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Variationen iiber ein diophantisches Thema

Eberhard Becker, Robert Robson!), Georg Schrage

Eberhard Becker, geboren 1943, studierte Mathematik und Physik an der Universitit
Hamburg. Nach der Assistentenzeit in K6ln wurde er 1979 auf den Lehrstuhl fiir
Algebra an der Universitidt Dortmund berufen. Seine mathematischen Arbeitsgebiete
sind Algebra, Computeralgebra, Zahlentheorie und reelle algebraische Geometrie.

Robert Robson, geboren 1954, studierte am Hampshire College und an der Stan-
ford University, wo er 1981 mit einer Arbeit aus dem Bereich der algebraischen
Geometrie promovierte. Von 1982 bis 1984 arbeitete er als Assistent an der Uni-
versitit Regensburg, seither als Associate Professor an der Oregon State University.
Forschungsprojekte fithrten ihn an die Universititen in Dortmund, Rennes und Ber-
keley. Er ist Mitglied der Gruppe “Factoregon”, die sich mit der Faktorisierung
grofler Zahlen beschiftigt, spielt in seiner Freizeit Guitarre, jongliert und nimmt
erfolgreich an Bridge-Turnieren teil.

Georg Schrage, geboren 1940, studierte Mathematik, Physik und Wirtschaftswissen-
schaften an den Universititen in KoIn, Saarbriicken, Madrid und Bonn. Nach Assi-
stentenzeit und Promotion an der Universitdt Bonn arbeitete er an den Hochschulen
in Siegen, Dortmund und Frankfurt. Hinzu kamen zwei Forschungsaufenthalte in den
USA. Seit 1980 ist er am Institut fiir Didaktik der Mathematik der Universitit Dort-
mund titig. Sei besonderes Interesse gilt der Arbeit mit mathematisch interessierten
Schiilern und der Rolle neuer Technologien im Mathematikunterricht.

Man bestimme alle rechtwinkligen Dreiecke mit ganzzahligen Seitenldngen, so dass
die Katheten sich in ihrer Linge um 1 unterscheiden. Diese Aufgabe, die zu Beginn
des vorliegenden Beitrages gestellt wird, fiihrt offensichtlich auf die Frage nach den
ganzzahligen Losungen einer einfachen Gleichung zweiten Grades. In dieser Form
handelt es sich um eine klassische Fragestellung der Zahlentheorie. Ausgehend von
der genannten und einigen weiteren hnlichen Aufgaben behandeln die Autoren die
Zahlentheorie der zugehtrigen Klasse diophantischer Gleichungen. Beginnend mit ganz
einfachen Problemen fiihrt der Beitrag schliesslich zu Fragen, die bis heute noch nicht
geldst sind. Die Darstellung macht Gebrauch von einigen wohlbekannten Methoden
und Sitzen der Zahlentheorie. An mehreren Stellen iibernimmt der Computer die Rolle
eines Forschungswerkzeuges: Er erlaubt es, bestehende Vermutungen zu testen und
neue Vermutungen aus dem Zahlenmaterial abzuleiten. ust

1) Der zweite Autor dankt der Alexander von Humboldt-Stiftung fiir die groBziigige Unterstiitzung eines
Forschungsaufenthaltes an der Universitit Dortmund.
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1 Einleitung

Die folgende Aufgabe kann man in verschiedenen Biichern zur Wahrscheinlichkeitsrech-
nung finden, z.B. [1], S. 26 oder [3], Problem 1.

Aufgabe 1: Eine Urne enthdlt s Kugeln, darunter r rote. Die Wahrscheinlichkeit dafiir,
daf} zwei Kugeln, die ohne Zuriicklegen gezogen werden, beide rot sind, ist 1/2. Wie
viele Kugeln enthdlt die Urne, und wie viele davon sind rot?

Da es () Stichproben der Ordnung zwei gibt, von denen (}) aus zwei roten Kugeln
bestehen, stellt sich die Aufgabe, natiirliche Zahlen » und s zu finden, so daf gilt
s(s—1)=2r(r—1).

Mit n =s — 1 und k = r — 1 wird hieraus
nn+1)=2k(k+1). (1)

Diese Gleichung kann wie folgt interpretiert werden:

Aufgabe 2: Bestimme natiirliche Zahlen n und k, so daf3 die Summe der Zahlen 1 bis
n doppelt so grofy ist wie die Summe der Zahlen 1 bis k. (Problem 502 in: The College
Mathematics Journal No. 3, 1993.)

Durch Multiplikation mit 2 und Addition von 1 wird aus (1) die dquivalente Gleichung
n’+(n+1)* =2k +1)%

Diese Darstellung gibt AnlaB zu dem pythagordischen Problem

Aufgabe 3: Bestimme alle rechtwinkligen Dreiecke mit ganzzahligen Seitenldngen, so
daf3 die Katheten sich in ihrer Ldnge um 1 unterscheiden.

Wir haben somit drei sehr unterschiedliche Fragestellungen, die aber alle auf die Losung
der diophantischen Gleichung (1) im Bereich der natiirlichen Zahlen hinauslaufen.

Durch Probieren findet man schnell die Losung n = 3 und k = 2. Gibt es weitere
Losungen, und wie findet man diese?

Es ist naheliegend, das Problem zu verallgemeinern, indem man nach natiirlichen Zahlen
n und k fragt, welche bei gegebenem d € N die Gleichung

n(n+1)=d k(k+1) 2)

16sen.

Diese Problemstellung steht in Beziehung zu einer Vielzahl anderer reizvoller und wich-
tiger Fragen. So fiihrt sie unter anderem zur Beschiftigung mit quadratischen Zahlkor-
pern, genauer: zur Beschéftigung mit der Pellschen Gleichung, mit Kettenbriichen und
Rekursionen, ohne daf} die dazu benétigten Hilfsmittel den Rahmen einer elementaren
Einfiihrung in die Zahlentheorie libersteigen wiirden.

Ist d keine Quadratzahl, so hat die Gleichung (2) unendlich viele Losungen, und wir
werden angeben, wie man alle Losungen erhalten kann.

Fiir Quadratzahlen d ergibt sich ein véllig anderes Bild. Im Falle der Losbarkeit hat (2)
nur endlich viele Lésungen, aber nicht jede Quadratzahl d fiihrt zu einer 16sbaren Glei-
chung. Wir werden ein Verfahren angeben, diejenigen Quadratzahlen d zu bestimmen,



El. Math. 50 (1995) 47

fiir die (2) mindestens eine Losung hat. Uberraschend stellt sich ein enger Zusammen-
hang mit den aus der Numerik und Approximationstheorie bekannten Tschebyscheff-
Polynomen heraus. Weiter werden auch unendlich viele Quadratzahlen ermittelt, fiir

welche die Gleichung zwei Losungen besitzt. Offen bleibt dagegen, ob es Quadratzahlen
gibt, fiir welche die Gleichung mehr als zwei Losungen hat.

Bei Fragestellungen dieser Art ist das mathematische Experiment ein wichtiges heuristi-
sches Hilfsmittel. Die vorliegende Untersuchung 148t Moglichkeiten, aber auch Grenzen
des Computereinsatzes bei der Losung mathematischer Probleme erkennen.

