
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 50 (1995)

Artikel: Computerbilder von Aufblasungen

Autor: Brodmann, Markus

DOI: https://doi.org/10.5169/seals-46349

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 07.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-46349
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


El. Math 50 (1995) 0013-6018/95/040149-15$ 1 50 + 0 20/0
© 1995 Birkhauser Verlag, Basel

Computerbilder von Aufblasungen

Markus Brodmann

Markus Brodmann promovierte an der Universität Basel Danach folgten Aufenthalte
an der EPFL in Lausanne, der Universität Munster, der Brandeis University in Boston
und am Forschungsinstitut fur Mathematik der ETH Zürich Er habilitierte sich 1980

m Munster Seit 1982 ist Markus Brodmann an der Universität Zürich tatig Sein

Forschungsgebiet hegt im Bereich der kommutativen Algebra und der algebraischen
Geometrie Daneben ist er in der Ausbildung zukunftiger Sekundarlehrer engagiert.

1 Einleitung
In dieser Arbeit stellen wir einige Computerbilder von Aufblasungen vor und beschreiben

die Methode, mit der diese Bilder hergestellt wurden. Zugleich erläutern wir das für die

algebraische Geometrie sehr wichtige Konzept der Aufblasung. Bei unseren Bildern
beschränken wir uns auf Aufblasungen einer Kreisscheibe bezüglich zweier Polynome.
Schon in diesem einfachen Fall erhält man eine erstaunliche Vielfalt von ästhetisch sehr

ansprechenden Flächen. In augenfälliger Weise zeigt sich so etwas von der Vielzahl der

Phänomene, welche beim Aufblasen algebraischer Varietäten auftreten können.

Im Hinblick auf die grosse Bedeutung des Aufblasungsprozesses, aber auch im Hinblick
auf die Fülle an auftretenden Formen, ist es erstaunlich, dass bis jetzt weder Modelle noch

befriedigende bildliche Darstellungen zu diesem Thema bekannt sind. Ebenso erstaunlich

"Wir halten uns nicht für zu vornehm, um beim Unterrichte und auch bei der

eigenen Forschung Zeichnungen und Modelle in ausgiebiger Zahl zu verwenden.*'

So sagte 1880 Felix Klein in seiner Antrittsrede an der Universität Leipzig, fa welchem
Ausmass hätte wohl Felix Klein erst die graphischen Möglichkeiten moderner Computer

zur Veranschaulichung eingesetzt? — Markus Brodmann beschreibt in seinem

Beitrag eine wichtige Technik der algebraischen Geometrie» nämlich die sogenannte

Außlasung. Diese dient dazu, Singularitäten von algebraischen Kurven und Hieben der

mathematischen Behandlung zugänglich zu machen. Die abstrakte Theorie wird durch
eine "ausgiebige Zahr von Computerbüdern konkreter Beispiele veranschaulicht Über

ihre mathematische Aussagekraft hinaus weisen diese Bilder eine hohe ästhetische

Qualität auf. Möglich, dass hier Betrachter etwas von der Eleganz und Schönheit

spüren, welche die Mathematikerinnen und Mathematiker seit jeher mit ihrem Fach

verbinden, ust
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ist es, dass die unseren Bildern zugrunde liegenden Objekte — die reellen Teile von
Aufblasungen der Ebene bezüglich reeller Polynome — anscheinend nie der Gegenstand
einer systematischen Untersuchung waren.

Wir möchten mit diesem Beitrag auf ein zu Unrecht wenig beachtetes Thema aufmerksam
machen, das sowohl ästhetisch wie auch mathematisch seinen ganz besondern Reiz hat.
Insbesondere hoffen wir, unsere Ausführungen mögen den einen oder anderen Leser dazu

anregen, sich selbst mit dem Thema zu beschäftigen. Die "Eigenproduktion" weiterer
Computerbilder der hier besprochenen Art lässt sich — zumindest im Prinzip — ohne

grösseren Aufwand an Mathematik und Informatik betreiben. So ergibt sich ein schon mit
den Hilfsmitteln der Gymnasialmathematik zugängliches Experimentierfeld, das einen
ersten Blick in ein zentrales Gebiet der algebraischen Geometrie eröffnet.

