2
Kk(t,x) = \_/__4__;26—35 /At

schreiben. Hier wollen wir uns mit dem Wérmeleitungsproblem auf der Kreislinie be-
schiftigen. Zu diesem Zweck suchen wir ein dem Wirmeleitungskern K® entsprechendes
Objekt fiir Funktionen auf dem Kreis oder, anders ausgedriickt, fiir periodische Funk-
tionen der Periode 27. Wir stehen damit vor der Aufgabe, eine Diracfamilie {K;} von
2m-periodischen Funktionen zu finden, also eine Familie von Funktionen

K(t,x) = K¢(x) mit K(t,x+2m) =K(t,x) ,

welche die drei nachfolgenden Bedingungen DIR 1, DIR 2, DIR 3 erfiillen und zugleich
Losungen der Wirmeleitungsgleichung sind.

DIR 1. K; > 0. (In unserem Fall wird fiir alle x sogar K;(x) > O gelten.)

DIR 2. [7"Ki(x) dx = 1.

DIR 3. Zue, 6 >0 (6,6 < 1) existiert ein tp mit 0 < ty < 1, so dass fiir 0 < t < tg
gilt

/—6Kt(x) dx-l—/;Kt(x) dx <e.

-7

Der Wirmeleitungsoperator lautet

so dass also

gelten soll.

Es liegt nahe zu versuchen, die Funktionen K; dadurch zu konstruieren, dass man die
entsprechenden Funktionen fiir die reelle Gerade “mittelt”. Wir definieren deshalb, ¢ > 0,
x € R,

1 2
K(t,x) — Z e—-(x+27rn) /4t ‘
nez Vart

Die (absolute) Konvergenz dieser Reihe von positiven Gliedern ergibt sich aus der expo-
nentiellen Abnahme der Betriige der Glieder mit wachsendem |n|. Fiir die so definierte
2n-periodische Funktion K gilt nun:
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Satz 1. Die Funktion K definiert eine Diracfamilie und erfiillt zusdtzlich die Wérme-
leitungsgleichung HK = 0.

Die Bedingung DIR 1 ist nach der obigen Bemerkung trivialerweise erfiillt. Als nichstes
weisen wir nach, dass K die Wirmeleitungsgleichung erfiillt. Die Ableitungen von K
erhalten wir, indem wir die Reihe gliedweise ableiten, denn die gliedweise abgeleitete
Reihe konvergiert absolut und gleichmissig in jedem beschriankten Gebiet von x und in
jedem beschrinkten Intervall von £. Ist nun f eine Losung der Warmeleitungsgleichung,
so ist fiir jede relle Zahl ¢ die Funktion g, definiert durch

g(t,x) = f(t,x+c),
ebenfalls eine Losung der Wirmeleitungsgleichung. Demzufolge erfiillt jeder Term un-
serer Reihe die Wirmeleitungsgleichung, und damit auch die Summe.

Es bleibt nachzuweisen, dass die Bedingungen DIR 2 und DIR 3 erfiillt sind. Auch dies
folgt direkt aus der Reihendarstellung von K.

Fiir DIR 2 haben wir
2n
K(t,JC) dx = / (x+27n)? /4t dx
/o o V4t Z

neZ

27
—(x+2mn)* /4t dx
\/471' Z/

1 27T(11+1 y2/4t
— e d
VAt nEE; /an ¥

e V14 gy

 Vant

=1,
wobei wir im letzten Schritt DIR 2 fiir den Wirmeleitungskern K® beniitzt haben. Damit
ist fiir unsere Familie DIR 2 nachgewiesen.

Auch zum Nachweis von DIR 3 beniitzen wir die gleiche Idee. Um zu zeigen, dass der
Wert des iiber das Intervall [§, 7] erstreckten Integrals klein ist, wenn nur { geniigend
klein ist, gehen wir wie folgt vor. Es gilt

Tl O (e SN S
g~ A2/ gy = e V/% d
[ = > = y

6+2mn

s/ KR(t,y) dy .
é

Nach DIR 3 fiir den Wirmeleitungskern KR wissen wir, dass fg existiert mit 0 < to < 1,
so dass dieser letzte Ausdruck fiir 0 < ¢ < t kleiner als € ist. Ein analoges Argument
lasst sich auf das Intervall [—m, —6] anwenden. Damit ist auch DIR 3 nachgewiesen.

