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Die vierte Dimension

Christian Okonek

Christian Okonek wurde 1952 in Géttingen geboren und hat dort von 1973 bis 1978
Mathematik studiert. Hier erhielt er 1980 das Doktorat und 1982 die Habilitation
in Mathematik. Als Heisenberg-Stipendiat war er zu mehreren Aufenthalten an der
University of Berkeley, dem Mittag-Leffler Institut in Stockholm, und dem Max-
Planck-Institut in Bonn. Von 1989 bis 1992 war er Professor fiir Mathematik an
der Universitit Bonn und folgte 1992 einem Ruf auf ein Ordinariat fiir Mathematik
an der Universitiit Ziirich. Sein Arbeitsgebiet ist die komplexe Geometrie und ihre
Verbindung zur Topologie.

Der vorliegende Beitrag basiert auf dem Manuskript meiner Antrittsrede, die ich am 25.
April 1994 vor einem nicht-mathematischen Publikum an der Universitit Ziirich gehalten
habe. Als Thema meines Vortrages habe ich mir ein Gebiet gewihlt, auf dem in den letz-
ten 10-15 Jahren eine Reihe iiberraschender Durchbriiche und eine Fiille spektakuldrer
Ergebnisse erzielt worden sind: Die vierte Dimension.

Mathematisch ausgedriickt handelt es sich hierbei um die Klassifikation differenzierbarer
Strukturen auf Mannigfaltigkeiten der Dimension 4.

Bei Aussenstehenden erweckt es immer wieder Erstaunen, mit welcher Leichtigkeit die
Mathematik jenseits aller Anschauung vier- und mehrdimensionale Riume behandelt.
Eingeweihte haben sich daran gewohnt, fiir sie ist dies zur Selbstverstindlichkeit gewor-
den. Sie haben andere Griinde, der Dimension vier besondere Beachtung zu schenken,
zum Beispiel diesen: Der Raum R" besitzt fiir # £ 4 nur eine einzige differenzierbare
Struktur, aber in R* gibt es neben der iiblichen noch andere — exotische — differen-
zierbare Strukturen. Dieses Resultat hat bei seinem Bekanntwerden vor einigen Jahren
die Fachwelt vollig tiberrascht. Wie andere tiefe Resultate der Mathematik wurde es
zum Anfangspunkt einer neuen mathematischen Entwicklung. Fragen, nach der An-
zahl und der Klassifikation der verschiedenen differenzierbaren Strukturen in R* und
in anderen Mannigfaltigkeiten stellten sich und gaben Anlass zu intensiver Forschung,
in die der Autor des vorliegenden Beitrages direkt involviert ist. — Beim Text handelt
es sich um die liberarbeitete Version des Manuskriptes der Antrittsrede von Christian
Okonek an der Universitit Ziirich, ust
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Warum ist nun gerade die Dimension 4 so besonders interessant? Es gibt hierfiir sicher
mancherlei verschiedene Griinde, wie etwa die Tatsache, dass die uns umgebende physi-
kalische Welt ja (mindestens) 4-dimensional ist: Sie hat neben den drei Raumrichtungen
auch noch eine vierte, zeitliche Dimension. Ein anderer Grund ist aber rein innermathe-
matischer Natur: Die Geometrie in Dimension 4 ist ndmlich in vielerlei Hinsicht vollig
einzigartig; es gibt zahlreiche grundlegende Phénomene, in denen sich 4-dimensionale
Mannigfaltigkeiten von denen in allen anderen Dimensionen ganz wesentlich unterschei-
den.

Ich habe versucht, in meinem Vortrag einige dieser Phinomene zu erldutern und sie in
einen grosseren Zusammenhang einzuordnen, um so die Einzigartigkeit der Dimension
4 herauszustellen. Dabei habe ich mich besonders bemiiht, etwas von der Faszination
zu vermitteln, die die vierte Dimension auf viele Mathematiker ausiibt. Herrn Prof. U.
Stammbach mochte ich an dieser Stelle herzlich fiir die Anregung zu dieser Publikation
und fiir die Unterstiitzung bei ihrer Herstellung danken.

