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Variationen über ein diophantisches Thema

Eberhard Becker, Robert Robson1^, Georg Schräge

Eberhard Becker, geboren 1943, studierte Mathematik und Physik an der Universität
Hamburg Nach der Assistentenzeit in Köln wurde er 1979 auf den Lehrstuhl fur
Algebra an der Universität Dortmund berufen Seine mathematischen Arbeitsgebiete
sind Algebra, Computeralgebra, Zahlentheorie und reelle algebraische Geometrie

Robert Robson, geboren 1954 studierte am Hampshire College und an der Stanford

University, wo er 1981 mit einer Arbeit aus dem Bereich der algebraischen
Geometrie promovierte Von 1982 bis 1984 arbeitete er als Assistent an der
Universität Regensburg, seither als Associate Professor an der Oregon State University
Forschungsprojekte führten ihn an die Universitäten in Dortmund, Rennes und
Berkeley Er ist Mitglied der Gruppe "Factoregon", die sich mit der Faktonsierung
großer Zahlen beschäftigt, spielt in seiner Freizeit Guitarre, jongliert und nimmt
erfolgreich an Bridge-Turnieren teil

Georg Schräge, geboren 1940, studierte Mathematik, Physik und Wirtschaftswissenschaften

an den Universitäten in Köln, Saarbrücken, Madrid und Bonn Nach

Assistentenzeit und Promotion an der Universität Bonn arbeitete er an den Hochschulen

in Siegen, Dortmund und Frankfurt Hinzu kamen zwei Forschungsaufenthalte in den

USA Seit 1980 ist er am Institut fur Didaktik der Mathematik der Universität
Dortmund tatig Sei besonderes Interesse gilt der Arbeit mit mathematisch interessierten

Schulern und der Rolle neuer Technologien im Mathematikunterncht

Man bestimme alle rechtwinkligen Dreiecke mit ganzzahligen Seitenlängen, so dass

die Katheten sich in ihrer Länge um 1 unterscheiden. Diese Aufgabe, die zu Beginn
des vorliegenden Beitrages gestellt wird, führt offensichtlich auf die Frage nach den

ganzzahligen Lösungen einer einfachen Gleichung zweiten Grades. In dieser Form

handelt es sich um eine klassische Fragestellung der Zahlentheorie. Ausgehend von

der genannten und einigen weiteren ähnlichen Aufgaben behandeln die Autoren die

Zahlentheorie der zugehörigen Klasse diophantischer Gleichungen. Beginnend mit ganz
einfachen Problemen führt der Beitrag schliesslich zu Fragen, die bis heute noch nicht

gelöst sind Die Darstellung macht Gebrauch von einigen wohlbekannten Methoden

und Sätzen der Zahlentheorie. An mehreren Stellen übernimmt der Computer die Rolle

eines Forschungswerkzeuges: Er erlaubt es, bestehende Vermutungen zu testen und

neue Vermutungen aus dem Zahlenmaterial abzuleiten, ust

1) Der zweite Autor dankt der Alexander von Humboldt-Stiftung fur die großzugige Unterstützung

Forschungsaufenthaltes an der Universität Dortmund
eines



46 El. Math. 50 (1995)

1 Einleitung
Die folgende Aufgabe kann man in verschiedenen Büchern zur Wahrscheinlichkeitsrechnung

finden, z.B. [1], S. 26 oder [3], Problem 1.

Aufgabe 1: Eine Urne enthält s Kugeln, darunter r rote. Die Wahrscheinlichkeit dafür,
daß zwei Kugeln, die ohne Zurücklegen gezogen werden, beide rot sind, ist 1/2. Wie
viele Kugeln enthält die Urne, und wie viele davon sind rot?

Da es (2) Stichproben der Ordnung zwei gibt, von denen Q aus zwei roten Kugeln
bestehen, stellt sich die Aufgabe, natürliche Zahlen r und s zu finden, so daß gilt
s(s-\) =2r(r-l).
Mit n s - 1 und k r — 1 wird hieraus

n(n + l)=2k(k + l). (1)

Diese Gleichung kann wie folgt interpretiert werden:

Aufgabe 2: Bestimme natürliche Zahlen n und k, so daß die Summe der Zahlen 1 bis

n doppelt so groß ist wie die Summe der Zahlen 1 bis k. (Problem 502 in: The College
Mathematics Journal No. 3, 1993.)

Durch Multiplikation mit 2 und Addition von 1 wird aus (1) die äquivalente Gleichung

n2 + (n+l)2 (2k + l)2.

Diese Darstellung gibt Anlaß zu dem pythagoräischen Problem

Aufgabe 3: Bestimme alle rechtwinkligen Dreiecke mit ganzzahligen Seitenlängen, so

daß die Katheten sich in ihrer Länge um 1 unterscheiden.

Wir haben somit drei sehr unterschiedliche Fragestellungen, die aber alle auf die Lösung
der diophantischen Gleichung (1) im Bereich der natürlichen Zahlen hinauslaufen.

Durch Probieren findet man schnell die Lösung n — 3 und k — 2. Gibt es weitere

Lösungen, und wie findet man diese?

Es ist naheliegend, das Problem zu verallgemeinern, indem man nach natürlichen Zahlen

n und k fragt, welche bei gegebenem d £ N die Gleichung

n(n+l)=d-k(k + l) (2)

lösen.

Diese Problemstellung steht in Beziehung zu einer Vielzahl anderer reizvoller und wichtiger

Fragen. So führt sie unter anderem zur Beschäftigung mit quadratischen Zahlkörpern,

genauer: zur Beschäftigung mit der Pellschen Gleichung, mit Kettenbrüchen und

Rekursionen, ohne daß die dazu benötigten Hilfsmittel den Rahmen einer elementaren

Einführung in die Zahlentheorie übersteigen würden.

Ist d keine Quadratzahl, so hat die Gleichung (2) unendlich viele Lösungen, und wir
werden angeben, wie man alle Lösungen erhalten kann.

Für Quadratzahlen d ergibt sich ein völlig anderes Bild. Im Falle der Lösbarkeit hat (2)

nur endlich viele Lösungen, aber nicht jede Quadratzahl d führt zu einer lösbaren
Gleichung. Wir werden ein Verfahren angeben, diejenigen Quadratzahlen d zu bestimmen,
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für die (2) mindestens eine Losung hat Überraschend stellt sich ein enger Zusammenhang

mit den aus der Numerik und Approximationstheone bekannten Tschebyscheff-
Polynomen heraus Weiter werden auch unendlich viele Quadratzahlen ermittelt, fur
welche die Gleichung zwei Losungen besitzt Offen bleibt dagegen, ob es Quadratzahlen
gibt, fur welche die Gleichung mehr als zwei Losungen hat

Bei Fragestellungen dieser Art ist das mathematische Experiment ein wichtiges heuristisches

Hilfsmittel Die vorliegende Untersuchung laßt Möglichkeiten, aber auch Grenzen
des Computereinsatzes bei der Losung mathematischer Probleme erkennen