2 Erste Ergebnisse

d Losungspaare (oben: n, unten: k)

2 3 20 119 696 4059
2 14 84 492 2870

3 2 9 35 132 494
1 5 20 76 285

4 keine Losung

5 5 14 99 260 1785
2 6 44 116 798

6 3 8 35 84 351
1 3 14 34 143

7 6 14 104 231 1665
2 5 39 87 629

8| 15 32 527 1104 17919
5 11 186 390 6335

9 keine Losung

10 4 20 39 175 779
1 6 12 55 246

Tabelle 1 ~ Losungen von Gleichung (2)

Tabelle 1 zeigt zunichst die ersten fiinf Losungen der Gleichung (2) fiir 2 < d < 10,
d keine Quadratzahl. Ein Blick auf diese Tabelle macht deutlich, daB man wohl allen-
falls die ersten zwei oder drei Losungen durch Probieren “von Hand” finden kann. Ein
einfaches Suchprogramm liefert dagegen geniigend Daten, um interessante Muster und
Zusammenhiinge zu erkennen. Schon eine kurze Liste von Losungen der Gleichung (1),
d.h. d = 2, 148t Beziehungen zur Kettenbruchentwicklung von V2 und deren Niherungs-
briichen vermuten (vgl. Satz 8).

Systematisches Suchen nach Losungen fiir den Fall, da8 d eine Quadratzahl ist, scheint
den Verdacht nahezulegen, daB lediglich fiir Werte der Form d = 40> mit ungera@em
v > 3 eine Losung fiir (2) existiert, namlich n = v° — 1 und k = (v —1)/2, was sich
allerdings nicht bestitigt (vgl. Kapitel 8). Auch mit Computerhilfe wird man 'schwerhch
die erste Quadratzahl d = 48024900 = 69307 finden, fiir die (2) mehr als eine Losung
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besitzt: ky = 1732, k, = 1. Ausgestattet mit dem theoretischen Riistzeug, das in Kapitel
8 entwickelt wird, ist es jedoch ein Leichtes, diese Losung (und weitere) sogar von Hand
zu ermitteln.

3 Eine niitzliche Transformation und Neu-Interpretation

Fiir die weitere Untersuchung der Gleichung (2) formen wir diese durch quadratische
Erginzung beider Seiten um:

1\? 1 1\ 1
(11+—2') '—Z——d((k+§) —Z)
Multiplikation mit 4 ergibt (2n + 1)> — 1 = d((2k — 1)2 — 1). Mit u = 2n + 1 und
v = 2k + 1 wird daraus #?> — 1 = d(v? — 1) beziehungsweise

w —dv? =1-d. (3)

Jede Losung von (2) mit k > 0 entspricht umkehrbar eindeutig einer Lésung von (3) in
ungeraden Zahlen > 3.

Mit d = e? 148t sich diese Gleichung auch in der Form e? — 1 = (ev — u)(ev + u) oder
e2—1=r-smitr =ev —u und s = ev + u schreiben. Das heiBt, fiir d = 2 ist das
Problem genau dann 16sbar, wenn fiir e> — 1 eine Faktorisierung 7 - s existiert, so daf
u=(s—r)/2und v = (r + s)/(2e) ungerade ganze Zahlen > 3 sind. Da weder fiir
e? = 4 noch fiir e? = 9 solche Faktorisierungen existieren, ist die Frage nach eventuellen
Losungen fiir diese Fille in Tabelle 1 entschieden. Ebenso 148t sich sofort zeigen, daf3
z.B. fiir e = 16,25,49,64,81,121 keine Losung existiert. Die triviale Faktorisierung
mit 7 = 1 und s = e? — 1 fiihrt wegen u = (¢ —2)/2 und v = ¢/2 genau dann zu
einer Losung, wenn e vom Typ 4x + 2 mit x € N ist. So erhalten wir fiir die kleinste
Quadratzahl, die eine Losung unseres Problems zuldft, nimlich e? = 36, die Paare
(u,v) = (17,3) bzw. (n, k) = (8, 1). Der nichste Fall, e? = 100, liefert (u,v) = (49, 5)
bzw. (n, k) = (24,2). Die allgemeine Untersuchung erfolgt in Abschnitt 8.

Auch im Fall, daB d keine Quadratzahl ist, 148t sich die Gleichung (3) aus dem Blick-
winkel der Faktorisierung umdeuten:

(u+v\/a) (u—v\/a) =1-d.
Als Faktoren erhalten wir jetzt reelle Zahlen aus dem in R enthaltenen Ring
Z [\/3] = {a+b\/3 | a,b EZ}.

Bei jeder Faktorisierung in einem kommutativen Ring R spielen die Einheiten eine grof3e
Rolle, das sind diejenigen Elemente € € R, fiir die es ein multiplikatives Inverses ¢!
in R gibt: € - ¢~! = 1. Ist nimlich x = A - B eine Faktorisierung in R, so liefert jede
Einheit € eine weitere x = (eA) - (¢~ 'B).

In unserer Situation werden wir daher dazu gefiihrt, die Einheiten des Ringes R =
Z[\/d] C R zu untersuchen, was im folgenden Abschnitt erfolgt.
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4 Die Pellsche Gleichung?

Seid € N, d > 1 und keine Quadratzahl. Als Pellsche Gleichung bezeichnet man die
diophantische Gleichung

XX —dyf = £L. (4)

(x* — dy* = £1 steht als Abkiirzung fiir x> — dy? = | oder x? — dy? = —1.)

Die Losungstheorie der Pellschen Gleichung ist wohlbekannt, ebenfalls der Zusammen-
hang dieser Gleichung mit den Einheiten von Z[/d]. Auf der Basis der Uberlegungen
in [6], IL.5 stellen wir die in dieser Arbeit benotigten Ergebnisse zusammen.

Der Ring Z ist ein echter Teilring von Z[v/d], da v/d irrational ist. Aus der Irrationalitit
von v/d erkennt man, daB ein Element z € Z[v/d] eine eindeutige Darstellung der Form
z = x 4+ yvd mit x,y € Z besitzt. Ist z = x + yV/d so heift Z := x — yv/d die zu z
konjugierte Zahl. Es gilt offenbar fiir beliebige z, w € Z[Vd]:

Il
Nt

Z+w “+ T,

z=Zaz€cl.

|

IN]

Z

S

Die ganze Zahl N(z) := zZ = x> — y*d nennt man die Norm von z. Aus (5) folgt sofort
N(zw) = N(z)N(w). (6)

Die Pellsche Gleichung zu losen, ist also gleichbedeutend damit, z = x + yv/d € Z[Vd]
zu finden mit N(z) = +1. Die Elemente z mit N(z) = 1 sind aber auch gleichzeitig
die Einheiten von Z[v/d], d.h. geméB der Definition diejenigen Elemente z, fiir die es
ein Element w € Z[v/d] mit zw = 1 gibt.

Satz 1: z € Z[\/d] ist genau dann Einheit von Z[\/d), wenn N(z) = %1 gilt.

Beweis: Gilt zw = 1, so folgt aus (6): N(z)N(w) = N(1) = 1. Die Normen N(.z)
und N(w) sind ganze Zahlen, somit N(z) = £1. Sei umgekehrt N (z) = %1, dann ist
w = ﬁz)’z‘ € Z[\/d], und es folgt zw = N“E}“)N(Z) =1.0

Die Zahlen +1 sind sicherlich Einheiten von Z[v/d]. Angenommen, z # *1 sei eine
Einheit. Da auch —z und +z~! Einheiten sind, findet man in diesem Fall eine Einheit
z > 1. Derartige Einheiten sind fiir uns von groflem Interesse.