1 Differenzierbare Strukturen auf Mannigfaltigkeiten

Eines der fundamentalen Konzepte in der Geometrie ist der Mannigfaltigkeitsbegrift, der
sich im letzten Jahrhundert, genauer, beginnend mit B. Riemanns Habilitationsvortrag
1854, entwickelt hat. Heute versteht man unter einer (topologischen) Mannigfaltigkeit
der Dimension n einen topologischen Raum, der im Kleinen so aussieht wie eine offene
Menge U C R” eines n-dimensionalen Zahlenraumes.

Einfache Beispiele sind die n-dimensionalen Einheitsphiren
" = {x € R"™| |lx|| = 1},

oder allgemeiner Oberflichen von Korpern mit glattem Rand, wie etwa Tori T" der
Dimension n (siehe Figur 1).

Fig. 1

Nach Definition besitzt jede Mannigfaltigkeit eine Uberdeckung durch ein System offe-
ner Mengen (U, )aca, so dass jede dieser Mengen U, durch eine bijektive, in beiden
Richtungen stetige, Abbbildung h, : U, — h,(U,) C R" mit einer offenen Teilmenge
h(U,) im R” identifiziert werden kann. Man nennt ein solches Paar (U,, h, ) eine Karte,
und bezeichnet die Abbildungen hgoh, ! : h,(U,NUs) — hg(U,NU;s) als Kartenwechsel
(siehe Figur 2).

Fiir viele natiirliche Probleme ist nun wichtig, auf Mannigfaltigkeiten auch Analysis
treiben zu koénnen, d.h. man moéchte einen sinnvollen Differenzierbarkeitsbegriff haben,
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Fig. 2

der im Kleinen mit dem iiblichen Begriff iibereinstimmt. Es ist nicht schwer einzuse-
hen, dass dies moglich ist, sobald alle Kartenwechsel (die ja Abbildungen zwischen
offenen Mengen in Zahlenrdumen sind) differenzierbar sind. Ist in dieser Weise ein Dif-
ferenzierbarkeitsbegriff definiert, so sagt man, man habe auf der Mannigfaltigkeit eine
differenzierbare Struktur erkldrt. An dieser Stelle treten nun einige Probleme auf: Ei-
nerseits gibt es Mannigfaltigkeiten, auf denen keine differenzierbare Struktur eingefiihrt
werden kann, andererseits gibt es auch Beispiele von Mannigfaltigkeiten mit mehr als ei-
ner differenzierbaren Struktur. Die Aufgabe der Differentialtopologie besteht darin, diese
Phidnome zu verstehen, d.h., alle differenzierbaren Mannigfaltigkeiten zu klassifizieren.
Dieses Klassifikationsproblem zerlegt man tiblicherweise in drei Teile:

Problem I: Klassifiziere alle topologischen Mannigfaltigkeiten der Dimension #.

Problem II: Welche topologischen Mannigfaltigkeiten besitzen eine differenzierbare
Struktur?

Problem III: Klassifiziere die verschiedenen differenzierbaren Strukturen auf einer fe-
sten Mannigfaltigkeit.

Im 1-dimensionalen Fall ist die Antwort sehr einfach: die 1-dimensionalen Mannigfal-
tigkeiten sind Vereinigungen von Kreisen und Intervallen; sie haben alle eine eindeu-
tig bestimmte differenzierbare Struktur. Im weiteren mochte ich voraussetzen, dass alle
betrachteten Mannigfaltigkeiten zusammenhéngend sind, dass sie orientiert werden kon-
nen, und dass sie geschlossen, d.h. kompakt sind. Bereits im letzten Jahrhundert konnte
man die 2-dimensionalen Mannigfaltigkeiten vollstindig klassifizieren; sie entstehen alle
durch eine einfache Summenbildung (f) mit T? (siehe Figur 3).
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T* ™

