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Computerbilder von Aufblasungen

Markus Brodmann

Markus Brodmann promovierte an der Universitit Basel. Danach folgten Aufenthalte
an der EPFL in Lausanne, der Universitit Miinster, der Brandeis University in Boston
und am Forschungsinstitut fiir Mathematik der ETH Ziirich. Er habilitierte sich 1980
in Miinster. Seit 1982 ist Markus Brodmann an der Universitit Ziirich titig. Sein
Forschungsgebiet liegt im Bereich der kommutativen Algebra und der algebraischen
Geometrie. Daneben ist er in der Ausbildung zukiinftiger Sekundarlehrer engagiert.

1 Einleitung

In dieser Arbeit stellen wir einige Computerbilder von Aufblasungen vor und beschreiben
die Methode, mit der diese Bilder hergestellt wurden. Zugleich erldutern wir das fiir die
algebraische Geometrie sehr wichtige Konzept der Aufblasung. Bei unseren Bildern
beschranken wir uns auf Aufblasungen einer Kreisscheibe beziiglich zweier Polynome.
Schon in diesem einfachen Fall erhdlt man eine erstaunliche Vielfalt von ésthetisch sehr
ansprechenden Flidchen. In augenfilliger Weise zeigt sich so etwas von der Vielzahl der
Phinomene, welche beim Aufblasen algebraischer Varietiten auftreten konnen.

Im Hinblick auf die grosse Bedeutung des Aufblasungsprozesses, aber auch im Hinblick
auf die Fiille an auftretenden Formen, ist es erstaunlich, dass bis jetzt weder Modelle noch
befriedigende bildliche Darstellungen zu diesem Thema bekannt sind. Ebenso erstaunlich

“Wir halten uns nicht fiir zu vornehm, um beim Unterrichte und auch bei der
eigenen Forschung Zeichnungen und Modelle in ausgiebiger Zahl zu verwenden.”
So sagte 1880 Felix Klein in seiner Antrittsrede an der Universitiit Leipzig. In welchem
Ausmass hiitte wohl Felix Klein erst die graphischen Moglichkeiten moderner Com-
puter zur Veranschaulichung eingesetzt? — Markus Brodmann beschreibt in seinem
Beitrag eine wichtige Technik der algebraischen Geometrie, nimlich die sogenannte
Aufblasung. Diese dient dazu, Singularititen von algebraischen Kurven und Fldchen der
mathematischen Behandlung zuginglich zu machen. Die abstrakte Theorie wird durch
eine “ausgiebige Zahl” von Computerbildern konkreter Beispiele veranschaulicht. Uber
ihre mathematische Aussagekraft hinaus weisen diese Bilder eine hohe #sthetische
Qualitiét auf. Moglich, dass hier Betrachter etwas von der Eleganz und Schénheit
spliren, welche die Mathematikerinnen und Mathematiker seit jeher mit ihrem Fach
verbinden. ust
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ist es, dass die unseren Bildern zugrunde liegenden Objekte — die reellen Teile von
Aufblasungen der Ebene beziiglich reeller Polynome — anscheinend nie der Gegenstand
einer systematischen Untersuchung waren.

Wir moéchten mit diesem Beitrag auf ein zu Unrecht wenig beachtetes Thema aufmerksam
machen, das sowohl dsthetisch wie auch mathematisch seinen ganz besondern Reiz hat.
Insbesondere hoffen wir, unsere Ausfiihrungen mégen den einen oder anderen Leser dazu
anregen, sich selbst mit dem Thema zu beschiftigen. Die “Eigenproduktion” weiterer
Computerbilder der hier besprochenen Art ldsst sich — zumindest im Prinzip — ohne
grosseren Aufwand an Mathematik und Informatik betreiben. So ergibt sich ein schon mit
den Hilfsmitteln der Gymnasialmathematik zugingliches Experimentierfeld, das einen
ersten Blick in ein zentrales Gebiet der algebraischen Geometrie erdffnet.

Die vorgestellten Computerbilder wurden hergestellt am Multimedienlaboratorium des
Instituts fiir Informatik an der Universitdt Ziirich. Wir danken Herrn M. Hafner fiir
die Realisierung dieser Bilder und Herrn Prof. P. Stucki fiir seine Unterstiitzung. Mein
besonderer Dank gilt auch Prof. U. Stammbach fiir seine redaktionellen Hinweise.