Wir haben damit, wie es unsere Aufgabe war, eine aus 2m-periodischen Funktionen

bestehende Diracfamilie gefunden, welche das Wirmeleitungsproblem auf dem Kreis
16st.
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2 Thetafunktionen

Jedermann kennt die periodischen Funktionen sin und cos, die mit der Geometrie des
Kreises eng verbunden sind. Die Differentialrechnung sagt, dass sie einer Differential-

gleichung
2
Y =1-y (1)

geniigen. Im Laufe des 18. und 19. Jahrhunderts hat man sich die Frage nach Funktionen
f gestellt, welche einer Differentialgleichung

fP=f +Af+B (2)

geniigen. Dabei sind A und B Konstanten. In der Differentialgleichung (1) der Sinus-
und Cosinusfunktion ist die rechte Seite ein (einfaches) quadratisches Polynom, in der
Gleichung (2) ein Polynom dritten Grades. Und zwar ist trotz der speziellen Form des
Polynoms der allgemeine Fall abgedeckt, denn in einem Polynom dritten Grades kann der
quadratische Term immer durch eine einfache lineare Transformation zum Verschwinden
gebracht werden. Man war auf die Differentialgleichung (2) bei der Beschiftigung mit
elliptischen Integralen gestossen. Die Losungen nannte man aus diesem Grunde ellipti-
sche Funktionen. Aufgefasst als Funktionen einer komplexen Variablen sind sie doppelt
periodisch, d.h. es gibt komplexe Zahlen w; und w;, linear unabhiingig iiber R, mit

flz+w) = f(2) = f(z +w).

Im Laufe der intensiven Beschiftigung mit doppelt periodischen Funktionen, wie zum
Beispiel den elliptischen Funktionen hat man die Wichtigkeit der Thetafunktionen ent-
deckt: Sie liefern einen generischen Prozess zur Konstruktion doppelt periodischer Funk-
tionen. Es ist zweifellos eine ganz bemerkenswerte Tatsache, dass dieser Prozess gleich-
zeitig zu einer Losung der Wirmeleitungsgleichung auf dem Kreis fiihrt. Auf die The-
tafunktionen wollen wir in diesem Abschnitt ndher eingehen, wobei wir uns auf den
wichtigsten und typischsten Spezialfall beschrinken. Wir definieren die Riemannsche

Thetafunktion wie folgt:
7_ Z) Zemn T, gminz

neZ

Dabei sind 7 und z komplexe Zahlen, und fiir den Imaginérteil £ = Im 7 gelte £ > 0.
Diese letztere Bedingung impliziert, dass mit zunehmendem || der absolute Betrag der
Glieder der Reihe exponentiell abnimmt. Daraus folgt die absolute und fiir t > 6 > 0
gleichméssige Konvergenz der Reihe.

Die Riemannsche Thetafunktion 6, besitzt einfache Periodizititseigenschaften, auf die
wir als erstes eingehen. Es gilt

PER 1 (rz+1) =Y ™. 2minet) = gy(r,z)
neZ



El. Math. 57 (1996) 21

letzteres wegen e>™" = 1 fiir n € Z. Ferner erhilt man

.2 . )
PER 2 01(7-,2 + 7—) — Z eminT eZmnz . ezmn'r
nel
202 ) .
— § e?‘l’l(ﬂ +2n+1)7 eI, eZmnz
nel
— e—7rz'(T+22) . E :em'(n+1)27 . 6271'1'(71+1)z
neZz
= ¢ "0H22) g, (1,2) .

Der Zusammenhang mit doppelt periodischen Funktionen ist aus dem folgenden Ergebnis
ersichtlich, wobei wir der Einfachheit halber nur einen Spezialfall eines allgemeineren
Satzes auffiihren. Es seien a),a,...,ax und by,b,,...,bx komplexe Zahlen mit der
Eigenschaft
ay+ap 4+ 4ag=by +by+ -+ by.
Dann ist 1,6, ( )
io\7,2 —a;
&) =11 b,
joi (7,2 = bj)

eine doppelt periodische Funktion mit Perioden 1 und 7. Dies folgt unmittelbar aus
PER 2.

Man kann beweisen, dass sich alle doppelt periodischen Funktionen mit Hilfe der The-
tafunktionen beschreiben lassen, und zwar durch ein Verfahren, das nur um weniges
allgemeiner ist als das eben angegebene.