2) Die Bezeichnung Pellsche Gleichung beruht auf einem Irrtum Eulers. Tatsidchlich hat der englische Mathe-
matiker John Pell (1610-1680), dessen Namen die Gleichung tragt, keinerlei Beitrag zu deren Erforschung
geleistet. Zur Geschichte der Pellschen Gleichung sei auf [6], [9] verwiesen.
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Satz 2: Sei z = x + yV/d eine Einheit. Dann sind dquivalent:

(i) z>1, (i) xy>1.

Beweis: Sind x,y > 1, so folgt offenbar z > 1. Fiir die noch fehlende Implikation
verwenden wir die Formeln 2x =z + Z, zZ = +1, woraus 2x = z+ 1/z und |Z| < 1
folgt. Man erkennt x > 0 und damit x > 1, da x eine ganze Zahl ist. Weiterhin schlieft
man z = X + v/x2 + 1. Wegen z > 1 kommt nur z = x + v/x2 & 1 in Betracht, was zu
y = Vx2 + 1/v/d > 0 und, wie eben, zu y > 1 fiihrt. (]

Satz 2 besagt, daB die Losungen der Pellschen Gleichung im Bereich der natiirlichen
Zahlen umkehrbar eindeutig den Einheiten z > 1 entsprechen, und zwar durch die
Zuordnung (x,y) — z = x + y/d.

Eine weitere Konsequenz ist ebenfalls von Wichtigkeit.

Satz 3: Seien z = x + y\/a, 2= y\/ﬁ zwei Einheiten mit z,z’ > 1. Dann sind
dquivalent:

(i) z<Z, (i) x <, (i) y<v.

Beweis: Die Aquivalenz von (ii) und (iii) ergibt sich aus den Bedingungen N(z) = +1,
N(z') = +1 und d > 1. Daher wird (i) von (ii) impliziert. Sei jetzt (i) vorausgesetzt.
Dann ist auch w := z’z~! eine Einheit > 1 und hat somit eine Darstellung w = a+ b\/d
mit a,b > 1. Aus z/ = w - z folgt sofort x’ > x. [

Bisher ist noch nicht gezeigt worden, daB} es iiberhaupt eine Einheit z > 1 gibt. Der Exi-
stenznachweis ist in der Tat nichttrivial und kann etwa iiber die Kettenbruchentwicklung
von vd erfolgen, siehe [6], Satz 9, S. 120. In dieser Arbeit werden wir diese Tatsache
ohne weiteren Beweis verwenden. Aus der Kombination der Sitze 2 und 3 ergibt sich
unmittelbar die Existenz einer kleinsten Einheit zy > 1. Sie heift die Grundeinheit von
Z[Vd). Aus der Darstellung zy = xo + yv/d, X0, % > 1 gewinnt man die (bzgl. x oder
y) kleinste Losung der Pellschen Gleichung x? — dy? = +1 in natiirlichen Zahlen; wir
nennen (xo,y) die Grundlosung dieser Gleichung. Weitere Einheiten > 1 erhilt man
offenbar durch die Potenzen z(’,‘, k € N. Andere Einheiten z > 1 gibt es nicht, wie man
wie folgt einsieht: Ist z > 1 eine Einheit, so gibt es wegen zo > 1 einen Exponenten k
mit zf < z < zf*!. Fiir die Einheit w = zz; © gilt dann 1 < w < zy. Die Minimalitit
von zg erzwingt w = 1, d.h. z = zX. Wir fassen zusammen:

Satz 4:

(i) Fiir jedes k € N ist z = x +yV/d := z} eine Einheit > 1 von Z[V/d) und (x,y) € N?
eine Losung der Pellschen Gleichung,

(ii) jede Einheit z > 1 bzw. jede Losung der Pellschen Gleichung in natiirlichen Zahlen
wird so erhalten.

Die Norm N(zp) der Grundeinheit entscheidet, ob nur die Pellsche Plus-Gleichung x? —
dy* = 1 oder auch die Pellsche Minus-Gleichung x?> — dy? = —1 losbar ist. In der Tat,
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aus N(z§) = N(z0)¥ ergibt sich, daB bei N(zy) = 1 nur die Plus-Gleichung 15sbar ist,
wihrend bei N(zp) = —1 die Potenzen z2*, k > 1, zu den Losungen der Plus-Gleichung
und die Potenzen zék“, k > 0, zu den Losungen der Minus-Gleichung fiihren.

Die Grundlésung von x* — dy? = 41 findet man fiir kleine d’s bereits durch systema-
tisches Probieren (evtl. mit einem einfachen Computerprogramm), im allgemeinen mit
Hilfe der Kettenbruchentwicklung von Vd, [6], loc. cit.

Die folgende Tabelle betrifft die ersten zehn Grundlosungen sowie die Fille d = 61,94,

d 23 56 78 10 11 12 13 6l 94
X0 1 2 58 3 3 10 7 18 29718 2143295
1 11 23 1 1 3 2 5 385 221064
N(z) | -1 1 -1 111 -1 1 1 -1 -1 1

Tabelle 2:  Grundlosungen der Pellschen Gleichung

Die Beispiele d = 61,94 weisen auf die bemerkenswerte Tatsache hin, daf3 die Grundlo-
sungen bzw. Grundeinheiten, relativ zu d, oft recht gro8 sind. Als weiterfiihrende Lektiire
seien dazu die Abschnitte 58 und 72 in [7] empfohlen.

Ohne Beweis sei noch angefiigt, daB die Gleichung x> — dy> = —1 genau dann 18sbar

ist, wenn die Kettenbruchentwicklung von \V/d eine Periode von ungerader Linge hat,
siche [6], Beweis von Satz 10, S. 120.

5 Die Gleichung n(n+1) =2k(k +1)
Die Ergebnisse des vorigen Kapitels konnen wir direkt auf die Gleichung (3) mit d = 2
und somit zur Lsung von (1) anwenden. Mit d = 2 wird aus (3) die Pellsche Gleichung

W — 20t = —1. (7)

Dabei interessieren uns nur Losungen (u#,v) mit ungeraden u,v > 3.

Offenbar gilt fiir jede positive Losung von (7), daB u ungerade und groBer als v ist.
Aber auch v muB ungerade sein, da sonst u> = —1 mod 4 gelten wiirde. Also erfiillt
jede Losung von (7) mit v > 3 und u > 0 die obigen Bedingungen und liefert damit
eine Losung von (1).

Das Paar (u,v) = (1, 1) 16st Gleichung (7) und ist offenbar die Grundlgsung der Pell-
schen Gleichung. Anders formuliert: zo = 1+ V2 ist die Grundeinheit von Z[v/2]. Nach
dem vorigen Abschnitt wird die Pellsche Gleichung durch die Potenzen zg*!, die Minus-
Gleichung durch die Potenzen zg’"“, m € Ny gelost. Wir interessieren uns, wie oben
gesagt, nur fiir Einheiten u + vv/2 mit v > 3, u > 0. Da bereits z = 7+ 5V2 diese
Bedingung erfiillt, erhalten wir als Losung von (7) mit ungeraden u,v > 3 genau die
Paare (11, v) mit u+vv/2 = z2™*!, m € N. Indem wir die Transformation von Abschnitt

3 riickgingig machen, erhalten wir aus den Losungen von (7) die uns interessierenden
Losungen der Ausgangsgleichung

n(n + 1) = 2k(k + 1). (1)
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Eine unmittelbare Rechnung liefert nun unter Beachtung von (1 4+ v/2)? =3 + 2+/2

Satz 5: Die Gleichung (1) hat unendlich viele Lésungen in natiirlichen Zahlen n, k. Sie
sind gegeben durch

N + kmV/2 = <1+\/§) ((3+2\/§)m—1), m e N.

