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Die vierte Dimension

Christian Okonek

Christian Okonek wurde 1952 in Gottingen geboren und hat dort von 1973 bis 1978
Mathematik studiert Hier erhielt er 1980 das Doktorat und 1982 die Habilitation
in Mathematik Als Heisenberg-Stipendiat war er zu mehreren Aufenthalten an der
University of Berkeley, dem Mittag-Leffler Institut in Stockholm, und dem Max-
Planck-Institut in Bonn Von 1989 bis 1992 war er Professor fur Mathematik an
der Universität Bonn und folgte 1992 einem Ruf auf ein Ordinariat fur Mathematik
an der Universität Zürich Sein Arbeitsgebiet ist die komplexe Geometrie und ihre
Verbindung zur Topologie

Der vorliegende Beitrag basiert auf dem Manuskript meiner Antrittsrede, die ich am 25.

April 1994 vor einem nicht-mathematischen Publikum an der Universität Zürich gehalten
habe. Als Thema meines Vortrages habe ich mir ein Gebiet gewählt, auf dem in den letzten

10-15 Jahren eine Reihe überraschender Durchbrüche und eine Fülle spektakulärer
Ergebnisse erzielt worden sind: Die vierte Dimension.

Mathematisch ausgedrückt handelt es sich hierbei um die Klassifikation differenzierbarer
Strukturen auf Mannigfaltigkeiten der Dimension 4.

Bei Aussenstehenden erweckt es immer wieder Erstaunen, mit welcher Leichtigkeit die
Mathematik jenseits aller Anschauung vier« und mehrdimensionale Räume behandelt.

Eingeweihte haben sich daran gewöhnt, für sie ist dies zur Selbstverständlichkeit geworden,

Sie haben andere Gründe» der Dimension vier besondere Beachtung zu schenken,

zum Beispiel diesen: Der Raum Un besitzt für n ^ 4 nur eine einzige differenzierbare
Struktur, aber in R4 gibt es neben der üblichen noch andere — exotische — differen-
zierbare Strukturen. Dieses Resultat hat bei seinem Bekanntwerden vor einigen Jahren
die Fachwelt völlig überrascht. Wie andere tiefe Resultate der Mathematik wurde es

zum Airfangspunkt einer neuen mathematischer* Entwicklung. Fragen» nach der
Anzahl und der Klassifikation der verschiedenen differenzierbaren Strukturen in §t4 und
in anderen Mannigfaltigkeiten stellten sich und gaben Anlass zu intensiver Forschung,
in die der Autor des vorliegenden Beitrages direkt involviert ist» — Beim Text handelt
es sich um die überarbeitete Version des Manuskriptes der Antrittsrede von Christian
Okonek an der Universität Zürich, ust
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Warum ist nun gerade die Dimension 4 so besonders interessant? Es gibt hierfür sicher
mancherlei verschiedene Gründe, wie etwa die Tatsache, dass die uns umgebende
physikalische Welt ja (mindestens) 4-dimensional ist: Sie hat neben den drei Raumrichtungen
auch noch eine vierte, zeitliche Dimension. Ein anderer Grund ist aber rein innermathematischer

Natur: Die Geometrie in Dimension 4 ist nämlich in vielerlei Hinsicht völlig
einzigartig; es gibt zahlreiche grundlegende Phänomene, in denen sich 4-dimensionale

Mannigfaltigkeiten von denen in allen anderen Dimensionen ganz wesentlich unterscheiden.

Ich habe versucht, in meinem Vortrag einige dieser Phänomene zu erläutern und sie in
einen grösseren Zusammenhang einzuordnen, um so die Einzigartigkeit der Dimension
4 herauszustellen. Dabei habe ich mich besonders bemüht, etwas von der Faszination
zu vermitteln, die die vierte Dimension auf viele Mathematiker ausübt. Herrn Prof. U.
Stammbach möchte ich an dieser Stelle herzlich für die Anregung zu dieser Publikation
und für die Unterstützung bei ihrer Herstellung danken.

1 Differenzierbare Strukturen auf Mannigfaltigkeiten
Eines der fundamentalen Konzepte in der Geometrie ist der Mannigfaltigkeitsbegriff, der
sich im letzten Jahrhundert, genauer, beginnend mit B. Riemanns HabilitationsVortrag
1854, entwickelt hat. Heute versteht man unter einer (topologischen) Mannigfaltigkeit
der Dimension n einen topologischen Raum, der im Kleinen so aussieht wie eine offene

Menge U C R" eines n-dimensionalen Zahlenraumes.