Fig. 3

Man entfernt kleine Kreisscheiben aus beiden Summanden und verbindet die entstande-
nen Randkreise durch einen Schlauch. Das Resultat dieser Konstruktion, die analog auch
in hoheren Dimensionen durchfiihrbar ist, heisst zusammenhingende Summe der beiden
urspriinglichen Komponenten. Im 2-dimensionalen Fall ist damit Problem I gelost: Zu
jedem m € N gibt es — bis auf Aquivalenz — genau eine 2-dimensionale Mannigfal-
tigkeit, nimlich S% § mT>.

Schon in Dimension n = 3 ist Problem I bislang aber noch offen (und sehr schwierig).
Zu den Problemen II und III gibt es einige, inzwischen klassische Resultate.

So weiss man seit etwa zwanzig Jahren, dass jede Mannigfaltigkeit der Dimension n < 3
eine eindeutig bestimmte differenzierbare Struktur besitzt. Auch fiir Mannigfaltigkeiten
der Dimension n > 5 hat man die Probleme II und III recht gut verstanden. Durch
Weiterentwicklung der fundamentalen Arbeiten von M. Kervaire und J. Milnor aus den
60er Jahren konnte man beweisen, dass eine feste Mannigfaltigkeit der Dimension n > 5
hochstens endlich viele verschiedene differenzierbare Strukturen besitzt.

Beispiel: Die folgende Tabelle enthilt fiir jede Dimension n < 7 die Anzahl A(n) der
verschiedenen differenzierbaren Strukturen auf S”.

Ein konkretes Beispiel einer exotischen 7-Sphire ist die Brieskorn-Sphére Y7, die durch
folgende Gleichungen im C° definiert wird:

4z +zi+25 =0, |z + 2> + |z + |24 + |zs)> = L.

Die geometrischen Techniken, mit denen diese hoherdimensionale Klassifikation erzielt
wurde, werden als “surgery” bezeichnet. Grob gesprochen versucht man, komplizierte
Mannigfaltigkeiten durch einfache und kontrollierbare Operationen zu vereinfachen, bzw.
sie umgekehrt aus einfachen Mannigfaltigkeiten aufzubauen. Ein wesentlicher Schliis-
sel fiir dieses Vorgehen ist die Giiltigkeit des sogenannten h-Cobordismus Satzes, der es
erlaubt, die Klassifikation differenzierbarer Strukturen auf Mannigfaltigkeiten der Dimen-
sion n > 5 auf Probleme in der Homotopietheorie zuriickzufiihren. Ein letztes Resultat
iiber die Klassifikation differenzierbarer Strukturen in der Dimensionen n # 4 betrifft die
nicht-kompakten Riume R": Der R” besitzt fiir jede Dimension n # 4 nur eine e1n21ge
differenzierbare Struktur, die Standardstruktur.
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2 4-Mannigfaltigkeiten und quadratische Formen

Was weiss man nun iiber die drei Hauptprobleme in Dimension 4?7 Obwohl viele gute
Mathematiker iiber diese Frage nachgedacht hatten, gab es — bis etwa 1980 — so
gut wie keine systematischen Ergebnisse. Man versuchte im wesentlichen, die Surgery-
Techniken, die ja in hoheren Dimensionen zum Erfolg gefiihrt hatten, auch in Dimension
4 einzusetzen [M]. Fiir differenzierbare 4-Mannigfaltigkeiten konnte das nicht gelingen,
wie wir im nédchsten Abschnitt sehen werden. Fiir topologische Mannigfaltigkeiten ist
dies allerdings anders; die Quintessenz der Arbeiten von M. Freedman und der Ergin-
zungen durch F. Quinn ist gerade die Aussage, dass Surgery-Methoden auf topologische
Mannigfaltigkeiten auch in Dimension 4 anwendbar sind.