Die vorgestellten Computerbilder wurden hergestellt am Multimedienlaboratorium des

Instituts für Informatik an der Universität Zürich. Wir danken Herrn M. Hafner für
die Realisierung dieser Bilder und Herrn Prof. P. Stucki für seine Unterstützung. Mein
besonderer Dank gilt auch Prof. U. Stammbach für seine redaktionellen Hinweise.

2 Aufblasungen der Ebene

Das Bilden von Aufblasungen ist eine Technik aus der algebraischen Geometrie. Besonders

wichtig an dieser Technik ist, dass sie verwendet werden kann, um "Singularitäten
aufzulösen": Indem man in geeigneter Weise die Singularitäten durch "grössere" Gebilde
ersetzt — sie eben aufbläst — gelangt man schliesslich zu einem singularitätenfreien
Objekt, dessen Untersuchung wesentlich einfacher ist als die des ursprünglichen. Um diese
abstrakte Idee zu veranschaulichen, betrachten wir das folgende einfache Beispiel:

Sei IK die Kurve, welche in der (x,y)-Ebene E durch die Gleichung x2 — y3 — y2 0

gegeben ist.

K yEx
Fig. 1

Diese Kurve hat bekanntlich im Nullpunkt eine Singularität (siehe Figur), die wir jetzt
auflösen, indem wir zu einer geeigneten Aufblasung der Ebene E übergehen und die
Kurve IK "mit aufblasen". Um zu unserer Aufblasung der Ebene E zu gelangen, gehen
wir zunächst über zum Raum und führen eine dritte Koordinatenachse ein, die z-Achse.
Zu jedem ausserhalb der x-Achse liegenden Punkt F (x, y) von E betrachten wir den im
Raum liegenden Punkt P (x,y, £). Dadurch erhalten wir im Raum eine Fläche So, die

wir anschliessend topologisch abschliessen, um so zu einer Fläche S zu gelangen. Es ist
leicht zu sehen, dass dabei alle Punkte der z-Achse als Limespunkte auftreten. Die Fläche
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§ ist "im wesentlichen" die gesuchte Aufblasung Um das Gesagte in einer fur unsere
Zwecke geeigneten Form darzustellen, wählen wir in der Ebene E eine Kreisscheibe
D x2 + y2 < p2 vom Radius p > 0 um den Nullpunkt und betrachten nur die im
Zylinder uber D liegenden Teile von §0 und § (siehe Figur 2)

XX

y

Fig 2

Die Flache §0 ist natürlich gerade der Graph der durch (x,y) \—? f (ausserhalb der x-
Achse) definierten rationalen Funktion. Entsprechend ist S der Abschluss dieses Graphen

Wir blasen jetzt die Kurve IK mit auf, indem wir zunächst die Menge IKq aller Punkte
P (x,y,z) betrachten, fur welche F (x,y) in IK, aber nicht auf der x-Achse liegt.

Die Menge IKq schhessen wir dann topologisch ab in S Die so entstehende Aufblasung
IK von IK ist eine singulantatenfreie Kurve, und genau das wollten wir ja erreichen,

(vgl Figur 3).

Unser Beispiel hat uns zwar eine wesentliche Eigenschaft der Aufblasungen vor Augen
gefuhrt, zeigt uns aber gleichzeitig, dass unsere Beschreibung des Aufblasungsprozes-
ses noch nicht befriedigend ist Wir haben ja bei unserem Vorgehen die Punkte auf
der x-Achse "verloren". Dieser Mangel rührt naturlich daher, dass wir die x- und die

y-Koordmate nicht gleich behandelt haben. Wir fuhren daher den oben beschriebenen
Prozess nochmals durch, wobei wir die Rolle der x- und der y-Achse vertauschen. Zu

jedem Punkt F (x9y) aus E, der nicht auf der y-Achse hegt, betrachten wir also den

Punkt P* (x,y, £). Die so entstehende Flache Sq schhessen wir dann im Raum
topologisch ab und gelangen so zu emer Flache §*. Die vorhin noch "verlorengegangenen"
Punkte sind jetzt auf der Flache §* zu finden Auf den beiden Flachen S und S* zusammen

gehen jetzt also keine Punkte mehr verloren. Dafür entsprechen jetzt jedem Punkt
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X X