N =

Fir m = 1 erhidlt man das Paar (3,2), fir m = 2 das Paar (20, 14) etc. Aus der
Darstellung in Satz 5 lassen sich mittels der Konjugation in Z[\/E] Formeln fiir n,,
und k,, gewinnen. Unter Beriicksichtigung von (3 + 2v/2)" = (1 + v/2)?" und den
Rechenregeln (5) erhilt man

nm:‘:km\/_Z—z

((1 + \/5)2"1+1 ~ (1= \/5))

N -

und daraus fiir m € N:

0 = % <(1 +\/§>2m+1 N <1 —\/.i)ZmH) B %,
(8)
- ? ((1 +\/§)2m+l B (1 B \/5)2m+1) B %

Das so beschriebene Verfahren ist noch recht unhandlich und auch fiir den Computer-
einsatz zundchst wenig geeignet, da beim Rechnen mit reellen Zahlen Rundungsfehler
unvermeidlich sind. Es sollen deshalb Verfahren zur rekursiven Berechnung der Losun-
gen von (1) und (2) entwickelt werden.

Wir werden zwei Verfahren darstellen, die beide auf der Berechnung der Potenzen
z", n € N, eines Elementes z € Z[v/d] beruhen. Sie unterscheiden sich durch die
Methoden, diese Potenzen zu bestimmen. Wihrend der Beschreibung der Verfahren ist
d eine beliebige natiirliche Zahl, die kein Quadrat ist.

Sei die Zahl z = x + yv/d in Z[\/d) gegeben. Wir wollen die Potenzen z"* = x, + y,V/d,
n € Ny, rekursiv berechnen. z erfiillt die quadratische Gleichung

z2 =2x-z - N(2),

Multiplikation mit z"~2, n > 2 liefert z" = 2xz"~! — N(z)z"~2. Daraus erhalten wir die
folgenden linearen Rekursionsformeln, zusammen mit den Anfangsbedingungen:

(xO’yO) = (190)’ (xl’yl) = (x,}/),
Xp =2xXp—1 — N(2)x,-2, 9)
Yo = 2X - Yy — N(2)Y—2.
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Fiir die Anwendung auf Satz 5 haben wir ein Produkt z"(a + bvd) = x/, 4+ y,\/d bei
vorgegebenen Zahlen a und b rekursiv zu berechnen. Als Linearkombination von x,, und
y, erfiillen x], und v, dieselbe Rekursionsformel wie x, und y,; der Unterschied liegt
allein in den Anfangsbedingungen. Daher erhdlt man aus Satz 5 Rekursionsformeln fiir
"y +1/2 und k,; + 1/2, wenn man noch beachtet, dal z = 3 + 2V2 die quadratische
Gleichung

z2’ =6z 1
erfiillt. Weitere Umformung liefert mit (1, ko) := (0,0) den folgenden

Satz 6: Fiir die Losungen (n,, k,,), m > 0 der Gleichung n(n + 1) = 2k(k + 1) gilt:

(0,0) falls m =0,
(3,2) falls m =1,
6(nr1z—la km~l) - (nm—b km—z) + (2a 2) falls m > 2.

(nma km) =

Diese Rekursionsformeln erlauben eine schnelle Berechnung fiir nicht zu grofle Indizes
m. Bei weiter wachsenden Indizes wird sich jedoch bald die Uberlegenheit des nun
folgenden Verfahrens erweisen. Fiir gegebenes z = x 4 y\/a € Z[\/E] betrachten wir die
Multiplikation mit z in Z[v/d]. Sei w = a + bv/d und zw = u + vv/d, dann erhalten wir

in Matrixform
u\ (x yd\ (a
v) \y «x b))

Durch die wiederholte Anwendung ergibt sich fiir z"(a + bv/d) = x!, + i/,\/d die Bezie-
hung
XN\ (x yd\" (a
() -0 %) () "
Speziell in der Situation von Satz 5 gilta=b = 1/2, x = 3, y = d = 2. Daher folgt

Satz 7: Fiir die Losungen (1, k) >0 der Gleichung n(n + 1) = 2k(k + 1) gilt:
e\ (3 4\ [(1/2) _ [(1)2
k) \2 3 1/2 1/2 )

Zuriick in der Situation eines allgemeinen d hat man in (10) die Potenzen der Matrix

M = (x Y d)
y x
zu berechnen. Hierzu schlagen wir einen Spezialfall der schnellen Berechnung von Poten-
zen durch Additionsketten vor, vgl. [2], section 4.6.3. Es gelingt damit, die Potenzen M"

in hochstens 2- logyn Matrix-Multiplikationen zu berechnen. Das Berechnungsverfahren
beruht auf der dyadischen Entwicklung von n. Sei

n=2 4204 42 0<t <th<...<t.
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Durch fortgesetztes Quadrieren nach der Formel M?' = (M?)? berechnet man in

t, Matrix-Multiplikationen die Potenzen M, M2, M?,... ,MZ? ... ,M?". Durch weitere
t t ty .

(r — 1) Multiplikationen gewinnt man dann M" = M?'.M?* . ... M?". Insgesamt wird

M" mit ¢, + (r — 1) Matrix-Multiplikationen bestimmt.

Unser Problem mit d = 2 146t sich auch ohne Riickgriff auf die Pellsche Gleichung
16sen, indem man aufgrund von Zahlenmustern die Rekursionsformel errdt und dann
durch vollstandige Induktion beweist. Dieses Vorgehen findet man in [5]. Mit Blick auf
das Ziel, Gleichung (2) fiir beliebiges d zu 16sen, fithren die hier benutzten Methoden
jedoch weiter.

6 Beziehungen zu Kettenbruchentwicklungen
Der Kettenbruch

V2=1+

1
1

24...

hat die Niherungsbriiche 1, 3/2, 7/5, 17/12, 41/29, 99/70, ... Vergleichen wir nun
diese mit der Folge

2+
2+

() Km)  3/2, 20/14 = 3+17)/(2+12), 119/84 = (3+17+99)/(2+12+70), ...

Eine enge Beziehung zwischen den Losungen von (2) und der Kettenbruchentwicklung
von v/d kann nicht iiberraschen, da Gleichung (2) dquivalent ist zu

d=n/k)(n+1)/(k+1).

Das bedeutet, daB fiir die Losungen (n,,, k,;) die Folge der Quotienten (n,,/k,,) gegen
v/d konvergiert.

Fiir d = 2 sind die Zusammenhinge besonders einfach, da (x,y) genau dann eine positive
Losung der Pellschen Gleichung x? — 2y? = +1 ist, wenn x/y ein Niherungsbruch von
V2 ist, siehe [6], loc. cit. Ist pi/qi der i-te Naherungsbruch von V2, so gilt (vgl. z.B.
[61):
(Pisgi) = (2pi-1 + Pi-2,20i-1 + gi—2)

mit den Anfangsbedingungen (p;,q;) = (1,1) und (p2,42) = (3,2). Fiir die i-te Losung
(xi,y;) der Pellschen Gleichung gilt mit den gleichen Anfangsbedingungen ebenfalls
Xi = 2Xi— + Xi—2, Yi = 2Yi—1 + Yi—2, Wie aus (9) folgt.