Um ihr Resultat formulieren zu konnen sind einige Vorbereitungen notig. Sei dazu X
ab jetzt immer eine zusammenhidngende geschlossene und orientierte Mannigfaltigkeit
der Dimension 4. Wir setzen zur Vereinfachung zusitzlich voraus, dass X einfach-
zusammenhingend ist, das heisst, dass jede geschlossene Kurve in X zu einem Punkt
zusammenziehbar ist. In dieser Situation gibt es dann eine fundamentale Invariante, die
X fast vollig bestimmt. Diese Invariante Sy, die sogenannte Schnittmatrix von X, ist
eine ganzzahlige, symmetrische Matrix mit Determinante det Sy = +1.

Beispiel: Die Schnittmatrix von X = S? x S? ist die 2 x 2-Matrix
0 1
S5x = [1 0} ’

Genau genommen ist die Schnittmatrix einer 4-Mannigfaltigkeit X nur bis auf Aquiva-
lenz (Konjugation mit invertierbaren Matrizen) bestimmt. Man sagt, eine ganzzahlige,
symmetrische Matrix A sei vom Typ II, wenn alle Eintridge auf der Diagonalen gerade
Zahlen sind; ist dies nicht der Fall, so heisst die Matrix vom Typ 1. Beispielsweise ist

0 1
H=[1 o]
eine Matrix von Typ II, wihrend die Einheitsmatrizen I, der Grosse n alle vom Typ I
sind. Wir konnen nun das Klassifikationsresultat formulieren [F/Q].

die man auch mit H bezeichnet.

Theorem: Zu jeder ganzzahligen, symmetrischen Matrix A mit detA = £1 gibt es
eine einfach-zusammenhdingende 4-Mannigfaltigkeit X, deren Schnittmatrix Sx zu A
dquivalent ist. X ist eindeutig bestimmt, wenn A vom Typ Il ist. Ist A vom Typ I, so gibt
es zwei verschiedene Mannigfaltigkeiten X und X,. Sie unterscheiden sich dadurch,
dass Xo x S' eine differenzierbare Struktur besitzt, X, x S' aber nicht.

Die Bedeutung dieses Satzes liegt darin, dass er ein schwieriges topologisches Problem,
die Klassifikation einfach-zusammenhingender 4-Mannigfaltigkeiten, in ein rein zah-
lentheoretisches Problem iibersetzt, namlich in die Aufgabe, ganzzahlige, symmetrische
Matrizen mit Determinante +1 bis auf Konjugation zu klassifizieren.

Mit dieser Frage haben sich Zahlentheoretiker bereits seit dem vorletzten Jahrhundert
beschiftigt. Sie haben gezeigt, das dieses Klassifikationsproblem in zwei véllig ver-
schiedene Teilbereiche zerfillt, von denen der eine sehr einfach behandelt werden kann,
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wihrend der andere sehr schwierig ist. Der einfache Teil ist die Klassifikation der in-
definiten Matrizen; hier geniigt es, drei einfach ablesbare Invarianten (Rang, Signatur
und Typ) einer Matrix zu kennen. Viel komplizierter ist dagegen die Klassifikation der
definiten Matrizen. Eine vollstindige Beschreibung existiert nur fiir Matrizen der Grosse
n < 16; dariiberhinaus hat man im wesentlichen nur ein Endlichkeitsresultat, das auf
Hermite und Eisenstein zuriickgeht: Fiir jede natiirliche Zahl n gibt es nur endlich
viele Aquivalenzklassen von definiten, ganzzahligen, symmetrischen n x n-Matrizen der
Grosse n.

Beispiel: Es gibt nur eine Klasse von (negativ-)definiten, ganzzahligen, symmetrischen
8 x 8-Matrizen vom Typ II. Ein Représentant ist

-2 1 1
1 -2 1
1 -2 1
1 -2 1

by = 1 -2 1 1

1 -2 1

1 =2
i 1 —2

Bei dem Versuch einer vollstindigen Klassifikation fiir grossere 7 stosst man sehr schnell
an Grenzen,; so gibt es beispielsweise bereits mehr als 10°! verschiedene Klassen definiter
n x n-Matrizen mit n = 40. Da jede dieser Klassen durch die Schnittmatrix einer einfach-
zusammenhingenden topologischen 4-Mannigfaltigkeit reprisentierbar ist, kann man das
oben beschriebene Problem I in Dimension 4 (auch im einfach-zusammenhingenden Fall)
nur mit entsprechenden Einschrinkungen als gelost betrachten.