2 Erste Ergebnisse
d Losungspaare (oben n, unten k)
2 3 20 119 696 4059

2 14 84 492 2870

3 2 9 35 132 494
1 5 20 76 285

4 keine Losung

5 5 14 99 260 1785

2 6 44 116 798

6 3 8 35 84 351
1 3 14 34 143

7 6 14 104 231 1665

2 5 39 87 629

8 15 32 527 1104 17919

5 11 186 390 6335

9 keine Losung

10 4 20 39 175 779
1 6 12 55 246

Tabelle 1 Losungen von Gleichung (2)

Tabelle 1 zeigt zunächst die ersten fünf Losungen der Gleichung (2) fur 2 < d < 10,

d keine Quadratzahl Ein Blick auf diese Tabelle macht deutlich, daß man wohl allenfalls

die ersten zwei oder drei Losungen durch Probieren "von Hand" finden kann Em

einfaches Suchprogramm liefert dagegen genügend Daten, um interessante Muster und

Zusammenhange zu erkennen Schon eine kurze Liste von Losungen der Gleichung (1),
d h d 2, laßt Beziehungen zur Kettenbruchentwicklung von y/2 und deren Naherungs-

bruchen vermuten (vgl Satz 8)

Systematisches Suchen nach Losungen fur den Fall, daß d eine Quadratzahl ist, scheint

den Verdacht nahezulegen, daß lediglich fur Werte der Form d 4v2 mit ungeradem

v > 3 eine Losung fur (2) existiert, namhch n v2 - 1 und k (v - l)/2, was sich

allerdings nicht bestätigt (vgl Kapitel 8) Auch mit Computerhilfe wird man schwerlich

die erste Quadratzahl d 48024900 69302 finden, fur die (2) mehr als eine Losung



48 El. Math. 50 (1995)

- =d k +

besitzt: kx 1732, k2 1. Ausgestattet mit dem theoretischen Rüstzeug, das in Kapitel
8 entwickelt wird, ist es jedoch ein Leichtes, diese Lösung (und weitere) sogar von Hand
zu ermitteln.

3 Eine nützliche Transformation und Neu-Interpretation
Für die weitere Untersuchung der Gleichung (2) formen wir diese durch quadratische
Ergänzung beider Seiten um:

1

Multiplikation mit 4 ergibt (2n + l)2 - 1 d((2k - l)2 - 1). Mit u 2n + 1 und

v 2k + 1 wird daraus u2 — 1 d(v2 — l) beziehungsweise

u2 - dv2 1 - d. (3)

Jede Lösung von (2) mit k > 0 entspricht umkehrbar eindeutig einer Lösung von (3) in
ungeraden Zahlen > 3.

Mit d e2 läßt sich diese Gleichung auch in der Form e2 — 1 (ev — ü) (ev + ü) oder
e2 — 1 r • s mit r ev — u und s ev + u schreiben. Das heißt, für d — e2 ist das

Problem genau dann lösbar, wenn für e2 — 1 eine Faktorisierung r • s existiert, so daß

u (s — r)/2 und v (r + s)/(2e) ungerade ganze Zahlen > 3 sind. Da weder für
e2 4 noch für e2 — 9 solche Faktorisierungen existieren, ist die Frage nach eventuellen

Lösungen für diese Fälle in Tabelle 1 entschieden. Ebenso läßt sich sofort zeigen, daß

z.B. für e2 16,25,49,64,81,121 keine Lösung existiert. Die triviale Faktorisierung
mit r 1 und s e2 — 1 führt wegen u (e2 — 2)/2 und v — e/2 genau dann zu
einer Lösung, wenn e vom Typ Ax + 2 mit x £ H ist. So erhalten wir für die kleinste
Quadratzahl, die eine Lösung unseres Problems zuläßt, nämlich e2 36, die Paare

(u9v) (17,3) bzw. (n, k) (8,1). Der nächste Fall, e2 100, liefert (u9v) (49,5)
bzw. (n, k) (24,2). Die allgemeine Untersuchung erfolgt in Abschnitt 8.

Auch im Fall, daß d keine Quadratzahl ist, läßt sich die Gleichung (3) aus dem
Blickwinkel der Faktorisierung umdeuten:

(u + vVdj (u - vVd) 1 — d.

Als Faktoren erhalten wir jetzt reelle Zahlen aus dem in IR enthaltenen Ring

Z \[d := la + bVd | a,b£l\.

Bei jeder Faktorisierung in einem kommutativen Ring R spielen die Einheiten eine große

Rolle, das sind diejenigen Elemente e £ R, für die es ein multiplikatives Inverses e~l
in R gibt: e • e-1 1. Ist nämlich x A • ß eine Faktorisierung in R, so liefert jede
Einheit € eine weitere x (eA) • (e-1ß).
In unserer Situation werden wir daher dazu geführt, die Einheiten des Ringes R

Z[y/d] C IR zu untersuchen, was im folgenden Abschnitt erfolgt.
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4 Die Pellsche Gleichung2

Sei d £ N, d > 1 und keine Quadratzahl. Als Pellsche Gleichung bezeichnet man die
diophantische Gleichung

x2-dy2 ±l. (4)

(x2 - dy2 ±1 steht als Abkürzung für x2 - dy2 — l oder x2 - dy2 -1.)
Die Lösungstheorie der Pellschen Gleichung ist wohlbekannt, ebenfalls der Zusammenhang

dieser Gleichung mit den Einheiten von Z\\fd\. Auf der Basis der Überlegungen
in [6], II.5 stellen wir die in dieser Arbeit benötigten Ergebnisse zusammen.

Der Ring Z ist ein echter Teilring von Z[\/d], da \[d irrational ist. Aus der Irrationalität
von \[d erkennt man, daß ein Element z £ Z[y/d] eine eindeutige Darstellung der Form

z — x + y\[d mit x,y £ Z besitzt. Ist z x + yVd so heißt z := x - yy/d die zu z

konjugierte Zahl. Es gilt offenbar für beliebige z,w £ Z[Vd]:

Z + W —Z+W,

zw z-w, (5)

z z &z £Z.

Die ganze Zahl N(z) := zz x2 - y2d nennt man die Norm von z. Aus (5) folgt sofort

N(zw)=N(z)N(w). (6)

Die Pellsche Gleichung zu lösen, ist also gleichbedeutend damit, z x + yVd £ Z[y/d]

zu finden mit N(z) ±1. Die Elemente z mit N(z) ±1 sind aber auch gleichzeitig
die Einheiten von Z[\ß\, d.h. gemäß der Definition diejenigen Elemente z, für die es

ein Element w £ Z\\fd\ mit zw 1 gibt.

Satz 1: z £ Z\\fd\ ist genau dann Einheit von Z[\fd], wenn N(z) ±1 gilt.

Beweis: Gilt zw 1, so folgt aus (6): N{z)N(w) N(\) 1. Die Normen N(z)
und N(w) sind ganze Zahlen, somit N(z) ±1. Sei umgekehrt N(z) ±1, dann ist

w := Wu* € Z[Vd], und es folgt zw ^(z) 1. D

Die Zahlen ±1 sind sicherlich Einheiten von Z[\fd). Angenommen, z ^ ±1 sei eine

Einheit. Da auch -z und ±z~[ Einheiten sind, findet man in diesem Fall eine Einheit

z > 1. Derartige Einheiten sind für uns von großem Interesse.