Satz 8: Ist p;/q; der i-te Niherungsbruch der Kettenbruchentwicklung von V2 und
(M, ki) die m-te Losung von (1), so gilt

1 m m
(nma km) = ‘2‘(P2m+1 - 1,Q2m+1 - 1) = (;PZi»;qﬁ) .
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Beweis: Die Giiltigkeit der ersten Gleichung wurde bereits gezeigt. Zdhler und Nenner
der Néherungsbriiche mit geradzahligem Index ergeben die Losungen von x2 — 212 = 1.
Fiir die Folge dieser Losungen gelten die rekursiven Beziehungen, wie wir sie im vorigen
Kapitel fiir die Losungen von x? — 2> = —1, d.h. fiir die Elemente

(1+¢®MWL=@+Q¢@m(L+¢@

hergeleitet haben, nédmlich Pam = 6p2m—2 — Pam—a und Gop; = 6G2m—2 — Gom—4-
Mit der Abkiirzung > = ps +pa + ... + pam gilt fir m > 3:

6 Z - Z = 6}72 + (6p4 - p2) + (6p6 - P4) +...+ (6P2m—2 - P2m—4)

m—1 m—2

=6P2 +P6+---+p2m

= Z +5}72 — P4.

m

Wegen p, =3 und py = 17 ergibtdies ), =6, , —>.,_, —2, die gleiche rekursive
Beziehung, die wir fiir die Folge (n,,) hergeleitet haben. Da die Anfangsbedingungen
>, =3=mnund ), = 20 = n, iibereinstimmen, gilt >~ = n,, fiir alle m > 1.

Die gleiche Argumentation gilt fiir die Folge (k,) und die Summe der Nenner der
Niherungsbriiche mit geradzahligem Index. (J

7 Die Gleichung n(n+ 1) =dk(k +1)

Wir kommen nun zu der aus (2) abgeleiteten Gleichung
u? —dvt =1-d, (11)

wobei d > 2, aber keine Quadratzahl ist. Wir erinnern daran, daf} die Losungen der
Gleichung (2) in N den ungeraden Losungen u,v > 3 von (11) entsprechen. Zunichst
lassen wir jedoch diese Einschrankung unberiicksichtigt und studieren die Losungen von
(11) im Bereich aller natiirlichen Zahlen, d.h. u,v > 1.

Mit z = u + vv/d ist (11) gleichbedeutend mit N(z) = 1 — d, anders formuliert: mit
der Faktorisierung 1 —d = z - Z. Ist € eine Einheit mit N(¢) = 1, so gilt ebenfalls
N(ze) =1 —d. Sind u,v > 1 und ist € > 1, so erhilt man in ze = v’ + v'\/d positive
Koeffizienten /. v’. Die Gleichung N(z) = 1 —d hat jedenfalls die Losung z = 1 + /d,
woraus sich nach Multiplikation mit den Einheiten ¢ > 1, N(¢) = | weitere, insgesamt
unendlich viele Losungen ergeben.

Sei z, die Grundlosung von N(z) = %1, d.h. die Grundeinheit von Z[v/d]. Den Wert
s = p + gv/d definieren wir durch s = z, falls N(zy) = 1 und s = 23 falls N(z) = —1.
Da die Norm multiplikativ ist und zyp > 1, gilt N(s) = | und s > 1. s ist die kleinste
Zahl, die diese beiden Bedingungen erfiillt.

Wie gesagt, liefert jede Zahl der Form (1 + v/d)s" eine Losung von (11). Genauer gilt
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Satz 9: Falls d keine Quadratzahl ist, so hat (11) unendlich viele Losungen. Eine Schar
von Ldsungen ist gegeben durch (uy,vy) mit Uy, + vpVd = (1 + \/c—l)sm Dabei ist
s = p +qVd die kleinste Losung von N(z) = 1,z > 1.

Die Paare (uy,,v,,) geniigen den Bedingungen

(1,1) falls m = 0,
(U, Um) =< (p+dg,p+9) falls m =1,
20(tm—1,0m—1) — (Um—2,Vm—2) falls m > 2.

Beweis: Wegen N((1++/d)s™) = N(14++v/d)N(s™) = 1 —d sind die Zahlen (1+v/d)s"
Losungen von N(z) = 1—d, die uns Losungen (u,v) von (11) liefern. Die Anfangswerte
(4o,v9) = (1,1) und (uy,v,) = (p +dg,p + q) sind offensichtlich. Aus (9) ergibt sich
(umyvm) = 2P(”r1z—lavm—~2) - (un1—-27vm—2)- O

Die in Satz 9 beschriebene Losungsschar basiert auf der Anfangslosung 1 + v/d. Im
allgemeinen enthilt diese Schar nicht alle Losungen von (11). Ist beispielsweise d = 5,
so ist die zugehdrige Grundeinheit zo = 2 + /5 mit N(2 +/5) = —1. Mit (1 + +/5)z2
und (1 + v/5)z¢ erhalten wir die Losungen (29, 13) und (521,233). Dem entsprechen
die in Tabelle 1 angegebenen Losungen (14,6) und (260, 116) der Gleichung (2). Die
tibrigen in Tabelle 1 angegebenen Losungen gehoren zu einer anderen, ndmlich auf der
Anfangslosung 11 + 5v/5 basierenden Losungsschar. Gibt es weitere Losungsscharen,
vielleicht sogar unendlich viele, und wie findet man sie? Diesen Fragen wollen wir nun
nachgehen.

Wie oben bereits festgelegt, gelte

. _J 2 falls N(ZO) =1,
s=p+qVi= {zg falls N(zo) = —1.

Esists > 1 und N(s) = 1, und nach Satz 4 stimmen die Einheiten e mite > 1, N(¢) = 1
mit den Potenzen s™, m > 1 iiberein. Gesucht werden Losungen von u? — dv? = —c mit
c=d—1>0und u,v > 0.

Definition: Zwei positive Losungen (u,v) und (u42,v,) von (11) gehéren genau dann
zur gleichen Schar, wenn es ein m € Z gibt, so daB u; + v,v/d = (4, + v,V/d)s™. Die
kleinste positive Losung einer Schar bezeichnen wir als Anfangslésung dieser Schar.

Offenbar liefern die Scharen eine Klasseneinteilung der Menge aller positiven Losungen
von Gleichung (11). Jede Schar enthilt unendlich viele Losungen. Ist (1, v) eine Losung
von (11), aber keine Anfangslosung, so ist die in der Schar vorhergehende Losung
gegeben durch

(u+oVd)s™ = (u+oVd)(p — qVd) = (up — vgd) + (vp — ug)Vd.
Es sind also folgende Bedingungen erfiillt:

(i) up —vgd > 0 bzw. u/v > dq/p,
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(i) vp — ug > 0 bzw. u/v < p/q.

Sind fiir eine Losung (u,v) diese Bedingungen nicht erfiillt, so muf} es sich um eine
Anfangslosung handeln und umgekehrt.