Einfache Beispiele sind die n-dimensionalen Einheitsphären

Sn {x£Un+l\ ||*|| 1},

oder allgemeiner Oberflächen von Körpern mit glattem Rand, wie etwa Tori Tn der

Dimension n (siehe Figur 1).

Fig.l

Nach Definition besitzt jede Mannigfaltigkeit eine Überdeckung durch ein System offener

Mengen (I4)ae4> so dass jede dieser Mengen 14 durch eine bijektive, in beiden

Richtungen stetige, Abbbildung ha : 14 —? ha(Ua) C Rn mit einer offenen Teilmenge
ha(Ua) im Un identifiziert werden kann. Man nennt ein solches Paar (Ua9ha) eine Karte,
und bezeichnet die Abbildungen hßoh~l : ha(UaC\Uß) -> hß(UaC\Uß) als KartenWechsel

(siehe Figur 2).

Für viele natürliche Probleme ist nun wichtig, auf Mannigfaltigkeiten auch Analysis
treiben zu können, d.h. man möchte einen sinnvollen Differenzierbarkeitsbegriff haben,
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ha
aß

¦
Fig 2

der im Kleinen mit dem üblichen Begriff übereinstimmt Es ist nicht schwer einzusehen,

dass dies möglich ist, sobald alle KartenWechsel (die ja Abbildungen zwischen
offenen Mengen in Zahlenraumen sind) differenzierbar sind Ist in dieser Weise ein Dif-
ferenzierbarkeitsbegnff definiert, so sagt man, man habe auf der Mannigfaltigkeit eine
differenzierbare Struktur erklart An dieser Stelle treten nun einige Probleme auf
Einerseits gibt es Mannigfaltigkeiten, auf denen keine differenzierbare Struktur eingeführt
werden kann, andererseits gibt es auch Beispiele von Mannigfaltigkeiten mit mehr als

einer differenzierbaren Struktur Die Aufgabe der Differentialtopologie besteht dann, diese
Phanome zu verstehen, d h alle differenzierbaren Mannigfaltigkeiten zu klassifizieren
Dieses Klassifikationsproblem zerlegt man üblicherweise in drei Teile

Problem I: Klassifiziere alle topologischen Mannigfaltigkeiten der Dimension n

Problem II: Welche topologischen Mannigfaltigkeiten besitzen eine differenzierbare
Struktur?

Problem III: Klassifiziere die verschiedenen differenzierbaren Strukturen auf einer fe¬

sten Mannigfaltigkeit
Im 1-dimensionalen Fall ist die Antwort sehr einfach die 1-dimensionalen Mannigfaltigkeiten

sind Vereinigungen von Kreisen und Intervallen, sie haben alle eine eindeutig

bestimmte differenzierbare Struktur Im weiteren mochte ich voraussetzen, dass alle
betrachteten Mannigfaltigkeiten zusammenhangend sind, dass sie orientiert werden können,

und dass sie geschlossen, d h kompakt sind Bereits im letzten Jahrhundert konnte
man die 2-dimensionalen Mannigfaltigkeiten vollständig klassifizieren, sie entstehen alle
durch eine einfache Summenbildung (jj) mit T2 (siehe Figur 3)
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Fig. 3

Man entfernt kleine Kreisscheiben aus beiden Summanden und verbindet die entstandenen

Randkreise durch einen Schlauch. Das Resultat dieser Konstruktion, die analog auch
in höheren Dimensionen durchführbar ist, heisst zusammenhängende Summe der beiden

ursprünglichen Komponenten. Im 2-dimensionalen Fall ist damit Problem I gelöst: Zu

jedem m £ H gibt es — bis auf Äquivalenz — genau eine 2-dimensionale Mannigfaltigkeit,

nämlich S2 %mF2.

Schon in Dimension n — 3 ist Problem I bislang aber noch offen (und sehr schwierig).
Zu den Problemen II und III gibt es einige, inzwischen klassische Resultate.

So weiss man seit etwa zwanzig Jahren, dass jede Mannigfaltigkeit der Dimension n < 3

eine eindeutig bestimmte differenzierbare Struktur besitzt. Auch für Mannigfaltigkeiten
der Dimension n > 5 hat man die Probleme II und III recht gut verstanden. Durch
Weiterentwicklung der fundamentalen Arbeiten von M. Kervaire und J. Milnor aus den
60er Jahren konnte man beweisen, dass eine feste Mannigfaltigkeit der Dimension n > 5

höchstens endlich viele verschiedene differenzierbare Strukturen besitzt.