2) Die Bezeichnung Pellsche Gleichung beruht auf einem Irrtum Eulers Tatsachlich hat der englische Mathe¬

matiker John Pell (1610-1680), dessen Namen die Gleichung tragt, keinerlei Beitrag zu deren Erforschung

geleistet Zur Geschichte der Pellschen Gleichung sei auf [6], [91 verwiesen.
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Satz 2: Sei z — x + yyfd eine Einheit. Dann sind äquivalent:

(i) z>l, (ii) x,y>l.

Beweis: Sind x,y > 1, so folgt offenbar z > 1. Für die noch fehlende Implikation
verwenden wir die Formeln 2x z + z, zz ±1, woraus 2x z + l/z und \z\ < 1

folgt. Man erkennt x > 0 und damit x > 1, da x eine ganze Zahl ist. Weiterhin schließt
man z x ± y/x2 ± 1. Wegen z > 1 kommt nur z x + y/x2 ± 1 in Betracht, was zu

y — y/x2 + l/y/d > 0 und, wie eben, zu y > 1 führt. D
Satz 2 besagt, daß die Lösungen der Pellschen Gleichung im Bereich der natürlichen
Zahlen umkehrbar eindeutig den Einheiten z > 1 entsprechen, und zwar durch die

Zuordnung (x,y) h-> z x + yyfd.

Eine weitere Konsequenz ist ebenfalls von Wichtigkeit.

Satz 3: Seien z — x + yyfd, z' — x' + x/y/d zwei Einheiten mit z,zf > 1. Dann sind

äquivalent:
(i) z<z', (ii) *<*', (iii) y<\j.

Beweis: Die Äquivalenz von (ii) und (iii) ergibt sich aus den Bedingungen N(z) ±1,
N(zf) ±1 und d > 1. Daher wird (i) von (ii) impliziert. Sei jetzt (i) vorausgesetzt.
Dann ist auch w := z'z~x eine Einheit > 1 und hat somit eine Darstellung w a + by/d
mit fl, b > 1. Aus zf w • z folgt sofort x' > x. D

Bisher ist noch nicht gezeigt worden, daß es überhaupt eine Einheit z > 1 gibt. Der
Existenznachweis ist in der Tat nichttrivial und kann etwa über die Kettenbruchentwicklung
von yfd erfolgen, siehe [6], Satz 9, S. 120. In dieser Arbeit werden wir diese Tatsache
ohne weiteren Beweis verwenden. Aus der Kombination der Sätze 2 und 3 ergibt sich
unmittelbar die Existenz einer kleinsten Einheit Zo > 1. Sie heißt die Grundeinheit von
Z\yfd\. Aus der Darstellung z0 x0 + y§\fd, x0,yo - * gewinnt man die (bzgl. x oder

y) kleinste Lösung der Pellschen Gleichung x2 — dy2 ± 1 in natürlichen Zahlen; wir
nennen (*o,yo) die Grundlösung dieser Gleichung. Weitere Einheiten > 1 erhält man
offenbar durch die Potenzen Zq, k £ N. Andere Einheiten z > 1 gibt es nicht, wie man
wie folgt einsieht: Ist z > 1 eine Einheit, so gibt es wegen Zq > 1 einen Exponenten k

mit Zq < z < Zq
+ 1. Für die Einheit w zz^k gilt dann 1 < w < z0. Die Minimalität

von zo erzwingt w —l, d.h. z z$. Wir fassen zusammen:

Satz 4:

(i) Für jedes k £ N ist z x + yyfd := z\ eine Einheit > 1 von Z[\fd) und (x,y) £ N2

eine Lösung der Pellschen Gleichung,

(ii) jede Einheit z > 1 bzw. jede Lösung der Pellschen Gleichung in natürlichen Zahlen
wird so erhalten.

Die Norm N(zo) der Grundeinheit entscheidet, ob nur die Pellsche Plus-Gleichung x2 —

dy2 1 oder auch die Pellsche Minus-Gleichung x2 — dy2 — 1 lösbar ist. In der Tat,
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aus N(zk) N(z0)k ergibt sich, daß bei N(z0) 1 nur die Plus-Gleichung losbar ist,
wahrend bei _V(z0) -1 die Potenzen zg*, k > 1, zu den Losungen der Plus-Gleichung
und die Potenzen z2fc+1, k > 0, zu den Losungen der Minus-Gleichung fuhren

Die Grundlosung von x2 - dy2 ±1 findet man fur kleine d's bereits durch systematisches

Probieren (evtl mit einem einfachen Computerprogramm), im allgemeinen mit
Hilfe der Kettenbruchentwicklung von \fd, [6], loc cit
Die folgende Tabelle betrifft die ersten zehn Grundlosungen sowie die Falle d 61,94

d 2 3 5 6 7 8 10 11 12 13 61 94

xo 1 2 2 5 8 3 3 10 7 18 29718 2143295

yo 1 1 1 2 3 1 1 3 2 5 3805 221064

N(z0) -1 1 -1 1 1 1 -1 1 1 -1 -1 1

Tabelle 2 Grundlosungen der Pellschen Gleichung

Die Beispiele d 61,94 weisen auf die bemerkenswerte Tatsache hin, daß die Grundlosungen

bzw Grundeinheiten, relativ zu d, oft recht groß sind Als weiterfuhrende Lektüre

seien dazu die Abschnitte 58 und 72 in [7] empfohlen

Ohne Beweis sei noch angefugt, daß die Gleichung x2 - dy2 — -1 genau dann losbar

ist, wenn die Kettenbruchentwicklung von \fd eine Periode von ungerader Lange hat,

siehe [6], Beweis von Satz 10, S 120

5 Die Gleichung n(n + 1) 2k(k + 1)

Die Ergebnisse des vorigen Kapitels können wir direkt auf die Gleichung (3) mit d 2

und somit zur Losung von (1) anwenden Mit rf 2 wird aus (3) die Pellsche Gleichung

u2-2v2 -l (7)

Dabei interessieren uns nur Losungen (u, v) mit ungeraden w, v > 3

Offenbar gilt fur jede positive Losung von (7), daß u ungerade und großer als v ist

Aber auch v muß ungerade sein, da sonst u2 -1 mod 4 gelten wurde Also erfüllt

jede Losung von (7) mit v > 3 und u > 0 die obigen Bedingungen und liefert damit

eine Losung von (1)
Das Paar (u9v) (1,1) lost Gleichung (7) und ist offenbar die Grundlosung der

Pellschen Gleichung Anders formuliert z0 1 + V2 ist die Grundeinheit von Z[\/2] Nach

dem vorigen Abschnitt wird die Pellsche Gleichung durch die Potenzen z™+\ die Minus-

Gleichung durch die Potenzen z2m+l, m £ N0 gelost Wir interessieren uns, wie oben

gesagt, nur fur Einheiten u + vfl mit v > 3, u > 0 Da bereits zl 7 + 5v^ diese

Bedingung erfüllt, erhalten wir als Losung von (7) mit ungeraden m, v > 3 genau die

Paare (w, v) mit u +1>\/2 zgm+1, m £ N Indem wir die Transformation von Abschnitt

3 rückgängig machen, erhalten wir aus den Losungen von (7) die uns interessierenden

Losungen der Ausgangsgleichung

n(n+l) 2k(k + l) (1)
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Eine unmittelbare Rechnung liefert nun unter Beachtung von (1 + \fl)2 3 + 2\/2

Satz 5: Die Gleichung (1) hat unendlich viele Lösungen in natürlichen Zahlen n,k. Sie

sind gegeben durch

nm + kmy/2 ^ (l + V2) ((3 + 2v"2)m - l) tn £ N.