3 Donaldson Theorie, exotische Strukturen und algebraische Fliachen

Die eben geschilderten Resultate erlauben es, das Problem II in folgender Weise umzu-
formulieren.

Problem II': Welche Matrizen gehoren zu 4-Mannigfaltigkeiten, die eine differenzierbare
Struktur besitzen?

Es war bereits seit 1952 bekannt, dass nicht alle (ganzzahligen, symmetrischen) Matrizen
(mit Determinante £1) als Schnittmatrizen einfach-zusammenhingender differenzierba-
rer 4-Mannigfaltigkeiten auftreten konnen. Dieses Resultat, das von dem russischen Ma-
thematiker V. Rohlin bewiesen worden war, schloss zum Beispiel die Existenz einer
einfach-zusammenhéngenden differenzierbaren 4-Mannigfaltigkeit mit Schnittmatrix Eg
aus. Rohlin’s Satz — und Folgerungen daraus — waren lange Zeit der einzige Hin-
weis darauf, dass 4-dimensionale differenzierbare Mannigfaltigkeiten etwas besonderes
sein miissten. Es dauerte allerdings 30 Jahre, bevor S. Donaldson im Rahmen seiner
Dissertation der folgende spektakuldre Durchbruch gelang [D/K].

Theorem: Wenn eine einfach-zusammenhdngende 4-Mannigfaltigkeit X mit einer defi-
niten Schnittmatrix Sx eine differenzierbare Struktur besitzt, so ist Sx dquivalent zur
Einheitsmatrix.
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Das bedeutet, dass all diejenigen Matrizen, deren zahlentheoretische Klassifikation so
schwierig ist, gar nicht auftreten als Schnittmatrizen differenzierbarer 4-Mannigfaltig-
keiten. Beispielsweise kann die 4-Mannigfaltigkeit mit Schnittmatrix Eg ® Eg keine dif-
ferenzierbare Struktur zulassen. Dies hat eine weitere tiberraschende Konsequenz.

Theorem: Der R* besitzt mehr als eine differenzierbare Struktur.

Die Existenz exotischer C°°-Strukturen auf dem R* erhilt man durch Kombination der
Arbeiten von Freedman und Donaldson. Freedman hatte nimlich bemerkt, dass entweder
Eg @ Eg als Schnittmatrix einer differenzierbaren 4-Mannigfaltigkeit vorkommen muss
oder dass R* eine differenzierbare Struktur besitzt, die nicht die Standardstruktur ist. Die
erste Moglichkeit wird aber durch Donaldsons Satz ausgeschlossen. Heutzutage weiss
man sogar, dass es Familien (Rf)tER exotischer C>°-Strukturen auf dem R* gibt, die
von einem kontinuierlichen Parameter ¢ abhidngen. Die Resultate iiber die exotischen
Strukturen auf dem R* sind bislang reine Existenzsitze; von einer Klassifikation aller
differenzierbarer Strukturen auf dem R* scheint man noch weit entfernt zu sein.

Die von Donaldson entwickelte Theorie liefert aber nicht nur Aussagen iiber die Nicht-
Glittbarkeit gewisser 4-Mannigfaltigkeiten. Durch Weiterentwicklung seiner Methoden
gelang es Donaldson auch, einen Zugang zu dem oben beschriebenen Problem III, der
Frage nach der Anzahl verschiedener differenzierbarer Strukturen auf einer gegebenen
(geschlossenen, orientierten, einfach-zusammenhingenden) 4-Mannigfaltigkeit, zu fin-
den.