Beispiel: Die folgende Tabelle enthält für jede Dimension n < 7 die Anzahl A(n) der
verschiedenen differenzierbaren Strukturen auf Sn.

n 1 2 3 4 5 6 7

A(n) 1 1 1 1 1 28

Ein konkretes Beispiel einer exotischen 7-Sphäre ist die Brieskorn-Sphäre E7, die durch

folgende Gleichungen im C5 definiert wird:

z\+z\ + z\ + z\ + z\ :0, l^!]2 + |Z2|2 + |Z3|2 -h |24|2 + |Z5|2 1.

Die geometrischen Techniken, mit denen diese hoherdimensionale Klassifikation erzielt
wurde, werden als "surgery" bezeichnet. Grob gesprochen versucht man, komplizierte
Mannigfaltigkeiten durch einfache und kontrollierbare Operationen zu vereinfachen, bzw.
sie umgekehrt aus einfachen Mannigfaltigkeiten aufzubauen. Ein wesentlicher Schlüssel

für dieses Vorgehen ist die Gültigkeit des sogenannten h-Cobordismus Satzes, der es

erlaubt, die Klassifikation differenzierbarer Strukturen auf Mannigfaltigkeiten der Dimension

n > 5 auf Probleme in der Homotopietheorie zurückzuführen. Ein letztes Resultat
über die Klassifikation differenzierbarer Strukturen in der Dimensionen n ^ 4 betrifft die

nicht-kompakten Räume R": Der R" besitzt für jede Dimension n ^ 4 nur eine einzige
differenzierbare Struktur, die Standardstruktur.
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2 4-Mannigfaltigkeiten und quadratische Formen
Was weiss man nun uber die drei Hauptprobleme in Dimension 4? Obwohl viele gute
Mathematiker uber diese Frage nachgedacht hatten, gab es — bis etwa 1980 — so

gut wie keine systematischen Ergebnisse Man versuchte im wesentlichen, die Surgery-
Techniken, die ja in höheren Dimensionen zum Erfolg gefuhrt hatten, auch in Dimension
4 einzusetzen [M] Fur differenzierbare 4-Mannigfaltigkeiten konnte das nicht gelingen,
wie wir im nächsten Abschnitt sehen werden Fur topologische Mannigfaltigkeiten ist
dies allerdings anders, die Quintessenz der Arbeiten von M Freedman und der
Ergänzungen durch F Quinn ist gerade die Aussage, dass Surgery-Methoden auf topologische
Mannigfaltigkeiten auch in Dimension 4 anwendbar sind

Um ihr Resultat formulieren zu können sind einige Vorbereitungen notig Sei dazu X
ab jetzt immer eine zusammenhangende geschlossene und orientierte Mannigfaltigkeit
der Dimension 4 Wir setzen zur Vereinfachung zusatzlich voraus, dass X
einfachzusammenhangend ist, das heisst, dass jede geschlossene Kurve in X zu einem Punkt
zusammenziehbar ist In dieser Situation gibt es dann eine fundamentale Invariante, die
X fast völlig bestimmt Diese Invariante Sx, die sogenannte Schnittmatrix von X, ist
eine ganzzahlige, symmetrische Matrix mit Determinante det Sx ± 1

Beispiel: Die Schnittmatrix von X S2 x S2 ist die 2 x 2-Matnx

Sx
0 1

1 0

die man auch mit H bezeichnet

Genau genommen ist die Schnittmatrix einer 4-Mannigfaltigkeit X nur bis auf Äquivalenz

(Konjugation mit invertierbaren Matrizen) bestimmt Man sagt, eine ganzzahlige,
symmetrische Matrix A sei vom Typ II, wenn alle Eintrage auf der Diagonalen gerade
Zahlen sind, ist dies nicht der Fall, so heisst die Matrix vom Typ I Beispielsweise ist

H
0 1

1 0

eine Matrix von Typ II, wahrend die Einheitsmatrizen In der Grosse n alle vom Typ I
sind Wir können nun das Klassifikationsresultat formulieren [F/Q]

Theorem: Zu jeder ganzzahhgen, symmetrischen Matrix A mit detA ±1 gibt es

eine einfach-zusammenhängende A-Mannigfaltigkeit X, deten Schnittmatrix Sx zu A
äquivalent ist X ist eindeutig bestimmt, wenn A vom Typ II ist Ist A vom Typ I, so gibt
es zwei vetschiedene Mannigfaltigkeiten Xq und X\ Sie unterscheiden sich dadurch,
dass X0 x S1 eine differenzierbare Struktur besitzt, Xx x Sl aber nicht