Für m — l erhält man das Paar (3,2), für m — 2 das Paar (20,14) etc. Aus der

Darstellung in Satz 5 lassen sich mittels der Konjugation in Z[y/d] Formeln für nm

und km gewinnen. Unter Berücksichtigung von (3 + 2\/2)m (1 + \fl)2m und den

Rechenregeln (5) erhält man

nm ± kmy/2 =U(l± V2)2m+1 - (l ± y/lj)

und daraus für m £ N:

n,-\ + <"' + (.-<") -i.
(8)

Das so beschriebene Verfahren ist noch recht unhandlich und auch für den Computereinsatz

zunächst wenig geeignet, da beim Rechnen mit reellen Zahlen Rundungsfehler
unvermeidlich sind. Es sollen deshalb Verfahren zur rekursiven Berechnung der Lösungen

von (1) und (2) entwickelt werden.

Wir werden zwei Verfahren darstellen, die beide auf der Berechnung der Potenzen

zn, n £ N, eines Elementes z £ Z[yfd] beruhen. Sie unterscheiden sich durch die

Methoden, diese Potenzen zu bestimmen. Während der Beschreibung der Verfahren ist
d eine beliebige natürliche Zahl, die kein Quadrat ist.

Sei die Zahl z x + yyfd in Z[\fd] gegeben. Wir wollen die Potenzen zn xn + ynVd,
n £ No» rekursiv berechnen, z erfüllt die quadratische Gleichung

z2 2x-z-N(z),

Multiplikation mit zn~2, n>2 liefert zn 2xzn~x —N(z)zn~2. Daraus erhalten wir die

folgenden linearen Rekursionsformeln, zusammen mit den Anfangsbedingungen:

(*o,M>) (1,0), (xuyx) (x,y),

xn 2x • xn-x - N(z)x„_2, (9)

yn 2x-yw_, -N(z)yn_2.



El Math 50 (1995) 53

Für die Anwendung auf Satz 5 haben wir ein Produkt zn(a + by/d) x'n + x/nfd bei

vorgegebenen Zahlen a und b rekursiv zu berechnen Als Linearkombination von x„ und

yn erfüllen x'n und x/n dieselbe Rekursionsformel wie xn und yn, der Unterschied hegt
allein in den Anfangsbedingungen Daher erhalt man aus Satz 5 Rekursionsformeln fur
nm + 1/2 und km + 1/2, wenn man noch beachtet, daß z 3 + 2\f2 die quadratische
Gleichung

z2 - 6z - 1

erfüllt Weitere Umformung liefert mit (hq9 fco) (0,0) den folgenden

Satz 6: Fw die Losungen (nmi km), m > 0 det Gleichung n(n + 1) 2fc(fc + 1) mit

(0,0) falls m 0,

(nm9km)= l (3,2) falls m=l,
[ 6(nm_j, fcm_,) - (ftm_2, fcm-2) + (2,2) falls m > 2

Diese Rekursionsformeln erlauben eine schnelle Berechnung fur nicht zu große Indizes

m Bei weiter wachsenden Indizes wird sich jedoch bald die Überlegenheit des nun
folgenden Verfahrens erweisen Fur gegebenes z x + yfd £ Z[yfd] betrachten wir die

Multiplikation mit z in Z[yfd) Sei w a + byfd und zw u + vfd, dann erhalten wir
in Matrixform

u\ fx yd\ /V
v) \y x)\b^

Durch die wiederholte Anwendung ergibt sich fur zn(a + bfd) x'n + \/nfd die Bezie

hung
'x ydY fa

<)~\y x) \bj (l0)

Speziell in der Situation von Satz 5 gilt a b 1/2, x 39 y d 2 Daher folgt

Satz 7: Fw die Losungen (nnu km)m>o det Gleichung n(n + 1) 2fc(fc + 1) mit

nm\_(l A\m(\l2\_(\/2
km)-\2 3 U/2 ll/2

Zurück in der Situation eines allgemeinen d hat man in (10) die Potenzen der Matrix

m=(x yd

zu berechnen Hierzu schlagen wir einen Spezialfall der schnellen Berechnung von Potenzen

durch Additionsketten vor, vgl [2], section 4 6 3 Es gelingt damit, die Potenzen Mw

in höchstens 2 log2ft Matrix-Multiplikationen zu berechnen Das Berechnungsverfahren
beruht auf der dyadischen Entwicklung von n Sei

ft 2fl+2h+ +2tr 0<tl<t2< <tr
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Durch fortgesetztes Quadrieren nach der Formel M2 (M2 )2 berechnet man in

tr Matrix-Multiplikationen die Potenzen M,M2,M2 ,M2',... ,M2r. Durch weitere

(r — 1) Multiplikationen gewinnt man dann Mn M21 • M2 2

•... • M2 r. Insgesamt wird
Mn mit tr + (r — l) Matrix-Multiplikationen bestimmt.

Unser Problem mit d — 2 läßt sich auch ohne Rückgriff auf die Pellsche Gleichung
lösen, indem man aufgrund von Zahlenmustern die Rekursionsformel errät und dann
durch vollständige Induktion beweist. Dieses Vorgehen findet man in [5]. Mit Blick auf
das Ziel, Gleichung (2) für beliebiges d zu lösen, führen die hier benutzten Methoden

jedoch weiter.

6 Beziehungen zu Kettenbruchentwicklungen
Der Kettenbruch

V2=l +
'

2+—1
2+

'
2 +

hat die Näherungsbrüche 1, 3/2, 7/5, 17/12, 41/29, 99/70, Vergleichen wir nun
diese mit der Folge

(nm/km): 3/2, 20/14 (3 + 17)/(2+12), 119/84 - (3 +17 + 99)/(2 +12 + 70),

Eine enge Beziehung zwischen den Lösungen von (2) und der Kettenbruchentwicklung
von \fd kann nicht überraschen, da Gleichung (2) äquivalent ist zu

d (n/k)(n+l)/(k + l).

Das bedeutet, daß für die Lösungen (ftm, km) die Folge der Quotienten (nm/km) gegen
yfd konvergiert.

Für d 2 sind die Zusammenhänge besonders einfach, da (x,y) genau dann eine positive
Lösung der Pellschen Gleichung x2 — 2t/2 ±1 ist, wenn x/y ein Näherungsbruch von
yfl ist, siehe [6], loc. cit. Ist pt/qt der i-te Näherungsbruch von y/29 so gilt (vgl. z.B.

[6]):
(pl9qt) (2pt-i +pt-2,2qt-\ + ai-i)

mit den Anfangsbedingungen (p\9q\) (1,1) und (p2,q2) — (3,2). Für die i-te Lösung
(xt9yt) der Pellschen Gleichung gilt mit den gleichen Anfangsbedingungen ebenfalls

xx 2*,_-i + *,_2, y 2y_i +y-2, wie aus (9) folgt.