2 Aufblasungen der Ebene

Das Bilden von Aufblasungen ist eine Technik aus der algebraischen Geometrie. Beson-
ders wichtig an dieser Technik ist, dass sie verwendet werden kann, um “Singularititen
aufzuldsen”: Indem man in geeigneter Weise die Singularitidten durch “grossere” Gebilde
ersetzt — sie eben aufbldst — gelangt man schliesslich zu einem singularitdtenfreien Ob-
jekt, dessen Untersuchung wesentlich einfacher ist als die des urspriinglichen. Um diese
abstrakte Idee zu veranschaulichen, betrachten wir das folgende einfache Beispiel:

Sei KK die Kurve, welche in der (x,y)-Ebene E durch die Gleichung x> —1* — 1> =0
gegeben ist.

prd

——

T

Diese Kurve hat bekanntlich im Nullpunkt eine Singularitit (siehe Figur), die wir jetzt
auflosen, indem wir zu einer geeigneten Aufblasung der Ebene [k iibergehen und die
Kurve [K “mit aufblasen”. Um zu unserer Aufblasung der Ebene E zu gelangen, gehen
wir zunichst iiber zum Raum und fiihren eine dritte Koordinatenachse ein, die z-Achse.
Zu jedem ausserhalb der x-Achse liegenden Punkt F = (x,y) von E betrachten wir den im
Raum liegenden Punkt P = (x,y, i). Dadurch erhalten wir im Raum eine Fliche S, die
wir anschliessend topologisch abschliessen, um so zu einer Fliche S zu gelangen. Es ist
leicht zu sehen, dass dabei alle Punkte der z-Achse als Limespunkte auftreten. Die Fldche

¥

Fig. 1
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S ist "im wesentlichen" die gesuchte Aufblasung. Um das Gesagte in einer fiir unsere
Zwecke geeigneten Form darzustellen, wihlen wir in der Ebene [E eine Kreisscheibe

D : x* + 3 < p? vom Radius p > 0 um den Nullpunkt und betrachten nur die im
Zylinder iiber D liegenden Teile von Sy und S (siehe Figur 2).

%W//
e

g

Fig. 2

Die Fliache Sy ist natiirlich gerade der Graph der durch (x,y) — ]1/ (ausserhalb der x-
Achse) definierten rationalen Funktion. Entsprechend ist S der Abschluss dieses Graphen.

Wir blasen jetzt die Kurve K mit auf, indem wir zunédchst die Menge K(') aller Punkte
P = (x,y, ’;‘) betrachten, fiir welche F = (x,y) in [, aber nicht auf der x-Achse liegt.

Die Menge K'O schliessen wir dann topologisch ab in S. Die so entstehende Aufblasung

K" von IK ist eine singularititenfreie Kurve, und genau das wollten wir ja erreichen,
(vgl. Figur 3).

Unser Beispiel hat uns zwar eine wesentliche Eigenschaft der Aufblasungen vor Augen
gefiihrt, zeigt uns aber gleichzeitig, dass unsere Beschreibung des Aufblasungsprozes-
ses noch nicht befriedigend ist. Wir haben ja bei unserem Vorgehen die Punkte auf
der x-Achse “verloren”. Dieser Mangel riihrt natiirlich daher, dass wir die x- und die
y-Koordinate nicht gleich behandelt haben. Wir fiihren daher den oben beschriebenen
Prozess nochmals durch, wobei wir die Rolle der x- und der y-Achse vertauschen. Zu
jedem Punkt F = (x,y) aus E, der nicht auf der y-Achse liegt, betrachten wir also den
Punkt P* = (x,y, £). Die so entstehende Fliche S§ schliessen wir dann im Raum topo-
logisch ab und gelangen so zu einer Fliche S*. Die vorhin noch “verlorengegangenen”
Punkte sind jetzt auf der Fliche S* zu finden. Auf den beiden Flichen S und S$* zusam-
men gehen jetzt also keine Punkte mehr verloren. Dafiir entsprechen jetzt jedem Punkt
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Fig. 3

F = (x,y) aus E, der auf keiner der beiden Koordinatenachsen liegt, zwei Punkte: der
Punkt P = (x,y, i) auf der Fliche S und der Punkt P* = (x,y, ) auf der Fliche S*.
Um diese Doppeldeutigkeit zu vermeiden, identifizieren wir in dieser Situation jeweils
die beiden Punkte P und P* (s. Figur 4).

