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Zur Reihe der Primzahlreziproken

Dietmar Treiber

Dietmar Treiber wurde 1943 geboren. Er studierte an der Universitdt K6ln, wo er
1971 iiber p-adische Analysis promovierte. Er unterrichtet Mathematik und Informa-
tik an einem Gymnasium und interessiert sich fiir Elementarmathematik und Didaktik
der Mathematik.

Ziel dieser Note ist ein elementarer Beweis von
1

im p<N P =
N—oo InIn N N

Dieser Grenzwert ergibt sich unmittelbar aus den beiden Abschitzungen, die wir im fol-
genden fiir die Reihe der Primzahlreziproken herleiten. In der Analytischen Zahlentheorie

Im Jahre 1737 hat Leonard Euler das folgende Resultat verdffentlicht:
Summa seriei reciprocae numerorvum primorum

T 1 1 1 1 1
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est infinite magna, infinities tamen minor quam summa seriei harmonicae
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Atque illius summa est huius summae quasi logarithmus.

(Siche Theorema 19 in Commentarii academiae scientiarum Petropolitanae 9 (1737),
p. 160-188; Opera omnia (1) X1V, p. 216-244.) Euler sagt also hier, dass die Reihe
der Primzahlreziproken divergiert und dass die Partialsummen wie der Logarithmus der
Partialsummen der harmonischen Reihe wachsen, also wie loglogn. Dieses Resultat
und seine Prézisierungen stehen am Anfang von vielen weiteren tiefliegenden Sitzen
{iber die Primzahlverteilung, die im Laufe der Zeit entdeckt wurden. Dietmar Treiber
konzentriert sich in seinem Beitrag auf das Eulersche Resultat und gibt dafiir einen
ganz elementaren Beweis. ust
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wird eine bessere Aussage iiber das asymptotische Verhalten dieser Reihe bewiesen (vgl.
[1] oder [6]), freilich mit nichtelementaren Mitteln.

Die Divergenz der Reihe ) 1/p hat erstmals Leonhard Euler 1737 [3; 4] nachgewiesen.
Weitere elementare Beweise fiir die Divergenz dieser Reihe findet man in [2] und [5].

Satz 1 Fiir alle N € N mit N > 2 gilt
1

1
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Beweis Sei N € N vorgegeben. Offenbar gilt
1o AN
[T{t+=+5+)=>Y ->nN.
p<N P P n=1 "

Wenn man nun die Summenformel fiir die geometrische Reihe anwendet und logarith-
miert, so ergibt sich

Insgesamt folgt

| e 1 1
1n1nNg§ —+—§ — < -
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Satz 2 Fiir alle N € N mit N > ¢e° gilt die Ungleichung

Z £ <InInN +2-InlnlnN +2-1n5 + 2.
p<n P

Beweis Sei N € N mit N > ¢° vorgegeben. Wir setzen s := ZPSN 1/p. Nach dem
Polynomischen Satz gilt fiir alle k € N

woraus sich ergibt
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Nun gilt, wie man leicht durch vollstindige Induktion bestitigt, fiir alle k € N

kk+!
k! < T
Dabher ergibt sich fiir alle k € N
k k—1
5 ik < k?’InN

Wir setzen nun k := [s] (dabei bezeichnet [x] fiir eine reelle Zahl x die grosste ganze
Zahl < x) und erhalten
"2 <s’InN,

woraus sich durch Logarithmieren ergibt
$s <2 In(s) +InlnN + 2.

Trivialerweise ist s < 1/2+1/3+--- 4+ 1/N < InN. Setzt man dies rechts in die letzte
Formel ein und beriicksichtigt InlnN > 1, so erhdlt man s < 5 - InlnN. Setzt man nun

diesen Term wiederum rechts in die letzte Formel ein, so ergibt sich die Behauptung von
Satz 2.
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