Satz 8: Ist pt/qt der i-te Näherungsbruch der Kettenbruchentwicklung von \fl und

(ftm, km) die m-te Lösung von (1), so gilt

l / m m \
(nm9km) -(p2m+i ~ l,<?2m+l - 1) [Yl^ii^qii J •



El. Math. 50 (1995) 55

Beweis: Die Gültigkeit der ersten Gleichung wurde bereits gezeigt. Zähler und Nenner
der Näherungsbrüche mit geradzahligem Index ergeben die Lösungen von x2 — 2t/2 1.

Für die Folge dieser Lösungen gelten die rekursiven Beziehungen, wie wir sie im vorigen
Kapitel für die Lösungen von x2 — 2y2 — 1, d.h. für die Elemente

2w+1

(l + V2) ={3 + 2y/2)j (l + v^)

hergeleitet haben, nämlich p2m 6p2m-2 ~ Pim-4 und q2m 6q2m-2 - q2m-A-

Mit der Abkürzung Y^m P2 + P4 + • • • + Pim gilt für m > 3:

6 ^2 ~ Yl 6P2 + ^P4 ~~ ^ + ^6 - P4) + • • • + (fylm-2 - Plm-A)
m—l m—2

6p2+pe + ¦¦¦+ Pim

m

Wegen p2 3 und p4 17 ergibt dies J^m 6 Ylm-\ ~ _Cm-2 ~^» ^^e gleicne rekursive
Beziehung, die wir für die Folge (nm) hergeleitet haben. Da die Anfangsbedingungen
J2\ — 3 fti und J22 20 n2 übereinstimmen, gilt J2m wm für alle m > 1.

Die gleiche Argumentation gilt für die Folge (km) und die Summe der Nenner der
Näherungsbrüche mit geradzahligem Index. D

7 Die Gleichung n(n+ 1) =dk(k + 1)

Wir kommen nun zu der aus (2) abgeleiteten Gleichung

u2 -dv2 =l-d, (11)

wobei d > 2, aber keine Quadratzahl ist. Wir erinnern daran, daß die Lösungen der

Gleichung (2) in N den ungeraden Lösungen u,v > 3 von (11) entsprechen. Zunächst
lassen wir jedoch diese Einschränkung unberücksichtigt und studieren die Lösungen von
(11) im Bereich aller natürlichen Zahlen, d.h. u,v > 1.

Mit z — u + vfd ist (11) gleichbedeutend mit N(z) 1 — d, anders formuliert: mit
der Faktorisierung 1 - d z • z. Ist e eine Einheit mit N(e) 1, so gilt ebenfalls

N(ze) — 1 - d. Sind w, v > 1 und ist e > 1, so erhält man in Z€ u' + v'yfd positive
Koeffizienten u' v'. Die Gleichung N(z) 1 - d hat jedenfalls die Lösung z 1 + y/d,
woraus sich nach Multiplikation mit den Einheiten e > 1, N(e) 1 weitere, insgesamt
unendlich viele Lösungen ergeben.

Sei Zo die Grundlösung von N(z) ±1, d.h. die Grundeinheit von Z[\fd). Den Wert
s p + qyfd definieren wir durch s Zo falls N(zo) 1 und s Zq falls N(zn) -1.
Da die Norm multiplikativ ist und Zo > 1, gilt N(s) 1 und s > 1. s ist die kleinste
Zahl, die diese beiden Bedingungen erfüllt.

Wie gesagt, liefert jede Zahl der Form (1 + fd)sm eine Lösung von (11). Genauer gilt
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Satz 9: Falls d keine Quadratzahl ist, so hat (11) unendlich viele Lösungen. Eine Schar
von Lösungen ist gegeben durch (um9vm) mit um + vmfd — (1 + fd)sm. Dabei ist
s — p + qfd die kleinste Lösung von N(z) 1, z > 1.

Die Paare (um,vm) genügen den Bedingungen

(1,1) falls m 0,
(um9vm) < (p + dq,p + q) falls m=l,

{ 2p(um-Uvm-{) - (um-2,vm-2) falls ra > 2.

Beweis: Wegen N((l + fd)sm) =N(l + y/d)N(sm) l-d sind die Zahlen (1 + fd)sm
Lösungen von N(z) l-d, die uns Lösungen (u9 v) von (11) liefern. Die Anfangswerte
(uq9Vq) (1,1) und (u\9vx) (p + dq,p + q) sind offensichtlich. Aus (9) ergibt sich
(Um,Vm) 2p(um-UVm-2) ~ (Um-2,Vm-2).

Die in Satz 9 beschriebene Lösungsschar basiert auf der Anfangslösung 1 + \fd. Im
allgemeinen enthält diese Schar nicht alle Lösungen von (11). Ist beispielsweise d — 5,

so ist die zugehörige Grundeinheit z0 2 + \f5 mit N(2 + yß) -1. Mit (1 + f5)zl
und (1 + y/5)zQ erhalten wir die Lösungen (29,13) und (521,233). Dem entsprechen
die in Tabelle 1 angegebenen Lösungen (14,6) und (260,116) der Gleichung (2). Die
übrigen in Tabelle 1 angegebenen Lösungen gehören zu einer anderen, nämlich auf der

Anfangslösung 11 + 5\f5 basierenden Lösungsschar. Gibt es weitere Lösungsscharen,
vielleicht sogar unendlich viele, und wie findet man sie? Diesen Fragen wollen wir nun
nachgehen.

Wie oben bereits festgelegt, gelte

s p + qfd <
z0 falls N(z0) 1,

z2 falls N(zo) -l.

Es ist s > 1 und N(s) 1, und nach Satz 4 stimmen die Einheiten e mit e > 1, N(e) 1

mit den Potenzen sm, m > 1 überein. Gesucht werden Lösungen von u2 —dv2 —c mit
c d - 1 > 0 und w, v > 0.

Definition: Zwei positive Lösungen (uXlvx) und (u2,v2) von (11) gehören genau dann

zur gleichen Schar, wenn es ein m £ Z gibt, so daß u2 + v2fd (ux + vxyfd)sm. Die
kleinste positive Lösung einer Schar bezeichnen wir als Anfangslösung dieser Schar.

Offenbar liefern die Scharen eine Klasseneinteilung der Menge aller positiven Lösungen
von Gleichung (11). Jede Schar enthält unendlich viele Lösungen. Ist (u9v) eine Lösung
von (11), aber keine Anfangslösung, so ist die in der Schar vorhergehende Lösung
gegeben durch

(u + vfd)s~l (u + vfd)(p — qfd) (up - vqd) + (vp - uq)yfd.

Es sind also folgende Bedingungen erfüllt:

(i) up - vqd > 0 bzw. u/v > dq/p,
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(11) vp — uq > 0 bzw. u/v < p/q.

Sind fur eine Losung (u9v) diese Bedingungen nicht erfüllt, so muß es sich um eine
Anfangslosung handeln und umgekehrt

Bedingung (n) ist fur alle positiven Losungen erfüllt, da aus u2 — dv2 —c folgt
(u/v)2 d-c/v2 < d und andererseits, wegen p2-dq2 1, gilt: (p/q)2 d+l/q2 > d.