Die oben beschriebene Identifikation von Punkten auf S mit Punkten auf S* konnen
wir auch so verstehen, dass wir zwei Exemplare der z-Achse so verkleben, dass sich
(fiir alle z # 0) jeweils die Punkte z und % entsprechen. Dies heisst aber, dass wir die
z-Achse (d.h. eine affine Gerade) durch die projektive Gerade P' ersetzt haben. Eine
vollstindige Beschreibung unserer Aufblasung ist jetzt wie folgt moglich: Zu jedem
Punkt F = (x,y) #(0,0) der Ebene [ betrachten wir in E x P! den Punkt Q= (x,y,(x:y)),
wo (x : y) € P! der Punkt mit den homogenen Koordinaten x und y ist. Die auf diese
Weise entstehende Fliche By schliessen wir darauf in E x P! topologisch ab. Die so
entstehende Fliche B C E x P! ist dann unsere Aufblasung. Anders gesagt, entsteht
die Aufblasung B, indem wir den Graphen der durch (x,y) — (x : y) definierten
Abbildung ¢ : E\{(0,0)} — P! in E x P! topologisch abschliessen.

Die beiden im affinen Raum liegenden Fliachen S und S* sind die sogenannten (kano-
nischen) affinen Karten der Aufblasung B. Schrinken wir die Projektion E x P! — [E
ein auf die Fliche B, so erhalten wir eine Abbildung 7 : B — [, deren Faser tiber dem
Nullpunkt eine projektive Gerade ist und die sonst zur Stiitzabbildung & : F — (F,e(F))
von ¢ invers ist. So entsteht die Aufblasung B, indem wir aus der Ebene E den Nullpunkt
entfernen und an seiner Stelle eine projektive Gerade einsetzen. Diese projektive Gerade
heisst die Ausnahmefaser der Aufblasung.
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Fig. 4

Was wir bis jetzt beschrieben haben, ist genau genommen die Aufblasung der Ebene
E beziiglich der beiden Polynome x und y, also eine sehr spezielle Aufblasung. Wir
betrachten jetzt etwas allgemeiner die Aufblasung von E beziiglich eines beliebigen
Paares von Polynomen f(x,y) und g(x,y). Die Menge der gemeinsamen Nullstellen
der beiden Polynome f und g nennen wir das Zentrum der gesuchten Aufblasung und
bezeichnen dieses mit Z. Die Aufblasung B von E beziiglich f und g definieren wir
dann dhnlich wie im vorangehenden Spezialfall als den topologischen Abschluss des
Graphen der durch (x,y) — (f(x,y) : g(x,y)) definierten Abbildung ¢ : E\Z — P!
in Ex P!. Auch jetzt liefert die Projektion E x P! — [E wieder eine surjektive Abbildung
7 : B — [, die nun tiber E\Z zur Stiitzabbildung £ von ¢ invers ist. So entsteht nun B,
indem man aus der Ebene | das Zentrum Z entfernt und an seiner Stelle die sogenannte
Ausnahmemenge m~'(Z) einsetzt. Auch in diesem Fall besitzt B wieder zwei kanonische
affine Karten S und $*, die man als Abschliisse der Graphen der rationalen Funktionen
§ und j? im affinen Raum erhilt. Die beiden affinen Karten sind dabei wieder so zu
verkleben, dass man zwei Punkte P € S und P* € S* miteinander identifiziert, wenn
ihre z-Koordinaten von O verschieden und zueinander reziprok sind. Im Fall f = x und
¢ = y* erhalten wir fiir die beiden Karten (iiber der Scheibe D) die in Figur 5 gezeigte
Veranschaulichung.
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3 Aufblasungen algebraischer Varietiaten