K X

y ySX X

Fig 3

F (x9 y) aus E, der auf keiner der beiden Koordinatenachsen liegt, zwei Punkte der
Punkt P (x,y, ~) auf der Flache § und der Punkt P* (x,y9%) auf der Flache §*
Um diese Doppeldeutigkeit zu vermeiden, identifizieren wir in dieser Situation jeweils
die beiden Punkte P und P* (s Figur 4)

Die oben beschriebene Identifikation von Punkten auf S mit Punkten auf S* können

wir auch so verstehen, dass wir zwei Exemplare der z-Achse so verkleben, dass sich

(fur alle z ^ 0) jeweils die Punkte z und \ entsprechen Dies heisst aber, dass wir die
z-Achse (dh eine affine Gerade) durch die projektive Gerade P1 ersetzt haben Eine

vollständige Beschreibung unserer Aufblasung ist jetzt wie folgt möglich Zu jedem
Punkt F (x,y) ^ (0,0) der Ebene E betrachten wir in E x P1 den Punkt Q=(x9y9(x y)),
wo (x y) G P1 der Punkt mit den homogenen Koordinaten x und y ist Die auf diese
Weise entstehende Flache B0 schhessen wir darauf in E x P1 topologisch ab Die so

entstehende Flache B C E x P1 ist dann unsere Aufblasung Anders gesagt, entsteht
die Aufblasung B, indem wir den Graphen der durch (x,y) i—? (x y) definierten

Abbildung e E\{(0,0)} —? P1 in E x P1 topologisch abschlössen

Die beiden im affinen Raum liegenden Flachen S und S* sind die sogenannten
(kanonischen) affinen Karten der Aufblasung B Schranken wir die Projektion ExP1 —> E

em auf die Flache B, so erhalten wir eine Abbildung n B —? E, deren Faser uber dem

Nullpunkt eine projektive Gerade ist und die sonst zur Stutzabbildung e F \—> (F, e(F))
von e invers ist So entsteht die Aufblasung B, indem wir aus der Ebene E den Nullpunkt
entfernen und an seiner Stelle eine projektive Gerade einsetzen Diese projektive Gerade
heisst die Ausnahmefaser der Aufblasung
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Fig. 4

Was wir bis jetzt beschrieben haben, ist genau genommen die Aufblasung der Ebene
E bezüglich der beiden Polynome x und y, also eine sehr spezielle Aufblasung. Wir
betrachten jetzt etwas allgemeiner die Aufblasung von E bezüglich eines beliebigen
Paares von Polynomen f(x9y) und g(x9y). Die Menge der gemeinsamen Nullstellen
der beiden Polynome / und g nennen wir das Zentrum der gesuchten Aufblasung und
bezeichnen dieses mit Z. Die Aufblasung B von E bezüglich f und g definieren wir
dann ähnlich wie im vorangehenden Spezialfall als den topologischen Abschluss des

Graphen der durch (x9y) i—? (f(x9y) : g(x9y)) definierten Abbildung e : E\Z —> P1

in E x P1. Auch jetzt liefert die Projektion ExP1 —? E wieder eine surjektive Abbildung
7r: B —? E, die nun über E\Z zur Stützabbildung e von e invers ist. So entsteht nun B,
indem man aus der Ebene E das Zentrum Z entfernt und an seiner Stelle die sogenannte
Ausnahmemenge n~l(Z) einsetzt. Auch in diesem Fall besitzt B wieder zwei kanonische
affine Karten S und §*, die man als Abschlüsse der Graphen der rationalen Funktionen

| und % im affinen Raum erhält. Die beiden affinen Karten sind dabei wieder so zu

verkleben, dass man zwei Punkte P £ § und P* e S* miteinander identifiziert, wenn
ihre z-Koordinaten von 0 verschieden und zueinander reziprok sind. Im Fall f x und

g y2 erhalten wir für die beiden Karten (über der Scheibe D) die in Figur 5 gezeigte
Veranschaulichung.
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3 Aufblasungen algebraischer Varietäten