Aus p2 — dq2 1 folgt (dq/p)2 d - d/p2 Wegen (u/v)2 — d — c/v2 ist somit die
erste Bedingung genau dann erfüllt, wenn c/v2 < d/p2 bzw v2 > p2c/d. Eine positive
Losung ist somit genau dann Anfangslosung einer Schar, wenn v2 (u2 + c)/d < p2c/d
oder gleichwertig, wenn u2 < c(p2 — 1) (d - l)(p2 - 1)

Die Existenz dieser Schranke bedeutet, daß es zu gegebenem d nur endlich viele Anfangslosungen

und somit nur endlich viele Scharen von Losungen gibt. Mit einem einfachen

Suchprogramm lassen sich diese ermitteln. Aus dem Blickwinkel der Faktonsierbarkeit
besagt dieses Ergebnis, daß 1 — d nur endlich viele wesentlich verschiedene Faktorisierungen

der Art 1 — d — z z, z u + vfd, u, v > 0 gestattet. Dabei sehen wir zwei
Faktorisierungen als im wesentlichen gleich an, wenn sich die eine Zerlegung aus der
anderen durch Multiplikation der Faktoren mit Einheiten ergibt.

Teil (i) des folgenden Satzes haben wir bereits bewiesen

Satz 10:

(l) Die Gleichung (11) hat nw endlich viele Losungssc baten, die jeweils aus den Ele¬

menten zsm, m > 0, z eine Anfangslosung, bestehen

(n) Fut ein Element z u + vfd £ Z[d) mit N(z) — 1 — d sind äquivalent

(1) z ist Anfangslosung,

(2)u,v>0, u2 < (rf- l)(p2- 1) d(d- l)q2,

(3)u,v>0,dv2 <p2(d- l),
(4) y/d^l <Z< Sy/I^l

Beweis Es bleibt, die zusätzlichen Aussagen in (n) zu zeigen. Ist z u + vy/d, u,v > 0

gegeben, so hatten wir bereits die Äquivalenz von (1) mit den gleichwertigen Bedingungen

u2 <(d- l)(p2 - 1) und v2 < P2^~p-

erkannt. Aus p2 — dq2 — 1 erhalt man u2 < (d — l)dq2 fur die erste Ungleichung.
Ware u2 (d — l)dq2, so mußte d(d — 1) ein Quadrat in N sein, also auch d wegen der
Teilerfremdheit von d und d— 1. Somit gilt u2 < (d— l)dq2. Analog führte die Annahme

9 9d — 1

v2=p -T-
uber (dv)2 p2d(d - 1) zum Widerspruch. Wir kommen jetzt zur Äquivalenz von
(1) und (4). Sei z Anfangslosung. Dann fd - 1 < 1 + y/d < z und z u + vfd <
qyjd(d- l)+py/d - 1 sfd - 1. Sei umgekehrt N(z) (u + vfd)(u-vy/d) 1 -d
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und die Ungleichungen in (4) erfüllt. Aus N(z) l—d folgert man \u\ < \v\- fd. Aus
v < 0 folgte z < 0. Somit v > 0, und aus -z d — 1 /z < yjd - 1 schließt man auch

u > 0. Die andere Ungleichung liefert zs-1 < fd - 1, d.h. z ist eine Anfangslösung. D

Als Beispiel betrachten wir d 5. Es ist z0 2 + f5 die Grundeinheit von Z[f5]
mit N(z0) — 1. Somit erhalten wir s z2, 9 + 4\/5 und daraus die Abschätzungen
v < 8 für die Anfangslösungen z u + vy/5. Man ermittelt leicht alle Anfangslösungen
l + f5,4 + 2vf5, U+SfS.
Die Abschätzung

„2 /^2d~17" < /T rf

aus der v <p—l folgt, besagt, daß es höchstens (p — 1) verschiedene Anfangslösungen,
damit auch Lösungsscharen für die Gleichung (11) gibt. Wie man diese grobe
Anzahlabschätzung verbessern, eventuell sogar zu einer genauen Anzahlbestimmung ausbauen

kann, scheint ein schwieriges Problem zu sein, und wir gehen, abgesehen von den
folgenden Bemerkungen, nicht weiter darauf ein.

Satz 11:

(i) Ist z eine Anfangslösung von (11), so auch w —zs.

(ii) Ist rf — 1 eine Primzahl oder d — 2, so gibt es höchstens zwei Lösungsscharen,
die zu den Anfangslösungen z 1 + fd und —zs — (fd — l)s gehören. Diese

Anfangslösungen stimmen genau für rf 2,3 überein.

Beweis: (i) folgt sofort aus Satz 10, (ii). Die beiden in (ii) angegebenen Anfangslösungen
stimmen genau dann überein, wenn (l + yfd)2 (rf— l)s gilt. Das ist der Fall für rf 2,3,
aber auch nur hierfür, da notwendigerweise rf — 1 ein Teiler von 2 sein muß. Es bleibt
zu zeigen, daß es keine weiteren Anfangslösungen gibt. Für rf 2 wurde diese Aussage
in Abschnitt 4 gezeigt. Sei jetzt / rf — 1 eine Primzahl > 2 und z — u + vfd eine

Anfangslösung. Aus N(z) —/ folgt u2 v2 mod / und, da / Primzahl ist, u ev mod
/ für e ±1. Wir setzen u ev + xl. Wegen u > v haben wir x > 0. Einsetzen in
N(z) —l und Kürzen durch —/ führt zu der Gleichung v2 — 2evx - x2l 1, aus der
wir (v — ex)2 — x2(l + 1) 1 erhalten. Ist x — 0, so ergibt sich v u=l,z=l + fd.
Sei dann x > 0 und zunächst e 1. Aus u < v(l + 1) schließt man x < v und dann,
daß r; := (v — x) + vfd eine Einheit mit rj > 1, N(r)) 1 ist. Somit p < v — x und

angesichts von Satz 10, (ii) führt dies zum Widerspruch v < p < v — x. Somit muß
e — 1 sein. Jetzt ist r\ v + x + xfd eine derartige Einheit, was rj — sl nach sich

zieht. Weiterhin erkennt man: (fd - 1)77 z, d.h. z [-(1 + fd)s] • sl~l und folglich
2 (fd — l)s, da z eine Anfangslösung sein sollte. D

Die Überlegungen im Beweis zeigen, daß ganz generell die Zuordnung z »-> —zs eine
involutorische Selbstabbildung in der Menge der Lösungsscharen induziert (man beachte,
daß w —zs seinerseits z —Ws liefert). Diese Involution kann auch in anderen Fällen

Fixpunkte aufweisen: für rf 5 sieht man, daß die Anfangslösungen l + y/5 und 11+5\/5
durch diese Involution zugeordnet werden, während 4 + 2a/5 ein Fixpunkt ist.
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Bisher haben wir die Lösungen der Gleichung (11) in beliebigen natürlichen Zahlen

u,v untersucht. Im Hinblick auf die Ausgangsgleichung n(n + l) dk(k + l) dieser
Arbeit müssen wir aber speziell nach ungeraden Lösungen u 2n+ l,v 2k + l > 3

von (11) suchen. Das erfordert, für die Elemente in einer Lösungsschar die Parität der
Koeffizienten u, v festzustellen. Hierbei stellt sich eine Abhängigkeit der Parität allein
von der Kongruenzklasse von rf mod 8 und von q mod 2 heraus mit s p + qfd wie
bisher. Wir haben einige Fälle zu unterscheiden.