Die Bedeutung dieses Satzes liegt dann, dass er ein schwieriges topologisches Problem,
die Klassifikation einfach-zusammenhängender 4-Mannigfaltigkeiten, in ein rein
zahlentheoretisches Problem übersetzt, namhch in die Aufgabe, ganzzahlige, symmetrische
Matrizen mit Determinante ±1 bis auf Konjugation zu klassifizieren

Mit dieser Frage haben sich Zahlentheoretiker bereits seit dem vorletzten Jahrhundert

beschäftigt Sie haben gezeigt, das dieses Klassifikationsproblem in zwei völlig
verschiedene Teilbereiche zerfallt, von denen der eine sehr einfach behandelt werden kann,
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während der andere sehr schwierig ist. Der einfache Teil ist die Klassifikation der
indefiniten Matrizen; hier genügt es, drei einfach ablesbare Invarianten (Rang, Signatur
und Typ) einer Matrix zu kennen. Viel komplizierter ist dagegen die Klassifikation der
definiten Matrizen. Eine vollständige Beschreibung existiert nur für Matrizen der Grösse

n < 16; darüberhinaus hat man im wesentlichen nur ein Endlichkeitsresultat, das auf
Hermite und Eisenstein zurückgeht: Für jede natürliche Zahl n gibt es nur endlich
viele Aquivalenzklassen von definiten, ganzzahligen, symmetrischen n x n-Matrizen der
Grösse n.

Beispiel: Es gibt nur eine Klasse von (negativ-)definiten, ganzzahligen, symmetrischen
8 x 8-Matrizen vom Typ II. Ein Repräsentant ist

2 1

1 -2
1

1

-2
1

1

-2
1

1

-2
1

1

-2
1

1

-2
1 -2J

Bei dem Versuch einer vollständigen Klassifikation für grössere n stösst man sehr schnell
an Grenzen; so gibt es beispielsweise bereits mehr als IO51 verschiedene Klassen definiter
n x n-Matrizen mit n 40. Da jede dieser Klassen durch die Schnittmatrix einer
einfachzusammenhängenden topologischen 4-Mannigfaltigkeit repräsentierbar ist, kann man das

oben beschriebene Problem I in Dimension 4 (auch im einfach-zusammenhängenden Fall)
nur mit entsprechenden Einschränkungen als gelöst betrachten.

3 Donaldson Theorie, exotische Strukturen und algebraische Flächen
Die eben geschilderten Resultate erlauben es, das Problem II in folgender Weise umzu-
formulieren.

Problem II': Welche Matrizen gehören zu 4-Mannigfaltigkeiten, die eine differenzierbare
Struktur besitzen?

Es war bereits seit 1952 bekannt, dass nicht alle (ganzzahligen, symmetrischen) Matrizen
(mit Determinante ±1) als Schnittmatrizen einfach-zusammenhängender differenzierbarer

4-Mannigfaltigkeiten auftreten können. Dieses Resultat, das von dem russischen
Mathematiker V Rohlin bewiesen worden war, schloss zum Beispiel die Existenz einer

einfach-zusammenhängenden differenzierbaren 4-Mannigfaltigkeit mit Schnittmatrix Eg

aus. Rohlin's Satz — und Folgerungen daraus — waren lange Zeit der einzige
Hinweis darauf, dass 4-dimensionale differenzierbare Mannigfaltigkeiten etwas besonderes
sein müssten. Es dauerte allerdings 30 Jahre, bevor S. Donaldson im Rahmen seiner
Dissertation der folgende spektakuläre Durchbruch gelang [D/K].

Theorem: Wenn eine einfach-zusammenhängende 4-Mannigfaltigkeit X mit einer
definiten Schnittmatrix Sx eine differenzierbare Struktur besitzt, so ist Sx äquivalent zur
Einheitsmatrix.
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Das bedeutet, dass all diejenigen Matrizen, deren zahlentheoretische Klassifikation so

schwierig ist, gar nicht auftreten als Schnittmatrizen differenzierbarer 4-Mannigfaltig-
keiten Beispielsweise kann die 4-Mannigfaltigkeit mit Schnittmatrix E8 ® E8 keine
differenzierbare Struktur zulassen Dies hat eine weitere überraschende Konsequenz