Sei P? die komplex-projektive Ebene; ihre Schnittmatrix Sp: ist die Einheitsmatrix
[1] der Grosse 1. Wiahlt man auf der projektiven Ebene die zur kanonischen komple-
xen Orientierung entgegengesetzte Orientierung, so erhilt man eine differenzierbare 4-

Mannigfaltigkeit Fz mit Schnittmatrix [—1]. Sei P? ﬁ9@2 die zusammenhéngende Summe

der projektiven Ebene mit 9 Exemplaren von P”.

Theorem: Die differenzierbare 4-Mannigfaltigkeit P? t}9ﬂ52 besitzt eine zweite differen-
zierbare Struktur.

Dieser Satz, der 1984 von Donaldson gefunden wurde, impliziert, dass die sogenannte h-
Cobordismen-Vermutung fiir 4-dimensionale differenzierbare Mannigfaltigkeiten falsch
ist; mit anderen Worten, die hoherdimensionalen Klassifikationstechniken lassen sich auf
differenzierbare 4-Mannigfaltigkeiten nicht anwenden [D/K]. Dies war ein sensationelles
Ergebnis, das allerdings noch die Moglichkeit offen liess, dass es auch in Dimension 4
nur endlich viele verschiedene differenzierbare Strukturen auf einer festen geschlossenen
Mannigfaltigkeit geben wiirde, analog zur Situation in hdheren Dimensionen. Aber auch
hier ist die Dimension 4 vollig einzigartig. Durch Weiterentwicklung der Methoden von
Donaldson gelang es A. Van de Ven und mir in einer gemeinsamen Arbeit folgende
Aussage zu zeigen.

Theorem: Auf der Mannigfaltigkeit P? ﬁ9ﬁ2 gibt es unendlich viele verschiedene C*°-
Strukturen.

Dieses Resultat wurde, unabhingig von uns, auch von R. Friedman und J. Morgan be-
wiesen und in viele Richtungen ausgebaut. Das Bemerkenswerte hieran war die Tatsache,
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dass all die unendlich vielen differenzierbaren Strukturen ganz natiirlich waren; sie waren
alle induziert durch gewisse wohlbekannte algebraische Flachen, d.h. durch kompakte,
komplexe Mannigfaltigkeiten der komplexen Dimension 2, die als Nullstellenmengen
polynomialer Gleichungen in projektiven Raumen beschrieben werden konnen.

Nun kann man auch algebraische Flichen klassifizieren; man tut dies allerdings unter
algebraischen Gesichtspunkten, d.h. man nimmt eine erste grobe Einteilung anhand ei-
ner wichtigen algebraischen Invariante vor, der sogenannten Kodaira-Dimension. Diese
Kodaira-Dimension kann fiir algebraische Flichen die Werte —00,0,1 und 2 anneh-
men und ist ein Mass fiir die Grosse gewisser Bereiche algebraischer Funktionen. Van
de Ven hatte nun bemerkt, dass algebraische Flichen mit unterschiedlichen Kodaira-
Dimensionen in allen bekannten Fillen immer auch als differenzierbare Mannigfaltig-
keiten verschieden waren, und hatte eine entsprechende Vermutung formuliert [V].

Vermutung (Van de Ven): Die Kodaira-Dimension algebraischer Fldchen ist eine dif-
ferentialtopologische Invariante.

Diese Vermutung, und gewisse Verfeinerungen, war in den letzten 10 Jahren das Leit-
problem bei der Untersuchung der Differentialtopologie algebraischer Flichen [F/M].

Ich habe im April 1994 das Manuskript einer Arbeit von R. Friedman und Z. Qin erhalten,
in der diese zentrale Vermutung bewiesen wird.

4 Methoden

Der Schliissel fiir den Beweis des Klassifikationssatzes von Freedman und Quinn liegt
in Freedman’s Resultat iiber die topologische Trivialitdt sogenannter Casson-Henkel.
Ich kann hierauf nicht ndher eingehen, sondern mochte nur erwihnen, dass Freedman’s
Beweis wesentlich auf den von R. Bing in den 50er Jahren entwickelten Techniken der
geometrischen Topologie beruht.