Was wir bis jetzt iiber Aufblasungen wissen, wire hinreichend, um das Zustandekommen
unserer Computerbilder zu erkldren. Da sich andrerseits der allgemeine Aufblasungsbe-
griff fiir algebraische Varietiten als naheliegende Erweiterung des bisher Gesagten ergibt,
wollen wir hier kurz auf diesen eintreten. Wir gehen dabei aus von einer komplexen al-
gebraischen Varietdt V. Nehmen wir zunéchst an, V sei affin, also darstellbar als das
gemeinsame Nullstellengebilde {c € C"|g;(c) =:--=gn(c) =0} endlich vieler Polynome
gi(x1,- -+, x,) in einem komplexen affinen Raum C". Seien jetzt fo,---,f, : V — C re-
guldre Funktionen auf V, also Funktionen, die durch Polynome in den x definiert sind.
Wir schreiben Z fiir das gemeinsame Nullstellengebilde {c € V|f,(c) =--- = f,(c) = 0}
dieser Funktionen und betrachten die Abbildung € : V\Z — P’, welche dem Punkt
¢ € V\Z jeweils den Punkt (fo(c) : -+ : f;(c)) mit den homogenen Koordinaten
folc),- -+, fr(c) im komplexen r-dimensionalen projektiven Raum zuordnet. Die Aufbla-
sung B von V beziiglich der reguldren Funktionen fy, - - -, f, ist dann wieder definiert als
der Abschluss des Graphen der Abbildung ¢ in V x P’. Die Projektion V x P" — V
definiert jetzt wieder eine surjektive Abbildung 7 : B — V, welche iiber V\Z zur
Stiitzabbildung £ von ¢ invers ist — die kanonische Abbildung. Ist nun V eine belie-
bige komplexe algebraische Varietit, so ist eine Aufblasung von V gegeben durch eine
Abbildung 7 : B — V algebraischer Varietiten mit der folgenden Eigenschaft: Je-
der Punkt P von V liegt in einer affinen offenen Untervarietit Vi von V fiir welche
By := n~!(V,) eine Aufblasung von V; beziiglich geeigneter regulirer Funktionen ist.
Dabei soll die zu dieser Aufblasung gehorige kanonische Abbildung 7y : By — V}
gerade die Einschrinkung 7|p, der gegebenen Abbildung 7 : B — V auf By sein.
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Fig. 6

Der Begriff der Aufblasung ldsst sich fiir algebraische Varietiten iiber beliebigen algebra-
i1sch abgeschlossenen Korpern genau gleich definieren, wobei sinngemaiss die sogenannte
Zariski-Topologie (s. [3]) zu verwenden ist. Der Aufblasungsbegriff ist sogar in wesent-
lich grosserer Allgemeinheit fassbar, ndmlich fiir sogenannte Schemata (s. [7]).

In Abschnitt 1 haben wir (im Reellen) eine ebene algebraische Kurve K beziiglich der
beiden Koordinatenfunktionen aufgeblasen und sind dabei zu einer — zumindest dem
Augenschein nach — singularitidtenfreien Kurve K gelangt. Der Augenschein hat uns
hier aber die richtige Idee gegeben: Fassen wir [ als die durch x*> —3* —1? = 0 definierte
komplexe Kurve in C? auf, so liefert die Aufblasung beziiglich der beiden Koordinaten-
funktionen eine komplexe Kurve Kl, die zur affinen komplexen Geraden C isomorph
ist und damit tatsidchlich keine Singularititen hat. Die im Nullpunkt vorhandene Singu-
laritdt von [ wird also durch unsere Aufblasung im Sinne der algebraischen Geometrie
“aufgelost”. Dass sich Singularititen durch Aufblasungen auflosen lassen, gilt nun in der
Tat ganz allgemein, wie das folgende dusserst bedeutsame Resultat aus der algebraischen
Geometrie zeigt, das 1964 von Hironaka bewiesen wurde (s. [8]):

Aus jeder komplexen algebraischen Varietdt V ldsst sich durch eine geeignete Aufblasung
eine algebraische Varietdt V ohne Singularitdten gewinnen.

Der “glittende Effekt”, den Aufblasungen haben konnen, lédsst sich nicht nur an den
Singularititen algebraischer Varietiten beobachten. Wir illustrieren dies am Beispiel eines
singuldren Vektorfeldes in der Ebene [E. Dazu betrachten wir das in E\{(0,0)} durch
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T(x,y) = y(x* + y*)~"'(x,y) definierte Vektorfeld, das offenbar nicht stetig in den
Nullpunkt fortsetzbar ist. Wir betrachten jetzt die Aufblasung B von [k beziiglich der
beiden Polynome x und y und “ziehen ¥ vermoge der kanonischen Abbildung 7 : B —
E zu einem Vektorfeld @ auf B\7~'(0,0) zuriick”. Sofort sieht man jetzt, dass dieses
modifizierte Vektorfeld differenzierbar auf die ganze Aufblasung B fortgesetzt werden
kann und damit singularititenfrei geworden ist. Uber unserer Kreisscheibe D ergibt sich
eine Veranschaulichung gemiss Figur 6.