Bedingung (ii) ist fiir alle positiven Losungen erfiillt, da aus u?> — dv? = —c folgt
(u/v)? = d—c/v* < d und andererseits, wegen p*>—dg® = 1, gilt: (p/q)* =d+1/g* > d.
Aus p? —dg*> = 1 folgt (dg/p)* = d — d/p*. Wegen (u/v)? = d — ¢/v? ist somit die
erste Bedingung genau dann erfiillt, wenn c¢/v? < d/p? bzw. v? > p?c/d. Eine positive
Losung ist somit genau dann Anfangsldsung einer Schar, wenn v* = (1*+c¢)/d < p*c/d
oder gleichwertig, wenn u? < c(p?> — 1) = (d — 1)(p* — 1).

Die Existenz dieser Schranke bedeutet, da} es zu gegebenem d nur endlich viele Anfangs-
l6sungen und somit nur endlich viele Scharen von Lésungen gibt. Mit einem einfachen
Suchprogramm lassen sich diese ermitteln. Aus dem Blickwinkel der Faktorisierbarkeit
besagt dieses Ergebnis, daB 1 — d nur endlich viele wesentlich verschiedene Faktorisie-
rungen der Art 1 —d =2z-Z,z=u+ vﬂ, u,v > (0 gestattet. Dabei sehen wir zwei
Faktorisierungen als im wesentlichen gleich an, wenn sich die eine Zerlegung aus der
anderen durch Multiplikation der Faktoren mit Einheiten ergibt.

Teil (i) des folgenden Satzes haben wir bereits bewiesen.

Satz 10:

(i) Die Gleichung (11) hat nur endlich viele Losungsscharen, die jeweils aus den Ele-
menten zs"', m > 0, z eine Anfangslosung, bestehen.

(i) Fiir ein Element z = u + vvd € Z|d) mit N(z) = 1 — d sind dquivalent:

(1) z ist Anfangslosung,

Q) u,v>0u> < (d-1)p?—1)=d(d - 1)g%,
(3)u,v >0, dv* < p*(d — 1),
AVd-1<z<syd—1.

Beweis: Es bleibt, die zusitzlichen Aussagen in (ii) zu zeigen. Ist z = u+ ovd, u,v >0

gegeben, so hatten wir bereits die Aquivalenz von (1) mit den gleichwertigen Bedingun-
gen

W <(d-1)(p*—1) und v* < pzé—g—l—

erkannt. Aus p> — dg*> = 1 erhilt man u?> < (d — 1)dg* fiir die erste Ungleichung.
Wiire u? = (d — 1)dg?, so miiBte d(d — 1) ein Quadrat in N sein, also auch d wegen der
Teilerfremdheit von d und d — 1. Somit gilt u> < (d — 1)dg*. Analog fiihrte die Annahme

Uzzpzd;I

iber (dv)? = p*d(d — 1) zum Wlderspruch W1r kommen jetzt zur Aquivalenz von
(1) und (4). Sei z Anfangslosung Dann Vd—1 < 1+Vd<zundz =u+0vvd <
g\/d(d — 1) +pv/d —1 =svd — 1. Sei umgekehrt N(z) = u+v\/_ Yu—vvd) =1-d
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und die Ungleichungen in (4) erfiillt. Aus N(z) = 1 —d folgert man |u| < |v| - Vd. Aus
v < 0 folgte z < 0. Somit v > 0, und aus -z = d — 1/z < v/d — 1 schlieBt man auch
u > 0. Die andere Ungleichung liefert zs~! < \/d — 1, d.h. z ist eine Anfangslosung. []

Als Beispiel betrachten wir d = 5. Es ist zo = 2 + /5 die Grundeinheit von Z[y/5]
mit N(zo) = —1. Somit erhalten wir s = z2 = 9 +4+/5 und daraus die Abschitzungen

v < 8 fiir die Anfangslosungen z = 1+ v+/5. Man ermittelt leicht alle Anfangslsungen

14++/5,4+2V5, 11 +5V5.

Die Abschétzung
d—1
2 2
v < pr—,
P4

aus der v < p — 1 folgt, besagt, daB} es hochstens (p — 1) verschiedene Anfangslosungen,
damit auch Losungsscharen fiir die Gleichung (11) gibt. Wie man diese grobe Anzahl-
abschitzung verbessern, eventuell sogar zu einer genauen Anzahlbestimmung ausbauen
kann, scheint ein schwieriges Problem zu sein, und wir gehen, abgesehen von den fol-
genden Bemerkungen, nicht weiter darauf ein.

Satz 11:

(i) Ist z eine Anfangslosung von (11), so auch w = —Zs.

(ii)Ist d — 1 eine Primzahl oder d = 2, so gibt es hochstens zwei Losungsscharen,
die zu den Anfangslosungen z = 1 + /d und —zs = (v/d — 1)s gehéren. Diese
Anfangslosungen stimmen genau fiir d = 2,3 tiberein.

Beweis: (i) folgt sofort aus Satz 10, (ii). Die beiden in (ii) angegebenen Anfangslésungen
stimmen genau dann iiberein, wenn (1++/d)? = (d—1)s gilt. Das ist der Fall fiird = 2,3,
aber auch nur hierfiir, da notwendigerweise d — 1 ein Teiler von 2 sein muB. Es bleibt
zu zeigen, daB es keine weiteren Anfangslosungen gibt. Fiir d = 2 wurde diese Aussage
in Abschnitt 4 gezeigt. Sei jetzt | = d — 1 eine Primzahl > 2 und z = u + v\/d eine

Anfangslosung. Aus N(z) = —I folgt #> = v? mod I und, da [ Primzahl ist, u = ev mod
[ fir e = +1. Wir setzen u = ev + xI. Wegen u > v haben wir x > 0. Einsetzen in
N(z) = —I und Kiirzen durch —! fithrt zu der Gleichung v?> — 2evx — x%] = 1, aus der

wir (v — ex)? —x2(I + 1) = 1 erhalten. Ist x = 0, so ergibt sichv =u =1,z = 1 + V/d.
Sei dann x > 0 und zunidchst € = 1. Aus u < v(l 4+ 1) schlieft man x < v und dann,
daB 7 := (v — x) + vv/d eine Einheit mit y > 1, N(n) = 1 ist. Somit p < v — x und
angesichts von Satz 10, (ii) fiihrt dies zum Widerspruch v < p < v — x. Somit muf}
e = —1 sein. Jetzt ist 7 = v + x + x/d eine derartige Einheit, was = s’ nach sich

zieht. Weiterhin erkennt man: (v/d — 1) =z, d.h. z = [—(1 + V/d)s] - s'~! und folglich
z = (v/d — 1)s, da z eine Anfangsldsung sein sollte. [J

Die Uberlegungen im Beweis zeigen, daB ganz generell die Zuordnung z — —Zs eine
involutorische Selbstabbildung in der Menge der Losungsscharen induziert (man beachte,
daBl w = —Zs seinerseits z = —Ws liefert). Diese Involution kann auch in anderen Fillen
Fixpunkte aufweisen: fiir d = 5 sieht man, daB die Anfangslosungen 14++/5 und 114-5+/5
durch diese Involution zugeordnet werden, wihrend 4 + 2v/5 ein Fixpunkt ist.
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Bisher haben wir die Losungen der Gleichung (11) in beliebigen natiirlichen Zahlen
u,v untersucht. Im Hinblick auf die Ausgangsgleichung n(n + 1) = dk(k + 1) dieser
Arbeit miissen wir aber speziell nach ungeraden Losungen u =2n+1,v =2k +1 >3
von (11) suchen. Das erfordert, fiir die Elemente in einer Lésungsschar die Paritit der
Koeffizienten u, v festzustellen. Hierbei stellt sich eine Abhingigkeit der Paritiit allein
von der Kongruenzklasse von d mod 8 und von g mod 2 heraus mit s = p + g/d wie
bisher. Wir haben einige Fille zu unterscheiden.