Die Methoden der Donaldson-Theorie sind vollig anderer Natur: Sie stammen urspriing-
lich aus der mathematischen Physik, genauer aus der Eichtheorie. Die Physiker inter-
essierten sich bereits seit einiger Zeit fiir die Yang-Mills Gleichungen, ein System von
partiellen Differentialgleichungen, die als Euler-Lagrange Gleichungen gewisser Varia-
tionsprobleme auftreten. Diese Variationsprobleme besitzen auf geschlossenen Mannig-
faltigkeiten aus topologischen Griinden globale Minima, die sogenannten Instantonen.
Die Menge aller Instantonen-Losungen bildet nun einen Parameterraum, den Modulraum
der Instantonen, dessen Untersuchung der Ausgangspunkt fiir die Donaldson Theorie ist.
Im einfachsten Fall, dem Beweis iiber die Trivialitit definiter Schnittmatrizen differen-
zierbarer 4-Mannigfaltigkeiten, gewinnt Donaldson aus einem geeigneten Instantonen-
Modulraum eine 5-dimensionale Mannigfaltigkeit mit Rand, wobei eine Randkompo-
nente die zugrundeliegende 4-Mannigfaltigkeit selbst ist, wihrend alle anderen Rand-
komponenten Kopien von P? sind. Aus dieser geometrischen Tatsache folgt die Trivia-
litdt der Schnittmatrix mit einem einfachen algebraischen Argument. Fiir die Aussagen
zu Problem III ist es notig, Invarianten zu konstruieren, die in der Lage sind, zwischen
verschiedenen differenzierbaren Strukturen auf einer gegebenen Mannigfaltigkeit zu un-
terscheiden. Donaldson konstruiert solche Invarianten wieder mit Hilfe von Instantonen-
Modulrdumen, also aus Losungsrdumen partieller Differentialgleichungssysteme; seine
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Invarianten haben im allgemeinen die Form ganzzahliger Polynome. Natiirlich ist es
dusserst schwierig, diese Donaldson-Polynome, die ja eichtheoretisch definiert sind, di-
rekt zu berechnen. Hier kommt dann die algebraische Geometrie zur Hilfe: Wenn die
betrachtete 4-Mannigfaltigkeit die Struktur einer algebraischen Fliche besitzt, dann las-
sen sich die Instantonen-Modulrdume algebraisch interpretieren als Modulrdume stabiler
Vektorbiindel. Allerdings beruht diese Interpretation auf einem weiteren tiefliegenden
Resultat, der sogenannten Kobayashi-Hitchin-Korrespondenz [K]. Modulrdume stabiler
Vektorbiindel wurden nun aus anderen Griinden seit den 60er Jahren von algebraischen
Geometern intensiv studiert, so dass hier bereits viele Methoden zur Verfiigung standen
[O/S/S]. Auf diesem Weg iiber die algebraische Geometrie konnte Donaldson eine seiner
Invarianten explizit berechnen, und so die Existenz einer exotischen C°°-Struktur auf

P2 ﬁ9@2 beweisen. Auf dem gleichen Grundprinzip beruhen auch die meisten anderen
Ergebnisse zur Differentialtopologie algebraischer Flichen [F/M].

In letzter Zeit ist es gelungen, auch 4-dimensionale differenzierbare Mannigfaltigkei-
ten zu behandeln, die keine algebraischen Flidchen sind. Diese Entwicklungen héngen
eng zusammen mit der Konstruktion von relativen Invarianten fiir nicht-geschlossene
Mannigfaltigkeiten, und mit der Untersuchung der Floer-Homologie [O]. Es gibt in die-

ser Richtung schon grosse Erfolge, wie etwa die Konstruktion von Gegenbeispielen zur
Thom-Vermutung.
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