Dieses Beispiel zeigt, dass Aufblasungen auf Vektorfelder eine glittende Wirkung haben
konnen. Ubertragen in die algebraische Geometrie entspricht dem eine “glittende Wir-
kung auf Schnitte in Garben”. Dieser Aspekt der Aufblasungen bildet die Grundlage der
Theorie der “Macaulayfizierung” von Schemata und Garben (vgl. [2], [4], [S], [6] ). Ein
Ziel dieser Theorie ist es, eine sogenannte "garbentheoretische Version" des Resultats
von Hironaka iiber die Auflosung der Singularititen von Varietdten zu beweisen. Bis
jetzt sind allerdings nur Teilresultate in dieser Richtung bekannt.

4 Computerbilder

Unsere Computerbilder zeigen Aufblasungen der reellen Ebene E = R? beziiglich zweier
Polynome f(x,y) und g(x,y). Dabei haben wir die Polynome immer so gewihlt, dass
ihre einzige gemeinsame Nullstelle der Punkt (0, 0) ist — und das sogar im Komplexen.
Wir stellen jeweils nicht die ganze Aufblasung B dar, sondern nur den Teil, der iiber
einer festen Kreisscheibe D C E mit Zentrum (0,0) liegt. Was wir betrachten, ist also
die Menge B N (D x P!).

Um diese Menge veranschaulichen zu konnen, betten wir zuniichst die Menge D x P!
geeignet in den 3-dimensionalen Raum R? ein. Dazu verwenden wir den wohlbekannten
Diffeomorphismus P! — S! zwischen der projektiven Geraden und dem Kreis, der
die affine Gerade (unsere z-Achse) I := {(z : 1)|z € R} C P! durch die Umkehrung
der stereographischen Projektion abbildet. Anschaulich gesprochén fassen wir damit die
projektive Gerade P! als Kreis auf, indem wir die affine Gerade ! vermoge der be-
schriebenen Abbildung geeignet “verbiegen” und die dabei offen bleibende Liicke durch
Einsetzen des noch fehlenden Punktes oo := (1 : 0) “im Unendlichen” schliessen. So
wird auch zum Ausdruck gebracht, dass wir uns dem Punkt co mehr und mehr nihern,
wenn wir auf der affinen Geraden ! immer in der gleichen Richtung weiterlaufen (s.
Figur 7).

Wenn wir aber P! auf diese Weise als Kreis auffassen, wird [) x P! zu einem Volltorus
und lisst sich deshalb in den affinen reellen Raum R? einbetten. Die Menge BN (D x P!),
die uns interessiert, ldsst sich somit als Teilmenge des dreidimensionalen Raumes dar-
stellen. Nach unseren Voraussetzungen iiber die Polynome f und g besteht das Zentrum
unserer Aufblasung gerade aus dem Ursprung O der Ebene E. Entsprechend liegt die
Ausnahmemenge unserer Aufblasung in der projektiven Geraden {0} x P! C D x P!,
Zur Vereinfachung ersetzen wir in unserer Darstellung die Ausnahmemenge immer durch
die ganze projektive Gerade {0} x P!, also durch den Zentralkreis des Torus D x P!,
Anders gesagt, bilden wir unsere Aufblasung B, indem wir den Graphen der durch
(x,y) — (f(x,y) : g(x,y)) definierten Abbildung ¢ : E\{0} — P! beziiglich der
Zariski-Topologie abschliessen. Die beiden kanonischen affinen Karten S und S* unse-
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Fig. 7

rer Aufblasung sind dann gerade die durch die beiden Gleichungen f(x,y) = zg(x,y)
und g(x,y) = zf(x,y) definierten Flichen im Raum.