3 Zusammenhang mit der Wirmeleitungsgleichung
Wir betrachten hier, wie bereits in [L94] und §1, die Warmeleitungsgleichung

Hf(t,x) =0.

2
g9 _(9
ot ox

den eindimensionalen Wirmeleitungsoperator. Wir setzen nun

it x —n*t  inx
—_— I — o e .e 3
0(t,x)—01( ,2)—E

neZ

Dabei bezeichnet

wobei t und x als reelle Variablen aufzufassen sind. Dann folgt

HO(t,x) =Y _ (—n* - (in)?) e =0

nel
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Die Funktion 8, welche als Spezialfall der Riemannschen Thetafunktion definiert wurde,
ist also eine Losung der Wirmeleitungsgleichung. Es ist klar, dass 6 in x 27-periodisch
ist. In der physikalischen Interpretation ist deshalb 6 eine Losung des Warmeleitungs-
problems auf der Peripherie des (Einheits-)Kreises. Gerade fiir dieses Problem wurde in
§1 mit anderen Methoden ebenfalls eine Losung K gefunden, der sogenannte Wirmelei-
tungskern:

—(x+2nn)? /4t

K(t,x)= Z\/Zl?

neZ
Wir behaupten nun

Satz 2. Es gilt K = 21;0.
Wie beweist man, dass zwei stetige 2m-periodische Funktionen gleich sind? Es geniigt

zu zeigen, dass ihre Fourier-Koeffizienten iibereinstimmen. Wir werden also beweisen,

dass firme Z
2

Ki(x) 7™ dx = =™t
0

gilt, und fiir 6;(x) = 0(t, x) werden wir zeigen, dass

2n ) 5
0;(x) e "™ dx = 2me™ ™!
0
gilt. Daraus folgt K = 6.

Wir wenden uns zuerst der Funktion 6 zu. Hier erhalten wir, da wir die Reihe gliedweise
integrieren konnen,

2n
Ge(x) e™™ dx = / wE L el=mX gy = Dt
[ >

neZ

denn nur der Summand mit n = m liefert einen von Null verschiedenen Beitrag.

Um die Fourier-Koeffizienten der Funktion K; zu berechnen bendtigen wir das folgende
Resultat der Analysis:

* e —iw AU 2/2
/ eTW /2T —— =7 /2 (3)
— 00 V 27r
Dieses Resultat besagt, dass die Funktion e='/2 unter der Fourier-Transformation inva-

riant bleibt. Es handelt sich dabei um ein grundlegendes Standardresultat der Analysis.
Fiir einen Beweis konsultiere man z.B. [L], p. 301.

Wiederum konnen wir natiirlich die Reihe fiir K; gliedweise integrieren. Wir erhalten

2
Kt(x —imx dx = Z / —(x+27n) /4t —imx dx

0 nez

2n(n+1) yz/4t )
e e "™ dy |
\/47r /2 4

nez
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wobei wir die Substitution y = x + 27n durchgefiihrt und dabei ™™ = 1 beniitzt
haben. Der letzte Ausdruck ist aber gleich

1 > v /4t 3
e eV /4 emimy dy

Eine weitere Substitution, ndmlich y = \/Q_t U, dy = \/27 du, liefert schliesslich zusam-
men mit dem erwihnten Standardresultat (3)

2T
/ Ki(x)e™™ dx = =™ |
0

Damit ist die Gleichheit der beiden 27-periodischen Funktionen K; und 6; /27 bewiesen:

1 —n’t  inx —(x42mn)? /4t
_ . E 4 . 4
e e \/_____ ( )

neZl nel

Wir fiigen hier die folgende Bemerkung an. Auf der linken Seite der Gleichung (4)
kommt ¢ vor, wihrend auf der rechten Seite 1/t auftritt. Dies ist der Ansatzpunkt fiir die
beriihmte Inversionsformel von Poisson. Setzen wir namlich x = 0, so erhalten wir

il;r‘ z \/4? Z —(27n)? /4t (5)

nel neZz

Die Inversionsformel von Poisson findet Anwendungen in vielen Gebieten der Analysis
und Zahlentheorie; eine dieser Anwendungen betrifft die wichtige Funktionalgleichung
der Riemannschen Zetafunktion. Darauf kommen wir im Addendum am Schlusse dieses
Beitrages zuriick. Die Formel (5) taucht auch im Zusammenhang mit der Spektraltheorie
von Operatoren auf. Fiir eine Ubersicht siehe [JoL94].