Was wir bis jetzt über Aufblasungen wissen, wäre hinreichend, um das Zustandekommen
unserer Computerbilder zu erklären. Da sich andrerseits der allgemeine Aufblasungsbe-
griff für algebraische Varietäten als naheliegende Erweiterung des bisher Gesagten ergibt,
wollen wir hier kurz auf diesen eintreten. Wir gehen dabei aus von einer komplexen
algebraischen Varietät V. Nehmen wir zunächst an, V sei affin, also darstellbar als das

gemeinsame Nullstellengebilde {ceCn\g\(c) -'-=gm(c) 0} endlich vieler Polynome
gt (x\, • • •, xn) in einem komplexen affinen Raum Cn. Seien jetzt /0, • • • ,/r : V —> C
reguläre Funktionen auf V, also Funktionen, die durch Polynome in den xk definiert sind.
Wir schreiben Z für das gemeinsame Nullstellengebilde {c £ V\f0(c) • • • fr(c) 0}
dieser Funktionen und betrachten die Abbildung e : V\Z —> Pr, welche dem Punkt
c £ V\Z jeweils den Punkt (fo(c) : ••• : fr(c)) mit den homogenen Koordinaten

fo(c)r '' >/r(_Z) im komplexen r-dimensionalen projektiven Raum zuordnet. Die Aufblasung

B von V bezüglich der regulären Funktionen /o, • ,/r ist dann wieder definiert als
der Abschluss des Graphen der Abbildung e in V x Pr. Die Projektion V x Pr —? V
definiert jetzt wieder eine surjektive Abbildung n : B —? V, welche über V\Z zur
Stützabbildung e von e invers ist — die kanonische Abbildung. Ist nun V eine beliebige

komplexe algebraische Varietät, so ist eine Aufblasung von V gegeben durch eine

Abbildung ir : B —? V algebraischer Varietäten mit der folgenden Eigenschaft:
Jeder Punkt P von V liegt in einer affinen offenen Untervarietät Vo von V für welche
B0 := 7r-1(Vo) eine Aufblasung von V0 bezüglich geeigneter regulärer Funktionen ist.
Dabei soll die zu dieser Aufblasung gehörige kanonische Abbildung 7r0 : B0 —? V0

gerade die Einschränkung 7t|b0 der gegebenen Abbildung n : B —? V auf B0 sein.
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Der Begriff der Aufblasung lasst sich fur algebraische Varietäten uber beliebigen algebraisch

abgeschlossenen Korpern genau gleich definieren, wobei sinngemäss die sogenannte
Zariski-Topologie (s [3]) zu verwenden ist. Der Aufblasungsbegnff ist sogar in wesentlich

grosserer Allgemeinheit fassbar, namhch fur sogenannte Schemata (s [7])

In Abschnitt 1 haben wir (im Reellen) eine ebene algebraische Kurve IK bezüglich der
beiden Koordinatenfunktionen aufgeblasen und sind dabei zu einer — zumindest dem

Augenschein nach — singulantatenfreien Kurve IK gelangt. Der Augenschein hat uns
hier aber die richtige Idee gegeben* Fassen wir IK als die durch x2—yh—y2 0 definierte
komplexe Kurve in C2 auf, so liefert die Aufblasung bezuglich der beiden Koordinatenfunktionen

eine komplexe Kurve IK', die zur affinen komplexen Geraden C isomorph
ist und damit tatsächlich keine Singularitäten hat Die im Nullpunkt vorhandene Singularität

von IK wird also durch unsere Aufblasung im Sinne der algebraischen Geometrie

"aufgelost". Dass sich Singularitäten durch Aufblasungen auflosen lassen, gilt nun in der
Tat ganz allgemein, wie das folgende äusserst bedeutsame Resultat aus der algebraischen
Geometrie zeigt, das 1964 von Hironaka bewiesen wurde (s. [8]):

Aus jeder komplexen algebraischen Varietät V lasst sich durch eine geeignete Aufblasung
eine algebraische Varietät V ohne Singularitäten gewinnen

Der "glattende Effekt", den Aufblasungen haben können, lasst sich nicht nur an den

Singularitäten algebraischer Varietäten beobachten. Wir illustrieren dies am Beispiel eines

singulären Vektorfeldes in der Ebene E Dazu betrachten wir das in E\{(0,0)} durch
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z>(x9y) := y(x2 + y2)~l(x1y) definierte Vektorfeld, das offenbar nicht stetig in den

Nullpunkt fortsetzbar ist. Wir betrachten jetzt die Aufblasung B von E bezüglich der
beiden Polynome x und y und "ziehen v vermöge der kanonischen Abbildung n : B —>
E zu einem Vektorfeld tv auf B\7r-1(0,0) zurück". Sofort sieht man jetzt, dass dieses

modifizierte Vektorfeld differenzierbar auf die ganze Aufblasung B fortgesetzt werden
kann und damit singularitätenfrei geworden ist. Über unserer Kreisscheibe O ergibt sich
eine Veranschaulichung gemäss Figur 6.