Jetzt konnen wir wie folgt zu einer Darstellung von B (genauer: von B N (D x P!))
gelangen: Wir legen in der Ebene [ eine Gerade 4, welche die Scheibe D nicht trifft und
parallel verlduft zur x-Achse. Zum beliebigen Fusspunkt F € D betrachten wir dessen
Spiegelbild F, an der Achse a. Die zur z-Achse parallele Gerade I durch den Fusspunkt
F schliessen wir dann nach dem oben beschriebenen Verfahren durch Hinzufiigen des
Punktes Fo, “im Unendlichen” zur projektiven Geraden P'f. Jeder Punkt P € [r N'S
geht dabei iiber in einen Punkt Q € B. Liegt F auf der x-Achse, so nehmen wir als
moglichen Punkt Q auch den Punkt F., hinzu. Durchlduft F die ganze Scheibe D, so
bilden die Punkte Q zusammen die gesuchte Aufblasung B. Genau dieses Verfahren liegt
unseren Computerbildern zu Grunde. In der Figur 8 ist der Fall f(x,y) = x, g(x,y) =y
dargestellt.

Sei jetzt R der Zentralkreisradius des Torus T = D x P! C R3, und sei By der iiber
D\{0} liegende Teil des Graphen der Abbildung . Nach dem obigen Verfahren ist By
eine Fliche in T, welche gegeben ist durch die Parameterdarstellung:

(x,y) — (x,R+ (y — R)cosa, (R — y)sina) =: p(x,y),

f(x.y)
mit o = {2arctan S falls g(x,y) # 0,
T, falls g(x,y) =0,



158 El. Math. 50 (1995)

wobei (x,y) € D\{0}. Die gesuchte Menge BN T erhilt man dann, indem man zu dieser
Fldche By noch den Zentralkreis {0} x P! von T hinzunimmt.

Natiirlich haben wir hier nur den reellen Teil der Objekte veranschaulicht, fiir welche
sich die algebraische Geometrie in Wirklichkeit interessiert. Auch von diesem reellen
Teil haben wir nur ein diffeomorphes Bild dargestellt, da wir die projektive Gerade P!
als Kreis aufgefasst haben. Diesen Preis miissen wir bezahlen, um tiberhaupt zu einer
Veranschaulichung zu gelangen. Unsere Aufblasungen lassen sich ndmlich nur so als
Fldchen in einem Volltorus realisieren.

Die Bilder (siehe Farbseite) zeigen einige solcher Fldchen fiir verschiedene Wahlen der
Polynome f und g. Um die Anschaulichkeit zu erhohen, wurden die Aufblasungen mit
Streifen versehen, welche konzentrischen Ringen in D) entsprechen.

1. f(x,y) = x,8(x,y) = y: Es entsteht ein klassisches Mobiusband (vgl. Figur 8).

2. f(x,y) = x?,g(x,y) = y*: Es entsteht ein sogenannter Whitney-Doppelschirm, eine
Flidche, die sich leicht aus einem Streifen Papier herstellen lédsst (vgl. Figur 9).

3.-6. : Kompliziertere Beispiele.

Zur Realisierung der gezeigten Bilder wurde in der Scheibe D) durch gleichmissige
Radius- und Winkelunterteilung ein Punktgitter

((xif, %)) 1<ij<n (mit N = 1024)

gelegt. Anschliessend wurden fiir die gewihlten Polymome f und g die Punkte p;; :=
m(xij, vij) € By berechnet und gleichzeitig das auf [) vorgegebene Streifenmuster punkt-
weise auf B, iibertragen. Diese Arbeit wurde durchgefiihrt auf einer Graphic Super-
workstation vom Typ Silicon Graphics 4D-VGX, welche viele graphische Gestaltungs-
moglichkeiten bietet (Farbung, Lichteinfall, Lage im Raum .. .). Fiir das benutzte Schat-
tierungsverfahren musste die Fliche By mit Hilfe der Punkte p;; durch ein Netz von
Dreiecken simuliert werden. Je nach Wahl der Polynome f und g treten dabei allerdings
sehr stark ungleichseitige Dreiecke auf, was kein zufriedenstellendes Bild von By er-
gibt. Diesen Mangel konnte man etwa dadurch beheben, dass man das Gitter der Punkte
(xij,¥;j) in der Nihe der “Polkurve” g(x,y) = O geeignet verfeinert.

5 Ausblick

In mehrfacher Hinsicht sind unsere Computerbilder von Aufblasungen nur ein erster
Schritt in einer Richtung, in der viele weitere Aktivititen moglich sind.

