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Zur Reihe der Primzahlreziproken

Dietmar Treiber

Dietmar Treiber wurde 1943 geboren Er studierte an der Universität Köln, wo er
1971 uber /?-adische Analysis promovierte Er unterrichtet Mathematik und Informatik

an einem Gymnasium und interessiert sich fur Elementarmathematik und Didaktik
der Mathematik

Ziel dieser Note ist ein elementarer Beweis von

lim
1 1 A7

l-
n->oo lnlnN

Dieser Grenzwert ergibt sich unmittelbar aus den beiden Abschätzungen, die wir im
folgenden für die Reihe der Primzahlreziproken herleiten. In der Analytischen Zahlentheorie

Im Jahre 1737 hat Leonard Euler das folgende Resultat veröffentlicht:

Summa seriei recipmcae numerorum pnmorum

11111 1

2 + 3 + 5 + 7 + Ü+13+etC*

est infinite magna, infinities tarnen minor quam summa seriei harmonicae

1 1 1 1

l ^ i + * + etc

Atque ÜUus summa est huius summae quasi iogarithmus.

(Siehe Theorema 19 in Commentarii academiae scientiarum Petropolitanae 9 (1737)*

p» 16&48S; Opern omnia (1) XIV, p. 216-244.) Etiler sagt also hier, dass die Reihe

der FrbitmMfezipmken divergiert und dass die Partialsummen wie der Logarithmus der
Partialsummen der harmonischen Reihe wachsen» also wie log logn. Dieses Resultat
und seine PrMsieningen stehet! am Anfang von vielen weiteren tiefliegenden Sätzen

iber die MmasaMvemilung» die im Laufe der Zeit entdeckt wurden* Dietmar Treiber
konzentriert sieh in seinem Beitrag auf das Eulersche Resultat und gibt dafür einen

pm elementaren Beweis ust
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wird eine bessere Aussage uber das asymptotische Verhalten dieser Reihe bewiesen (vgl.
[1] oder [6]), freilich mit nichtelementaren Mitteln.

Die Divergenz der Reihe ^2 l/p hat erstmals Leonhard Euler 1737 [3; 4] nachgewiesen.
Weitere elementare Beweise fur die Divergenz dieser Reihe findet man in [2] und [5].

Satz 1 Fut alle N eN mit N > 2 gilt

V- >lnlnN--^ p ~ 2
p<N r

Beweis Sei NeN vorgegeben. Offenbar gilt

nKv+ )-£i->."
p<N v r r J n=\

Wenn man nun die Summenformel fur die geometrische Reihe anwendet und loganth-
miert, so ergibt sich

£-ln(l-i)>lnlni\ rt I
p<N

Weiter hat man fur jede Primzahl p

i / 1\ ~ 1 1 1 ~ 1 11 1

-In 1--U) < ~ + ~ > ~ - +
V) f^nPn V 2i^Pn V 2p(p-l)

Insgesamt folgt

Satz 2 Fur alle N eN mit N >ee gilt die Ungleichung

V-<lnlnN + 2 lnlnlnN + 2 ln5 + 2

p<N r

Beweis Sei N e N mit N > ee vorgegeben. Wir setzen s := Y2p<n VP- Nach dem

Polynomischen Satz gilt fur alle keN

J Nk
1

kl - ^n '

n=2

woraus sich ergibt
S - ^rk-- <ln(Nk) klnN
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Nun gilt, wie man leicht durch vollständige Induktion bestätigt, für alle keN

kk+i
kl <

Daher ergibt sich für alle keN
ck pK 1

Wir setzen nun k := [s] (dabei bezeichnet [x] für eine reelle Zahl x die grosste ganze
Zahl < x) und erhalten

es~2 <s2lnN,

woraus sich durch Logarithmieren ergibt

s <2 m(s)+lnlnN-r-2.

Trivialerweise ist s < 1/2 -f- 1/3 H h 1/N < InN. Setzt man dies rechts in die letzte
Formel ein und berücksichtigt lnlnN > 1, so erhält man s < 5 • lnlnN. Setzt man nun
diesen Term wiederum rechts in die letzte Formel ein, so ergibt sich die Behauptung von
Satz 2.
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