Dieses Beispiel zeigt, dass Aufblasungen auf Vektorfelder eine glättende Wirkung haben

können. Übertragen in die algebraische Geometrie entspricht dem eine "glättende
Wirkung auf Schnitte in Garben". Dieser Aspekt der Aufblasungen bildet die Grundlage der
Theorie der "Macaulayfizierung" von Schemata und Garben (vgl. [2], [4], [5], [6] Ein
Ziel dieser Theorie ist es, eine sogenannte "garbentheoretische Version" des Resultats

von Hironaka über die Auflösung der Singularitäten von Varietäten zu beweisen. Bis

jetzt sind allerdings nur Teilresultate in dieser Richtung bekannt.

4 Computerbilder
Unsere Computerbilder zeigen Aufblasungen der reellen Ebene E IR2 bezüglich zweier

Polynome f(x9y) und g(x,y). Dabei haben wir die Polynome immer so gewählt, dass

ihre einzige gemeinsame Nullstelle der Punkt (0,0) ist — und das sogar im Komplexen.
Wir stellen jeweils nicht die ganze Aufblasung B dar, sondern nur den Teil, der über
einer festen Kreisscheibe D C E mit Zentrum (0,0) liegt. Was wir betrachten, ist also

die Menge Bn(D x P1).

Um diese Menge veranschaulichen zu können, betten wir zunächst die Menge D x P1

geeignet in den 3-dimensionalen Raum U3 ein. Dazu verwenden wir den wohlbekannten

Diffeomorphismus P1 —? S1 zwischen der projektiven Geraden und dem Kreis, der
die affine Gerade (unsere z-Achse) / := {(z : l)\z £ IR} C Pl durch die Umkehrung
der stereographischen Projektion abbildet. Anschaulich gesprochen fassen wir damit die

projektive Gerade P1 als Kreis auf, indem wir die affine Gerade / vermöge der
beschriebenen Abbildung geeignet "verbiegen" und die dabei offen bleibende Lücke durch
Einsetzen des noch fehlenden Punktes oo := (1 : 0) "im Unendlichen" schhessen. So

wird auch zum Ausdruck gebracht, dass wir uns dem Punkt oo mehr und mehr nähern,

wenn wir auf der affinen Geraden / immer in der gleichen Richtung weiterlaufen (s.

Figur 7).

Wenn wir aber P1 auf diese Weise als Kreis auffassen, wird DxP1 zu einem Volltorus
und lässt sich deshalb in den affinen reellen Raum R3 einbetten. Die Menge Bn(D x P1),
die uns interessiert, lässt sich somit als Teilmenge des dreidimensionalen Raumes
darstellen. Nach unseren Voraussetzungen über die Polynome / und g besteht das Zentrum
unserer Aufblasung gerade aus dem Ursprung 0 der Ebene E. Entsprechend liegt die

Ausnahmemenge unserer Aufblasung in der projektiven Geraden {0} xP'CDxP1.
Zur Vereinfachung ersetzen wir in unserer Darstellung die Ausnahmemenge immer durch
die ganze projektive Gerade {0} x P1, also durch den Zentralkreis des Torus ED x P1.

Anders gesagt, bilden wir unsere Aufblasung B, indem wir den Graphen der durch

(x9y) »—> (f(x9y) : g(x9y)) definierten Abbildung e : E\{0} —? P1 bezüglich der

Zariski-Topologie abschliessen. Die beiden kanonischen affinen Karten S und S* unse-
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rer Aufblasung sind dann gerade die durch die beiden Gleichungen f(x9y) zg(x9y)
und g(x9y) zf(x9y) definierten Flächen im Raum.