Theorem: Det R4 besitzt mehr als eine diffet enziet bäte Sttuktut

Die Existenz exotischer C°°-Strukturen auf dem R4 erhalt man durch Kombination der
Arbeiten von Freedman und Donaldson Freedman hatte namhch bemerkt, dass entweder
E8 0 Es als Schnittmatrix einer differenzierbaren 4-Mannigfaltigkeit vorkommen muss
oder dass R4 eine differenzierbare Struktur besitzt, die nicht die Standardstruktur ist Die
erste Möglichkeit wird aber durch Donaldsons Satz ausgeschlossen Heutzutage weiss
man sogar, dass es Familien (R4)^ exotischer C°°-Strukturen auf dem R4 gibt, die
von einem kontinuierlichen Parameter t abhangen Die Resultate uber die exotischen
Strukturen auf dem R4 sind bislang reme Existenzsatze, von einer Klassifikation aller
differenzierbarer Strukturen auf dem R4 scheint man noch weit entfernt zu sein

Die von Donaldson entwickelte Theorie liefert aber nicht nur Aussagen uber die Nicht-
Glattbarkeit gewisser 4-Mannigfaltigkeiten Durch Weiterentwicklung seiner Methoden
gelang es Donaldson auch, einen Zugang zu dem oben beschriebenen Problem III, der

Frage nach der Anzahl verschiedener differenzierbarer Strukturen auf einer gegebenen
(geschlossenen, orientierten, einfach-zusammenhängenden) 4-Mannigfaltigkeit, zu
finden

Sei R2 die komplex-projektive Ebene, ihre Schnittmatrix Spp ist die Einheitsmatrix
[1] der Grosse 1 Wählt man auf der projektiven Ebene die zur kanonischen komplexen

Orientierung entgegengesetzte Orientierung, so erhalt man eine differenzierbare 4-
2 2

Mannigfaltigkeit P mit Schnittmatrix [-1] Sei P2 jj 9P die zusammenhangende Summe
—2

der projektiven Ebene mit 9 Exemplaren von P

Theorem: Die diffetenziet bare 4-Manniqfaltigkeit P2 JJ9R besitzt eine zweite diffetenziet

bäte Sttuktut

Dieser Satz, der 1984 von Donaldson gefunden wurde, impliziert, dass die sogenannte h-

Cobordismen-Vermutung fur 4-dimensionale differenzierbare Mannigfaltigkeiten falsch

ist, mit anderen Worten, die hoherdimensionalen Klassifikationstechniken lassen sich auf
differenzierbare 4-Mannigfaltigkeiten nicht anwenden [D/K] Dies war ein sensationelles

Ergebnis, das allerdings noch die Möglichkeit offen liess, dass es auch in Dimension 4

nur endlich viele verschiedene differenzierbare Strukturen auf einer festen geschlossenen

Mannigfaltigkeit geben wurde, analog zur Situation in höheren Dimensionen Aber auch

hier ist die Dimension 4 völlig einzigartig Durch Weiterentwicklung der Methoden von
Donaldson gelang es A Van de Ven und mir in einer gemeinsamen Arbeit folgende
Aussage zu zeigen

2

Theorem: Auf det Mannigfaltigkeit P2 jj9P gibt es unendlich viele vet schiedene C°°-
Stt uktut en

Dieses Resultat wurde, unabhängig von uns, auch von R Friedman und J Morgan
bewiesen und in viele Richtungen ausgebaut Das Bemerkenswerte hieran war die Tatsache,
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dass all die unendlich vielen differenzierbaren Strukturen ganz naturlich waren, sie waren
alle induziert durch gewisse wohlbekannte algebraische Flachen, d h durch kompakte,
komplexe Mannigfaltigkeiten der komplexen Dimension 2, die als Nullstellenmengen
polynomialer Gleichungen in projektiven Räumen beschrieben werden können

Nun kann man auch algebraische Flachen klassifizieren, man tut dies allerdings unter
algebraischen Gesichtspunkten, d h man nimmt eine erste grobe Einteilung anhand
einer wichtigen algebraischen Invariante vor, der sogenannten Kodaira-Dimension Diese
Kodaira-Dimension kann fur algebraische Flachen die Werte — oo,0,1 und 2 annehmen

und ist em Mass fur die Grosse gewisser Bereiche algebraischer Funktionen Van
de Ven hatte nun bemerkt, dass algebraische Flachen mit unterschiedlichen Kodaira-
Dimensionen in allen bekannten Fallen immer auch als differenzierbare Mannigfaltigkeiten

verschieden waren, und hatte eine entsprechende Vermutung formuliert [V]