Fall 1: d = 2,3 mod 4

(i) Fiir jede Losung von #? — dv? = 1 —d sind u und v ungerade.
Beweis: Wir verwenden die Tatsache, daB x> = 0,1 mod 4 ist je nachdem, ob x

gerade oder ungerade ist. Aus #?> = dv? + (1 — d) mod 4 ergibt sich in den beiden
Fillen, dal u, v ungerade sein miissen.

(ii) Die Losungsschar zu 1+v/d enthilt (1+Vd)(p+qVd) = z) = (qd+p)+(p+9)v/d als
kleinstes Element mit ungeraden Koeffizienten > 3. Jede andere Losungsschar enthilt
nur Elemente mit derartigen Koeffizienten. Insbesondere liegt noch die Losungsschar

zuw; = (Vd—1)(p+gvd) = (gd —p)+ (p—q)Vd vor. Es ist w, # z, fird # 2,3.

Fall 2: d =1 mod 4

(i) In einer Losungsschar sind entweder alle Koeffizienten gerade oder alle ungerade.
Beide Fille treten auf. Ist d = 9 mod 16, so gibt es keine Losungsschar mit geraden
Koeffizienten.

(ii) Die Losungsscharen zu 1++v/d und (v/d — 1)s enthalten nur Elemente mit ungeraden
Koeffizienten.

Beweis: Aus N(u+vvd) =1—d,d =1 mod 4 folgt ¥> = v? mod 4 und daraus
u = v mod 2. Entsprechend schliet man fiir s = p + gvd aus p* = q* + 1 mod 4,
daB p ungerade und g gerade ist. Hat eine Anfangslosung z gerade Koeffizienten, so
gilt dies auch fiir alle anderen Elemente zs™, m > 0. Hat eine Losung z = u + vVd
ungerade Koeffizienten, so folgt fiir zs = t' + v'vd, u' = up + dqu = up = 1 mod
2, d.h. in der Losungsschar zu einer derartigen Anfangslosung treten nur ungerade
Koeffizienten auf. Speziell gilt dies fiir die Scharen zu 1 + Vi, (Vd = 1)(p +qVd).
Fir d = 5,13,17,21,29, 33,37 treten beide Fille auf. Sei dann d = 9 mod 16 und
N(u + vvd) = 1 —d mit u,v gerade. Wir setzen u = 2%, v = 270 und erhalten

d—-1
2 _ger G T
- —do 7

Betrachtung mod 4 liefert die Gleichung 7> — 7° = 2 mod 4, die aber keine Losung
besitzt.

Fall 3: d = 0 mod 4
31:d =4 mod 8
Die Aussagen im Fall d = 2,3 mod 4 gelten auch hier.
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Beweis: An Quadraten mod 8 gibt es nur 0,1,4. Aus N(z) = 1 — d erhdlt man im
vorliegenden Fall 4> = 4v? — 3 mod 8. Einsetzen der moglichen Quadrate zeigt, daB
u?> = v? = 1 mod 8 sein muB, d.h. u und v sind ungerade. Die Aussage (ii) des Falls 1
ist von allgemeiner Natur.

3.2: d =0 mod 8

Fiir jede Losung ist u ungerade, weiterhin ist p ungerade.

Der Beweis erfolgt aus der Betrachtung von N(z) = 1 —d und N(s) = 1 modulo 8.
3.2.1: g gerade

In einer Losungsschar haben alle Koeffizienten v diesselbe Paritit. Beide Fille treten
auf. Ist d — 1 eine Primzahl, so sind fiir alle Losungen die Koeffizienten ungerade. In
den Losungsscharen von 1 + v/d und (v/d — 1)s sind alle Koeffizienten ungerade.

Beweis: Fiir zs = u' +v'+/d ergibt sich v/ = pv + gqu = v mod 2. Die Koeffizienten von
(v/d — 1)s sind ungerade. Nach Satz 11 gibt es keine weiteren Scharen, falls d — 1 eine
Primzahl ist. Fiir d = 56 berechnet man s = 15 + 21/56 und u. a. eine Anfangslsung
z =13 +2/56.

3.2.2: g ungerade

In jeder Losungsschar gibt es eine kleinste Losung z; mit ungeraden Koeffizienten. Alle
anderen erhilt man in der Form z; - s*™, m > 0.

Beweis: Wir wissen bereits, dall stets der Koeffizient u ungerade ist, ebenso p. Fiir
zs = ' +v'\/d gilt v/ = v+ 1 mod 2. Hat die Anfangslosung z ungerades v, so ist
z, = z; im anderen Fall haben wir z; = zs. Fird = 8 ists = 3+ 8,z =1+ 8
und w = —Zs = 5 + 2/8 sind die einzigen Anfangslosungen. Im zweiten Fall folgt
zy =31+ 11/8.

AbschlieBend fassen wir die obigen Ergebnisse fiir die Losbarkeit der Gleichung
nn+1)=dk(k +1) (2)
Zusammen.

Satz 12: Ist d > 1, d keine Quadratzahl, so hat (2) unendlich viele Losungen. Die
Lésungen zerfallen in endlich viele Losungsscharen. In jeder Lésungsschar gibt es eine
kleinste Losung (ng, ko), aus der sich die anderen Losungen wie folgt ableiten:

2n+1+(2k+1)\/2=(2n0+1+(2k0+1)\/3)t"’, m>0

wobei t = s ist, auPer im Fall d = 0 mod 8, g ungerade, in dem t = s? gilt.

Fiir die aktuelle Berechnung kann man die Verfahren aus Abschnitt 4 verwenden.
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8 Der Fall d = ¢?

Zu untersuchen bleibt noch der Fall, daB d = e? eine Quadratzahl > 1 ist. Gleichung
(3) erhilt dann die Form

w —e?vt =1-¢é%. (12)

Es sei daran erinnert, dal wir ungerade Losungen u,v > 3 suchen. (12) 148t sich
umformen zu

w—et(v?—1) =1, (12a)
sowie zu
e’ — 1 = (ev + u)(ev — u). (12b)

Satz 13:

(i) Die Gleichung (12) hat keine Lésung mit u > e* — 2 oder v > e. Daher hat (2)
hochstens endlich viele Losungen, wenn d eine Quadratzahl ist.

(ii) Fiir e = p", p eine Primzahl, besitzt (2) keine Losung, fiir e = 2v, v ungerade > 3,
hat (2) die Losung n = v* — 1, k = (v —1)/2.