Jetzt können wir wie folgt zu einer Darstellung von B (genauer: von Bn (D x P1))
gelangen: Wir legen in der Ebene E eine Gerade a, welche die Scheibe D nicht trifft und

parallel verläuft zur x-Achse. Zum beliebigen Fusspunkt F £ D betrachten wir dessen

Spiegelbild F^ an der Achse a. Die zur z-Achse parallele Gerade lp durch den Fusspunkt
F schhessen wir dann nach dem oben beschriebenen Verfahren durch Hinzufügen des

Punktes F^ "im Unendlichen" zur projektiven Geraden Plp. Jeder Punkt P £ lp D §
geht dabei über in einen Punkt Q £ B. Liegt F auf der x-Achse, so nehmen wir als

möglichen Punkt Q auch den Punkt F^ hinzu. Durchläuft F die ganze Scheibe D, so

bilden die Punkte Q zusammen die gesuchte Aufblasung B. Genau dieses Verfahren liegt
unseren Computerbildern zu Grunde. In der Figur 8 ist der Fall f(x9y) x, g(x,y) y
dargestellt.

Sei jetzt R der Zentralkreisradius des Torus T D x P1 C R3, und sei B0 der über

D\{0} liegende Teil des Graphen der Abbildung e. Nach dem obigen Verfahren ist B0
eine Fläche in T, welche gegeben ist durch die Parameterdarstellung:

(x,y) i—> (x,R + (y - R)cosa,(R-y) sina) =://(*,y),

.arctan Jg$, falls g(x,y) ^ 0,/ 2a
mit a := <

falls g(x9y) =0,
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wobei (x,y) £ D\{0}. Die gesuchte Menge BflT erhält man dann, indem man zu dieser
Fläche B0 noch den Zentralkreis {0} x P1 von T hinzunimmt.

Natürlich haben wir hier nur den reellen Teil der Objekte veranschaulicht, für welche
sich die algebraische Geometrie in Wirklichkeit interessiert. Auch von diesem reellen
Teil haben wir nur ein diffeomorphes Bild dargestellt, da wir die projektive Gerade P1

als Kreis aufgefasst haben. Diesen Preis müssen wir bezahlen, um überhaupt zu einer
Veranschaulichung zu gelangen. Unsere Aufblasungen lassen sich nämlich nur so als
Flächen in einem Volltorus realisieren.

Die Bilder (siehe Farbseite) zeigen einige solcher Flächen für verschiedene Wahlen der

Polynome / und g. Um die Anschaulichkeit zu erhöhen, wurden die Aufblasungen mit
Streifen versehen, welche konzentrischen Ringen in D entsprechen.

1. f(x,y) x9g(x9y) y: Es entsteht ein klassisches Möbiusband (vgl. Figur 8).

2. f(x,y) x2,g(x,y) y2: Es entsteht ein sogenannter Whitney-Doppelschirm, eine

Fläche, die sich leicht aus einem Streifen Papier herstellen lässt (vgl. Figur 9).

3.-6. : Kompliziertere Beispiele.

Zur Realisierung der gezeigten Bilder wurde in der Scheibe D durch gleichmassige
Radius- und Winkelunterteilung ein Punktgitter

((**;> 3A;))i<i,;<n (mit N 1024)

gelegt. Anschliessend wurden für die gewählten Polymome / und g die Punkte ptJ :=
ß(xtJ,yt]) £ Bo berechnet und gleichzeitig das auf D vorgegebene Streifenmuster punktweise

auf Bo übertragen. Diese Arbeit wurde durchgeführt auf einer Graphic Super-
workstation vom Typ Silicon Graphics 4D-VGX, welche viele graphische
Gestaltungsmöglichkeiten bietet (Färbung, Lichteinfall, Lage im Raum Für das benutzte
Schattierungsverfahren musste die Fläche Bq mit Hilfe der Punkte ptJ durch ein Netz von
Dreiecken simuliert werden. Je nach Wahl der Polynome / und g treten dabei allerdings
sehr stark ungleichseitige Dreiecke auf, was kein zufriedenstellendes Bild von Bo

ergibt. Diesen Mangel könnte man etwa dadurch beheben, dass man das Gitter der Punkte

(xtj9ytj) in der Nähe der "Polkurve" g(x9y) 0 geeignet verfeinert.