Fall 1: rf 2,3 mod 4

(i) Für jede Lösung von u2 - dv2 1 - rf sind u und v ungerade.

Beweis: Wir verwenden die Tatsache, daß x2 0,1 mod 4 ist je nachdem, ob x
gerade oder ungerade ist. Aus u2 dv2 + (1 — rf) mod 4 ergibt sich in den beiden

Fällen, daß u, v ungerade sein müssen.

(ii) Die Lösungsschar zu l + fd enthält (l + fd)(p+qyfd) —Z\— (qd+p)+ (p+q)fd als

kleinstes Element mit ungeraden Koeffizienten > 3. Jede andere Lösungsschar enthält

nur Elemente mit derartigen Koeffizienten. Insbesondere liegt noch die Lösungsschar
zu wx (fd — l)(p + qfd) (qd-p) + (p — q)fd vor. Es ist wx f zx für rf ^ 2,3.

Fall 2: rf ee 1 mod 4

(i) In einer Lösungsschar sind entweder alle Koeffizienten gerade oder alle ungerade.
Beide Fälle treten auf. Ist rf ee 9 mod 16, so gibt es keine Lösungsschar mit geraden
Koeffizienten.

(ii)Die Lösungsscharen zu l + fd und (fd- l)s enthalten nur Elemente mit ungeraden
Koeffizienten.

Beweis: Aus N(u + vfd) 1 - rf, rf 1 mod 4 folgt u2 v2 mod 4 und daraus

u v mod 2. Entsprechend schließt man für s p + qfd aus p2 q2 + 1 mod 4,

daß p ungerade und q gerade ist. Hat eine Anfangslösung z gerade Koeffizienten, so

gilt dies auch für alle anderen Elemente zsm, ra > 0. Hat eine Lösung z u + vfd
ungerade Koeffizienten, so folgt für zs u' + v'fd, ul up + dqv up 1 mod

2, d.h. in der Lösungsschar zu einer derartigen Anfangslösung treten nur ungerade

Koeffizienten auf. Speziell gilt dies für die Scharen zu 1 + fd, (fd - l)(p + qfd).
Für rf 5,13,17,21,29,33,37 treten beide Fälle auf. Sei dann rf ee 9 mod 16 und

N(u + vfd) 1 - rf mit u, v gerade. Wir setzen u 2% v 2v und erhalten

-2 j-2 d - 1

UL -dv1 —.4

Betrachtung mod 4 liefert die Gleichung U2 - v2 2 mod 4, die aber keine Lösung

besitzt.

Fall 3: rf ee 0 mod 4

3.1: rf ee 4 mod 8

Die Aussagen im Fall rf ee 2,3 mod 4 gelten auch hier.
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Beweis: An Quadraten mod 8 gibt es nur 0,1,4. Aus N(z) 1 — rf erhält man im
vorliegenden Fall u2 Av2 - 3 mod 8. Einsetzen der möglichen Quadrate zeigt, daß
u2 v2 1 mod 8 sein muß, d.h. u und v sind ungerade. Die Aussage (ii) des Falls 1

ist von allgemeiner Natur.

3.2: rf ee 0 mod 8

Für jede Lösung ist u ungerade, weiterhin ist p ungerade.

Der Beweis erfolgt aus der Betrachtung von N(z) 1 — rf und N(s) 1 modulo 8.

3.2.1: q gerade

In einer Lösungsschar haben alle Koeffizienten v diesselbe Parität. Beide Fälle treten
auf. Ist rf — 1 eine Primzahl, so sind für alle Lösungen die Koeffizienten ungerade. In
den Lösungsscharen von 1 + fd und (fd — l)s sind alle Koeffizienten ungerade.

Beweis: Für zs u' + v'fd ergibt sich v' =pv + qu v mod 2. Die Koeffizienten von
(fd — l)s sind ungerade. Nach Satz 11 gibt es keine weiteren Scharen, falls rf — 1 eine
Primzahl ist. Für rf 56 berechnet man s 15 + 2f56 und u. a. eine Anfangslösung
z 13 + 2f56.

3.2.2: q ungerade

In jeder Lösungsschar gibt es eine kleinste Lösung zx mit ungeraden Koeffizienten. Alle
anderen erhält man in der Form zx • s2m, m > 0.

Beweis: Wir wissen bereits, daß stets der Koeffizient u ungerade ist, ebenso p. Für
zs u' + v'yfd gilt v' v + 1 mod 2. Hat die Anfangslösung z ungerades v, so ist

zx z; im anderen Fall haben wir zx zs. Für rf 8 ist s 3 + f&, z 1 + \/8
und w —zs 5 + 2fi sind die einzigen Anfangslösungen. Im zweiten Fall folgt
zx =31 + ll>/8.

Abschließend fassen wir die obigen Ergebnisse für die Lösbarkeit der Gleichung

n(n+l)=dk(k + l) (2)

zusammen.

Satz 12: Ist rf > 1, rf keine Quadratzahl, so hat (2) unendlich viele Lösungen. Die
Lösungen zerfallen in endlich viele Lösungsscharen. In jeder Lösungsschar gibt es eine
kleinste Lösung (no, fco), aus der sich die anderen Lösungen wie folgt ableiten:

2n + 1 + (2fc + l)fd (2n0 + 1 + (2fc0 + l)Vd) fm, ra > 0

wobei t s ist, außer im Fall rf ee 0 mod 8, q ungerade, in dem t s2 gilt.

Für die aktuelle Berechnung kann man die Verfahren aus Abschnitt 4 verwenden.
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8 Der Fall d e2

Zu untersuchen bleibt noch der Fall, daß rf e2 eine Quadratzahl > 1 ist Gleichung
(3) erhalt dann die Form

u2-e2v2 l-e2 (12)

Es sei daran erinnert, daß wir ungerade Losungen u,v > 3 suchen (12) laßt sich
umformen zu

u2 -e2(v2 - 1) 1, (12a)

sowie zu
e2 - 1 (ev + ü)(ev - ü) (12b)

Satz 13:

(l) Die Gleichung (12) hat keine Losung mit u > e2 — 2 odet v > e Dabei hat (2)
höchstens endlich viele Losungen, wenn d eine Quadtatzahl ist

(n) Fw e =pr p eine Pumzahl besitzt (2) keine Losung, fut e 2v, v ungetade > 3,

hat (2) die Losung n v2 - 1, fc (v - l)/2

Beweis Aus (12b) folgt im Falle der Lösbarkeit u < e2 — 2 und v < e Damit ist
(i) bewiesen Zum Beweis von (n), e — pr folgern wir (siehe [8], S 74) zunächst aus

n(n + 1) p2rk(k + 1) und Teilerfremdheit von n und n+l, daß p2r\n oder p2r\n + 1

gelten muß In jedem Fall ergibt sich p2r < n + 1 Nach (i) mit u 2n + 1 erhalten wir
in 2n + 1 < p2r — 2 einen Widerspruch dazu Die Aussage fur e — 2v ergibt sich durch
Einsetzen und wurde bereits im Abschnitt 3 erwähnt D