Vermutung (Van de Ven) Die Kodau a-Dimension algebraischer Flachen ist eine dif
ferentialtopologische Invariante

Diese Vermutung, und gewisse Verfeinerungen, war in den letzten 10 Jahren das

Leitproblem bei der Untersuchung der Differentialtopologie algebraischer Flachen [F/M]
Ich habe im April 1994 das Manuskript einer Arbeit von R Friedman und Z Qm erhalten,
in der diese zentrale Vermutung bewiesen wird

4 Methoden
Der Schlüssel fur den Beweis des Klassifikationssatzes von Freedman und Quinn hegt
in Freedman's Resultat uber die topologische Trivialität sogenannter Casson-Henkel
Ich kann hierauf nicht naher eingehen, sondern mochte nur erwähnen, dass Freedman's
Beweis wesentlich auf den von R Bing in den 50er Jahren entwickelten Techniken der

geometrischen Topologie beruht

Die Methoden der Donaldson-Theone sind völlig anderer Natur Sie stammen ursprunglich

aus der mathematischen Physik, genauer aus der Eichtheorie Die Physiker
interessierten sich bereits seit einiger Zeit fur die Yang-Mills Gleichungen, ein System von
partiellen Differentialgleichungen, die als Euler-Lagrange Gleichungen gewisser
Variationsprobleme auftreten Diese Vanationsprobleme besitzen auf geschlossenen
Mannigfaltigkeiten aus topologischen Gründen globale Minima, die sogenannten Instantonen
Die Menge aller Instantonen-Losungen bildet nun einen Parameterraum, den Modulraum
der Instantonen, dessen Untersuchung der Ausgangspunkt fur die Donaldson Theorie ist
Im einfachsten Fall, dem Beweis uber die Trivialität defimter Schnittmatrizen
differenzierbarer 4-Mannigfaltigkeiten, gewinnt Donaldson aus einem geeigneten Instantonen-
Modulraum eine 5-dimensionale Mannigfaltigkeit mit Rand, wobei eine Randkomponente

die zugrundeliegende 4-Manmgfaltigkeit selbst ist, wahrend alle anderen

Randkomponenten Kopien von P2 smd Aus dieser geometrischen Tatsache folgt die Trivialität

der Schnittmatrix mit einem einfachen algebraischen Argument Fur die Aussagen
zu Problem III ist es notig, Invarianten zu konstruieren, die in der Lage sind, zwischen
verschiedenen differenzierbaren Strukturen auf einer gegebenen Mannigfaltigkeit zu
unterscheiden Donaldson konstruiert solche Invarianten wieder mit Hilfe von Instantonen-
Modulraumen, also aus Losungsraumen partieller Differentialgleichungssysteme, seine
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Invarianten haben im allgemeinen die Form ganzzahliger Polynome Naturlich ist es

äusserst schwierig, diese Donaldson-Polynome, die ja eichtheoretisch definiert sind,
direkt zu berechnen. Hier kommt dann die algebraische Geometrie zur Hilfe- Wenn die
betrachtete 4-Mannigfaltigkeit die Struktur einer algebraischen Flache besitzt, dann lassen

sich die Instantonen-Modulraume algebraisch interpretieren als Modulraume stabiler
Vektorbundel Allerdings beruht diese Interpretation auf einem weiteren tiefliegenden
Resultat, der sogenannten Kobayashi-Hitchin-Korrespondenz [K]. Modulraume stabiler
Vektorbundel wurden nun aus anderen Gründen seit den 60er Jahren von algebraischen
Geometern intensiv studiert, so dass hier bereits viele Methoden zur Verfugung standen

[O/S/S]. Auf diesem Weg uber die algebraische Geometrie konnte Donaldson eine seiner
Invarianten explizit berechnen, und so die Existenz einer exotischen C°°-Struktur auf

2
P2 jt 9P beweisen Auf dem gleichen Grundprinzip beruhen auch die meisten anderen

Ergebnisse zur Differentialtopologie algebraischer Flachen [F/M]

In letzter Zeit ist es gelungen, auch 4-dimensionale differenzierbare Mannigfaltigkeiten
zu behandeln, die keine algebraischen Flachen sind Diese Entwicklungen hangen

eng zusammen mit der Konstruktion von relativen Invarianten fur nicht-geschlossene
Mannigfaltigkeiten, und mit der Untersuchung der Floer-Homologie [O]. Es gibt in dieser

Richtung schon grosse Erfolge, wie etwa die Konstruktion von Gegenbeispielen zur
Thom-Vermutung
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