5 Ausblick
In mehrfacher Hinsicht sind unsere Computerbilder von Aufblasungen nur ein erster
Schritt in einer Richtung, in der viele weitere Aktivitäten möglich sind.

Nennen wir zunächst eine Perspektive, die von der Computergraphik zurückweist in die
"klassische" Veranschaulichung mathematischer Objekte durch Modelle! Unsere

Programme lassen sich nämlich leicht so modifizieren, dass sie die Steuerung eines am
Institut für Informatik der Universität Zürich vorhandenen Photopolymerisationsgerätes
erlauben, mit dem die Herstellung komplexer Kunststoffobjekte möglich ist.

Eine reizvolle Aufgabe wäre sicher auch die Herstellung von Computerbildern von
Aufblasungen der Ebene in mehreren Punkten. In Figur 10 ist dazu ein Beispiel skizziert: die

Aufblasung der Ebene in vier Punkten, realisiert als Aufblasung der Ebene bezüglich der
beiden Polynome /(x,y) x2 — 1 und g(x,y) y2 — 1 und dargestellt über der Scheibe
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Abb. 1 Abb.2

Abb. 3 Abb. 4

Abb. 5 Abb. 6
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D mit dem Radius p — 2 und dem Zentrum 0. Die Aufblasung ist hier allerdings anders

in den 3-dimensionalen Raum eingebettet, als dies bei den vorangehenden Computerbildern

der Fall ist. Bei Verwendung unserer früher beschriebenen Einbettungsweise, ergibt
sich die in Figur 11 skizzierte Veranschaulichung.

Dem "Zebra"-Muster der in den Figuren 10 und 11 gezeigten Aufblasungen liegt das in

Figur 12 skizzierte Farbmuster auf der Scheibe D zugrunde.
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Fig. 10

Fig. 11

Lässt man in den unsere Aufblasungen bestimmenden Polynomen / und g die
Koeffizienten in Abhängigkeit von der Zeit variieren, so erhält man eine "bewegte Fläche".
Ein entsprechender Videofilm ist in einem einfachen Fall von M. Hafner am Institut für
Informatik der Universität Zürich bereits hergestellt worden. Interessante (aber nicht
einfach zu lösende Probleme) sind in komplizierteren Fällen zu erwarten. In anschaulicher
Weise könnte man so etwa die Abhängigkeit des topologischen Typs einer Aufblasung
von den definierenden Polynomen darstellen.

Bläst man die Ebene E in endlich vielen Punkten auf, so hängt der Diffeomorphietyp der

Aufblasung nur von der Anzahl der verwendeten Punkte ab. Die von uns verwendete
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Methode bietet sich geradezu an, dies etwa durch einem mit dem Computer
hergestellten Film zu veranschaulichen. Im Fall von 4 Punkten würde es also etwa darum
gehen, klar zu machen, dass die Aufblasung der Ebene E bezüglich der beiden
Polynome f{x,y) x2 - 1 und g(x,y) y2 — 1 (d.h. die Aufblasung bezüglich der 4 Punkte

(1,1), (1,-1), (—1,1), (—1,-1)) diffeomorph ist zur Aufblasung bezüglich der beiden

Polynome f(x,y) (x1 -2){x2 - |) und g(x,y) y (d.h. zur Aufblasung bezüglich

der 4 Punkte (^2,0), (-^2,0),(^,0)(-^,0)) (vgl. Fig. 13).

Die Wahl der "richtigen" Diffeomorphismen ist dabei auch mathematisch gesehen ein
interessantes Problem.
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Fig. 14

Schliesslich kann man auch kompliziertere Flächen aufblasen als die Ebene. In
diesem Fall geht allerdings die (topologische) Einbettbarkeit in den 3-dimensionalen Raum
schnell verloren. Bei der Veranschaulichung solcher Aufblasungen musste man also

Selbstdurchdringungen in Kauf nehmen. Ein Beispiel dazu ist skizziert in der Figur
14. Es handelt sich dabei um die Aufblasung der im 4-dimensionalen Raum durch die

Gleichungen xw — yz 0, x2z + xy ~ y2 0. z3 + zw - w2 — 0 definierten Fläche

bezüglich der beiden Koordinatenfunktionen / x und g y.

Die Herstellung von Computerbildern solcher Aufblasungen ist sicher eine ganz besondere

Herausforderung.
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