Nennen wir zunichst eine Perspektive, die von der Computergraphik zuriickweist in die
“klassische” Veranschaulichung mathematischer Objekte durch Modelle! Unsere Pro-
gramme lassen sich ndmlich leicht so modifizieren, dass sie die Steuerung eines am
Institut fiir Informatik der Universitit Ziirich vorhandenen Photopolymerisationsgerites
erlauben, mit dem die Herstellung komplexer Kunststoffobjekte moglich ist.

Eine reizvolle Aufgabe wire sicher auch die Herstellung von Computerbildern von Auf-
blasungen der Ebene in mehreren Punkten. In Figur 10 ist dazu ein Beispiel skizziert: die
Aufblasung der Ebene in vier Punkten, realisiert als Aufblasung der Ebene beziiglich der
beiden Polynome f(x,y) = x* — 1 und g(x,y) = > — 1 und dargestellt iiber der Scheibe
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Abb. 1 Abb. 2

Abb. 3 Abb. 4

Abb. 6
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Fig. 8

Fig. 9

D mit dem Radius p = 2 und dem Zentrum 0. Die Aufblasung ist hier allerdings anders
in den 3-dimensionalen Raum eingebettet, als dies bei den vorangehenden Computerbil-
dern der Fall ist. Bei Verwendung unserer friiher beschriebenen Einbettungsweise, ergibt
sich die in Figur 11 skizzierte Veranschaulichung.

Dem “Zebra”-Muster der in den Figuren 10 und 11 gezeigten Aufblasungen liegt das in
Figur 12 skizzierte Farbmuster auf der Scheibe [) zugrunde.
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Fig. 10

Fig. 11

Ldsst man in den unsere Aufblasungen bestimmenden Polynomen f und g die Koeffi-
zienten in Abhidngigkeit von der Zeit variieren, so erhilt man eine “bewegte Fliche”.
Ein entsprechender Videofilm ist in einem einfachen Fall von M. Hafner am Institut fiir
Informatik der Universitét Ziirich bereits hergestellt worden. Interessante (aber nicht ein-
fach zu losende Probleme) sind in komplizierteren Fillen zu erwarten. In anschaulicher
Weise konnte man so etwa die Abhingigkeit des topologischen Typs einer Aufblasung
von den definierenden Polynomen darstellen.

Bldst man die Ebene [ in endlich vielen Punkten auf, so hingt der Diffeomorphietyp der
Aufblasung nur von der Anzahl der verwendeten Punkte ab. Die von uns verwendete
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Fig. 12

Fig. 13

Methode bietet sich geradezu an, dies etwa durch einem mit dem Computer herge-
stellten Film zu veranschaulichen. Im Fall von 4 Punkten wiirde es also etwa darum
gehen, klar zu machen, dass die Aufblasung der Ebene [ beziiglich der beiden Poly-
nome f(x,y) = x> — 1 und g(x,y) = ¥ — 1 (d.h. die Aufblasung beziiglich der 4 Punkte
(1,1), (1,-1), (—=1,1), (—=1,—1)) diffeomorph ist zur Aufblasung beziiglich der bei-
den Polynome f(x,y) = (x*—2)(x*— %) und g(x,y) = y (d.h. zur Aufblasung beziiglich

der 4 Punkte (v'2,0), (—v/2,0), (%2,0)(—%2,0)) (vel. Fig. 13).

Die Wahl der “richtigen” Diffeomorphismen ist dabei auch mathematisch gesehen ein
interessantes Problem.



El. Math. 50 (1995) 163

Fig. 14

Schliesslich kann man auch kompliziertere Flichen aufblasen als die Ebene. In die-
sem Fall geht allerdings die (topologische) Einbettbarkeit in den 3-dimensionalen Raum
schnell verloren. Bei der Veranschaulichung solcher Aufblasungen miisste man also
Selbstdurchdringungen in Kauf nehmen. Ein Beispiel dazu ist skizziert in der Figur
14. Es handelt sich dabei um die Aufblasung der im 4-dimensionalen Raum durch die
Gleichungen xw — yz = 0, x’z + xy — ¥ = 0, z* 4+ zw — w? = 0 definierten Fliche
beziiglich der beiden Koordinatenfunktionen f = x und g = .

Die Herstellung von Computerbildern solcher Aufblasungen ist sicher eine ganz beson-
dere Herausforderung.
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