Beweis: Aus (12b) folgt im Falle der Losbarkeit u < e?2 —2 und v < e. Damit ist
(i) bewiesen. Zum Beweis von (ii), ¢ = p" folgern wir (siehe [8], S. 74) zunidchst aus
n(n+1) = p* k(k + 1) und Teilerfremdheit von # und n + 1, daB p*|n oder p*|n + 1
gelten muB. In jedem Fall ergibt sich p?” < n + 1. Nach (i) mit u = 2n + 1 erhalten wir
in 2n + 1 < p* — 2 einen Widerspruch dazu. Die Aussage fiir ¢ = 2v ergibt sich durch
Einsetzen und wurde bereits im Abschnitt 3 erwéhnt. [J

Um weitere Aussagen iiber Losbarkeit und Losungen zu erhalten, betrachten wir die
Gleichung (12a) als Pellsche Plus-Gleichung fiir die Unbekannten u,e und d = v? — 1.
Fiir v > 2 ist bekanntlich d kein Quadrat. Aus N(v + V0?2 — 1) = 1 erhilt man zy =
v + vv? — 1 als Grundeinheit, und u + ev/v? — 1 erweist sich als Potenz von z,. Wir

setzen
U (V) + ep(v)VV? -1 = (v+\/vz—~l) , m>0. (13)

Nach den Uberlegungen im Abschnitt 4 haben wir mehrere Moglichkeiten, u,,(v) und
en(v) auszurechnen. Zunichst erhalten wir aus der Anwendung der Konjugation in

Z[vv? — 1] die Formeln (m > 0)

=) (- o)

um(v) = 5 y
14
(U+\/z;2—__—])’n B (v_\/v_z_:_l)m ( )
en(v) =
2vv? — 1

Als Funktion von v lassen sich u,, und e, durch Polynome beschreiben, und zwar durch
die wohlbekannten Tschebyscheff-Polynome 1. und 2. Art, die von grofler Bedeutung fiir
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die Numerik und Approximationstheorie sind, vgl. [4], S. 84 ff, 277 ff. Die folgenden
Aussagen ergeben sich unmittelbar aus (14), vgl. auch [4], loc. cit.

(i) en(um(v))em(v) =eum(v), n,m>0, (15)
(ii)) em(v)v — upy(v) =e,—1(0), m>1,

Die Grundeinheit v + v/v% — 1 liefert nach den Uberlegungen in Abschnitt 4, daB u,,(v)
und e,,(v) die Rekursionsformel

mit den Anfangsbedingungen uy = 1, u; = v, eg = 0, e; = 1 erfiillt. Alternativ lassen
sich u,,(v) und e, (v) wie folgt beschreiben:

un()\ (v v*—1\" (1
(em(v))—<1 v 0/’ = U (17)
Ist v ungerade, so ist wegen (12a) auch u ungerade. Fiir m > 2, v > 3 sieht man
Un(v) >3, ey(v) > 1.

Der Beweis des folgenden Satzes ergibt sich direkt aus den obigen Uberlegungen und

(15), Gi).
Satz 14: Sei d = e? > 1.

(i) Die Gleichung n(n+ 1) = dk(k + 1) hat genau dann eine Losung, wenn e = e,,(v)
fiir ein ungerades v > 3 und m > 2 ist.

(ii) Ist e = ey (v), v ungerade, v > 3, m > 2, dann ist (u,(v),v) eine Losung von (12),
und die Faktorisierung in (12b) ist von der Form e* — 1 = ey, (V) - ey 1(0).

Fiir m = 2 erhélt man u,(v) = 20 — 1, e,(v) = 2v. Daraus ergibt sich noch einmal die

Existenz von Losungen fiir e = 2v, v ungerade, v > 3.

In der Tabelle 3 sind die Werte e,,(v) fir 2 < m < 7 und 3 < v < 15 mit zugehorigen
U = uy(v) (unter e, (v)) angegeben.

Die Kettenbruchentwicklung von v/2 liefert die Niherungsbriiche 1, 3/2, 7/5, 17/12,
41/29,99/70 ... Bezeichnen wir den Zihler des i-ten Niherungsbruches mit p;, so fillt
auf, daB u,,(3) = pom. Der Beweis fiir diese Beziehung folgt aus dem Vergleich der
Rekursionsformel fiir 1, (v) und p;. Es lassen sich weitere Zusammenhinge zu Ketten-
bruchentwicklungen entdecken, denen wir aber hier nicht nachgehen wollen.

Zu d = e? existieren offenbar genau dann weitere Losungen von Gleichung (12) und
somit von Gleichung (2), wenn der Wert e mehrfach in der Tabelle der ¢,,(v) enthalten
ist. Um solche Werte zu finden, betrachten wir zunichst die e,,(v) modulo 4. Aus der
Rekursionsformel ergibt sich unabhingig von v:

emia = 20€my3 — €myy = 20(20€p42 — €myy) — 208y + € = €y mod 4.
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v\m 2 3 4 5 6 7
3 6 35 204 1189 6930 40391

17 99 577 3363 19601 114243

5 10 99 980 9701 96030 950599

49 485 4801 47525 470449 4656965

7 14 195 2716 37829 526980 7338631

97 1351 18817 262087 3650401 50843527

9 18 323 5796 104005 1866294 33489287
161 2889 51841 930249 16692641 299537289

11 22 483 10604 232805 5111106 112211527
241 5291 116161 2550251 55989361 1229215691

13 26 675 17524 454949 11811150 306634951
337 8749 227137 5896813 153090001 3974443213

15 30 899 26940 807301 24192090 724955399
449 13455 403201 12082575 362074049 10850138895

Tabelle 3:  Die Werte e,;(v) und u,,(v)

Weiter gilt
ep = 0 mod 4,

e; = 1 mod 4,
ey =2ve; —ey=2v=2mod 4
ez = 2ve;, —e; = —e; = 3 mod 4.

Somit ist e, (v) = m mod 4 fiir alle ungeraden v und alle m. Nun enthilt die Spalte
m = 2 der Tabelle 3 genau alle natiirlichen Zahlen groBer oder gleich 6, die kongruent
zu 2 modulo 4 sind. Somit muf} jeder Wert e,,(v) mit m = 2 mod 4 auch in der Spalte
m = 2 auftauchen. Genauer gilt nach diesen Uberlegungen

Satz 15: Ist m = 2 mod 4, so gilt ¢,,(v) = ex(v") mit v' = e,y (v)/2.

Zu jedem Wert e, der in Tabelle 3 in einer der Spalten mit m = 6, 10, 14, ... zu finden
ist, hat also Gleichung (12) und folglich Gleichung (2) mindestens 2 Losungen. Der
kleinste derartige Wert ist eg(3) = 6930 = ¢,(3465).

d = 6930% = 48024900 ist demnach die kleinste Quadratzahl, fiir welche die Gleichung
u?> — dv?> = 1 — d zwei verschiedene Losungen hat, nimlich (u;,v,) = (19601, 3)
und (up,v,) = (24012449, 3465). Unsere Ausgangsgleichung n(n+ 1) =d - k(k + 1)
hat entsprechend die Losungen (n;, k;) = (9800, 1) und (13, k) = (12006224, 1732).
Weitere Losungen existieren fiir diesen Wert von d nicht.

Wir haben somit unendlich viele Quadrate ermittelt, fiir die Gleichung (2) zwei Losun-
gen hat. Ob es weitere Quadratzahlen mit dieser Eigenschaft oder sogar Quadratzahlen
mit drei oder mehr Losungen gibt, sind offene Fragen. Systematische Suche mit dem
Computer hat ergeben, daB in jedem Fall d > 36 - 10* sein miite. Bei dieser Suche
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haben sich (15), (i) und die folgenden, direkt zu verifizierenden Aussagen als niitzlich

erwiesen:
. _ [ m mod 32 falls m ungerade
= ’ 1
(i) em(v) {m -v mod 32 sonst. (18)
. (=-1"-1 (2v)™
~ 7 - —~= > 0.

(ii) > < en(v) < 0= 1)’ m>0
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