Wir kehren zuriick zur Relation (4). Die Reihe der Thetafunktion auf der linken Seite
der Gleichung enthilt Terme ¢'"*; diese oszillieren, sind also sicher nicht iiberall positiv.
Aber die Glieder der Reihe auf der rechten Seite der Gleichung sind alle positiv, so dass
auch deren Summe, die Thetafunktion, positiv ist.

Die Thetafunktion hat, ausser den schon besprochenen, weitere wichtige Eigenschaften,
auf die wir jetzt noch eingehen wollen. Wir erinnern zuerst daran, dass die Faltung
zweier periodischer Funktionen f und g durch die Formel

2m
(f*8)x) = | flx —u) - g(u) du

gegeben ist. Diese Faltung definiert ein Produkt, das assoziativ, kommutativ und bilinear
in f und g ist, wie in [L94] nachgewiesen worden ist. Es gilt nun
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Satz 3. Fiir t,s € R* gilt die Relation

O x 05 = 045 .

Der Beweis ist nicht schwierig. Wir schreiben

0i(x) = Ze_"zt Wi

neZ

und

es(x) — Z e—m2s .eimx _

meZ

Im Integral, welches die Faltung darstellt, diirfen wir wegen der absoluten Konvergenz
gliedweise integrieren. In der entstehenden Reihe verschwinden die Glieder, die

2n
/ ei(n—m)x dx
0

mit 1 # m enthalten. Daraus ergibt sich unmittelbar die Aussage von Satz 3.

Die Faltung mit einer periodischen stetigen Funktion ¢ definiert auf periodischen Funk-
tionen f durch
frooxf

einen linearen Operator. Mit (f, g) bezeichnen wir das Skalarprodukt definiert durch

2
(.8 = | fx) glx) dx.

In der Folge nehmen wir der Einfachheit halber an, dass alle Funktionen reell sind; dies
bedeutet, dass die Konjugation weggelassen werden kann.

Satz 4. Es sei ¢ eine reelle periodische stetige Funktion. Dann gilt

(pxf.8) =(foxg .

In der Sprache der Operatortheorie besagt die Aussage des Satzes 4, dass die Zuordnung
f +— ¢ * f (im algebraischen Sinn) selbstadjungiert ist.

Der Beweis folgt mit Hilfe des Satzes von Fubini, welcher sagt, dass unter geeigne-
ten Konvergenzbedingungen ein Doppelintegral durch iterierte Integration in beliebiger
Reihenfolge berechnet werden kann. Die Einzelheiten des Beweises iiberlassen wir dem
Leser.

Die Tatsache, dass die Thetafunktion nichtnegativ ist, (f,x) > 0, kann nun ohne Benut-
zung der Gleichung (3) mit Hilfe der Sétze 3 und 4 auch wie folgt eingesehen werden.
Wir beweisen dazu zuerst das folgende Lemma.
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Lemma. Es sei ¢ eine reelle periodische stetige Funktion und h = ¢ * ¢. Falls fiir alle

2m-periodischen stetigen (reellen) Funktionen f gilt (h * f, f) > 0, so folgt h(x) > O fiir
alle x.

Beweis. Wir beweisen zuerst 1(0) > 0. Wir gehen dabei indirekt vor und fiihren die
Annahme h(0) < 0 zu einem Widerspruch. Dazu wihlen wir eine Funktion f, die in

einer kleinen Umgebung von 0 den Wert 1 und ausserhalb einer §-Umgebung den Wert
0 annimmt (siehe Figur 1).

-7 -6 o T

Fig. 1 Die Funktion f

Wir haben N
tff) = [ [ h £ = )

zu betrachten. Der Ausdruck unter dem Integral ist nur dann von Null verschieden, wenn
sowohl x wie auch x — u im é-Intervall liegen, wenn also — fiir kleine 6’s — sowohl
u wie auch x nahe bei O liegen. Indem wir nun ¢ klein wihlen und beachten, dass unter
der getroffenen Voraussetzung fiir u nahe bei Null h(u) < 0 gilt, folgt, dass der Wert
(h = f, f) negativ ist. Dies widerspricht der Voraussetzung des Lemmas, und die Aussage
h(0) > 0 ist bewiesen.