Um weitere Aussagen uber Lösbarkeit und Losungen zu erhalten, betrachten wir die

Gleichung (12a) als Pellsche Plus-Gleichung fur die Unbekannten u,e und rf v2 — 1

Fur v > 2 ist bekanntlich rf kein Quadrat Aus N(v + fv2 - 1) 1 erhalt man z0

v + fv2 — 1 als Grundeinheit, und u + efv2 — 1 erweist sich als Potenz von Zo Wir
setzen

um(v)+em(v)\Jv2-l (v + yfv2-\y\ ra>0 (13)

Nach den Überlegungen im Abschnitt 4 haben wir mehrere Möglichkeiten, um(v) und

em(v) auszurechnen Zunächst erhalten wir aus der Anwendung der Konjugation in
Z[fv2 - 1] die Formeln (ra > 0)

(t \ m / \ m

v + VzP^l) + (v- VV2-1)
um(v> '-^ '—,

"^ - ^ hh—-
Als Funktion von v lassen sich um und em durch Polynome beschreiben, und zwar durch
die wohlbekannten Tschebyscheff-Polynome 1 und 2 Art, die von großer Bedeutung fur
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die Numerik und Approximationstheorie sind, vgl. [4], S. 84 ff, 277 ff. Die folgenden
Aussagen ergeben sich unmittelbar aus (14), vgl. auch [4], loc. cit.

(i) en(um(v))em(v) enm(v), n,ra > 0, (15)

(ii) em(v)v-um(v) =eOT_i(0), ra > 1,

em (v)v + um (v) em+ x (v), ra > 0.

Die Grundeinheit v + fv2 — 1 liefert nach den Überlegungen in Abschnitt 4, daß um(v)
und em(v) die Rekursionsformel

am 2vam-i - flm_2, ra > 2. (16)

mit den Anfangsbedingungen u0 1, ux v, e0 0, ex 1 erfüllt. Alternativ lassen
sich um(v) und em(v) wie folgt beschreiben:

Ist v ungerade, so ist wegen (12a) auch u ungerade. Für ra > 2, v > 3 sieht man
um(v) > 3, em(v) > 1.

Der Beweis des folgenden Satzes ergibt sich direkt aus den obigen Überlegungen und
(15), (ii).

Satz 14: Sei rf e2 > 1.

(i) Die Gleichung n(n + 1) rffc(fc + 1) hat genau dann eine Lösung, wenn e em(v)

für ein ungerades v > 3 und ra > 2 ist.

(ii)Ist e em(v), v ungerade, v > 3, m > 2, dann ist (um(v)9v) eine Lösung von (12),
und die Faktorisierung in (12b) ist von der Form e2 — 1 em+x(v) • em-\(v).

Für ra 2 erhält man u2(v) 2v2 — 1, e2(v) 2v. Daraus ergibt sich noch einmal die
Existenz von Lösungen für e 2v,v ungerade, v >3.
In der Tabelle 3 sind die Werte em(v) für 2 < ra < 7 und 3 < v < 15 mit zugehörigen
u um(v) (unter em(v)) angegeben.

Die Kettenbruchentwicklung von f2 liefert die Näherungsbrüche 1, 3/2, 7/5, 17/12,
41/29, 99/70 Bezeichnen wir den Zähler des i-ten Näherungsbruches mit pu so fällt
auf, daß um(3) p2m. Der Beweis für diese Beziehung folgt aus dem Vergleich der
Rekursionsformel für um(v) und pt. Es lassen sich weitere Zusammenhänge zu Ketten-
bruchentwicklungen entdecken, denen wir aber hier nicht nachgehen wollen.

Zu rf e2 existieren offenbar genau dann weitere Lösungen von Gleichung (12) und
somit von Gleichung (2), wenn der Wert e mehrfach in der Tabelle der em(v) enthalten
ist. Um solche Werte zu finden, betrachten wir zunächst die em(v) modulo 4. Aus der
Rekursionsformel ergibt sich unabhängig von v:

em+4 2vem+3 - em+2 2v(2vem+2 - em+x) - 2vem+x +em=em mod 4.
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v\m 2 3 4 5 6 7

3 6
17

35

99
204
577

1189

3363
6930

19601

40391
114243

5 10

49
99

485
980

4801
9701

47525
96030

470449
950599

4656965

7 14

97
195

1351

2716
18817

37829
262087

526980
3650401

7338631
50843527

9 18

161

323

2889
5796

51841
104005

930249
1866294

16692641

33489287
299537289

11 22
241

483
5291

10604
116161

232805
2550251

5111106
55989361

112211527
1229215691

13 26
337

675
8749

17524
227137

454949
5896813

11811150
153090001

306634951
3974443213

15 30
449

899
13455

26940
403201

807301

12082575
24192090

362074049
724955399

10850138895

Tabelle 3 Die Werte em(v) und um(v)

Weiter gilt
£o 0 mod 4,

e\ 1 mod 4,

e2 2vex - e0 2v 2 mod 4

e-\ — 2ve2 — e\ —ex 3 mod 4

Somit ist em(v) m mod 4 fur alle ungeraden v und alle ra Nun enthalt die Spalte
ra 2 der Tabelle 3 genau alle natürlichen Zahlen großer oder gleich 6, die kongruent
zu 2 modulo 4 sind Somit muß jeder Wert em(v) mit ra ee 2 mod 4 auch in der Spalte
ra 2 auftauchen Genauer gilt nach diesen Überlegungen

Satz 15: Ist ra ee 2 mod 4 so gilt em(v) e2(vf) mit v' — em(v)/2

Zu jedem Wert e, der in Tabelle 3 in einer der Spalten mit ra 6, 10, 14, zu finden

ist, hat also Gleichung (12) und folglich Gleichung (2) mindestens 2 Losungen Der
kleinste derartige Wert ist e6(3) 6930 e2(3465)

rf — 69302 48024900 ist demnach die kleinste Quadratzahl, fur welche die Gleichung
u2 — dv2 1 — rf zwei verschiedene Losungen hat, namhch (u\,V\) — (19601,3)
und (1*2,^2) (24012449,3465) Unsere Ausgangsgleichung n(n + 1) rf fc(fc + 1)

hat entsprechend die Losungen (nukx) (9800,1) und (n2, fc2) (12006224,1732)
Weitere Losungen existieren fur diesen Wert von rf nicht

Wir haben somit unendlich viele Quadrate ermittelt, fur die Gleichung (2) zwei Losungen

hat Ob es weitere Quadratzahlen mit dieser Eigenschaft oder sogar Quadratzahlen
mit drei oder mehr Losungen gibt, sind offene Fragen Systematische Suche mit dem

Computer hat ergeben, daß in jedem Fall rf > 36 IO26 sein mußte Bei dieser Suche
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haben sich (15), (i) und die folgenden, direkt zu verifizierenden Aussagen als nützlich
erwiesen:

(i) em(v) \mmod32 fallS m unSerade> (18)
Im v mod 32 sonst.

x (v - l)m - 1
x (2z;)m

(n) ^ <ßw(,)<5LJ_ m>0
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