Fiir den ndchsten Schritt benotigen wir auch die bis anhin noch nicht benutzte Voraus-
setzung h = ¢ x ¢. Es sei a € R und ¢ = h,, d.h. g(x) = h(x +a). Um h(a) > 0 zu
zeigen geniigt es g(0) > 0 nachzuweisen. Nun gilt aber

h, = (d) * ¢)a = ¢a/2 * d)a/z
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und fiir alle f
(hax f,f) = (aja * Gapp * f f) = llap * fIF > 0.

Folglich gilt nach dem ersten Teil des Beweises, h,;(0) = g(0) > 0. Damit ist das Lemma
vollstindig bewiesen.

Mit Hilfe des Lemmas lisst sich nun ein zweiter Beweis fiir die Tatsache liefern, dass
die Thetafunktion nichtnegativ ist. Wir haben nidmlich

(O« f,f) = <9t/2 *9t/2*f,f> = <9t/2 *f79t/2 *f> = Hat/z”‘f“2 >0,

und mit dem Lemma folgt ; > 0. Dies war zu beweisen.

Wir bemerken zum Schluss, dass dieses hier dargestellte funktionalanalytische Argument
nur die Ungleichung 6(t,x) > 0 liefert, wihrend sich aus dem Satz 2 die strikte Un-
gleichung 0(t,x) > 0 ergibt, da K als unendliche Summe von strikt positiven Gliedern
erhalten wird.

Addendum

Wir wollen in diesem Zusatzabschnitt noch einiges iiber die Anwendung der Inversions-
formel von Poisson (5) auf die Riemannsche Zetafunktion sagen. Es geht dabei um die
Herleitung der wichtigen Funktionalgleichung der Zetafunktion.

Wir fiihren als erstes die Funktion 1 durch

w(x) — Z e—nznx
nel

ein. Gemiss unseren in Abschnitt 3 getroffenen Definitionen gilt ¢¥(x) = 6(7x,0). In
dieser Bezeichnung entspricht die Inversionsformel von Poisson (5) der Formel

P! = xy(x) .

Wir wenden uns jetzt der Riemannschen Zetafunktion ¢ zu. Diese ist bekanntlich definiert
durch

=1
C(S) = s !
n=0 n

wobei die komplexe Zahl s durch s = o + i7 mit 0,7 € R und o0 > 1 gegeben ist.
Wie man zeigen kann, konvergiert die angegebene Reihe absolut und gleichmissig fiir
o > a > 1. Wir betrachten nun fiir ¢ > 1 die Funktion

F(s) =n—2T (%) ¢(s) .

Dabei ist die Gammafunktion wie iiblich durch

F(s)z/ et
0 t
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definiert. Wir beniitzen ausserdem die Bezeichnungen

Z s w<x> ~1) (6)
und

6= [ 5w ™)

Zur direkten Berechnung von I(s) setzen wir fiir g(x) die Reihe ein und vertauschen die
Reihenfolge von Integration und Summation, was wegen der guten Konvergenz ohne
weiteres moglich ist. Dies liefert

0 [e’s)
L2 dx
:§ :/ xs/2 e Mx L
X
n=1v0

Mit der Substitution n27rx — t, n?n dx = dt erhalten wir weiter

/2 1 dt 1 5
. 5/2 —t _ 2 _
Z / e / Tl (3) <o) =FGs).

n=

Andererseits lisst sich I(s) in zwei Integrale aufspalten, ndmlich

° dx o dx
= 5/2 _— _5/2
I(s) /1 x*7g(x)— +/1 g(x> b

Nun gilt wegen des in (6) ausgedriickten Zusammenhanges zwischen g(x) und ¥(x):

y_1 NN L, oy ap Tap 1
g(x)*z(w(x) 1)—2x W) — =g + 122 - L

Einsetzen in das Integral des zweiten Summanden liefert schliesslich

P« g b [ e ) s

An dieser Formel lidsst sich nun direkt das anvisierte Resultat ablesen, namlich
F(s)=F(1—5s).

Dies ist die beriihmte Funktionalgleichung der Zetafunktion.

Acknowledgment: I am very grateful to U. Stammbach for the care he has given to the
translation and the publication of my talk.
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