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Aufgaben

Neue Aufgaben
Losungen sind erbeten bis zum 10. August 1995 an:
— Peter Gallin, Tiifenbach 176, CH-8494 Bauma

oder

— Hans Walser, Gerlikonerstrasse 29, CH-8500 Frauenfeld

Aufgabe 1093: Bei welchen Vierecken ist das von den Mittelsenkrechten der vier Seiten
gebildete Vierseit kongruent zum Ausgangsviereck?

Beispiel:

Hans Walser, Frauenfeld, CH

Aufgabe 1094: Man zeige, dass fiir alle natiirlichen Zahlen n gilt:
()4£n+\4/n_ﬁ)4 1 (&n 3\3/’_1_:_[)1
2
(n + l) ce< (n + )
n n

(Mit e wird wie iiblich die Eulersche Zahl bezeichnet.)

R. Bil, Kiel, D
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Aufgabe 1095 (Die einfache dritte Aufgabe): Wie lisst sich die gewichtete arithme-
tisch-geometrische Ungleichung

Py P <px+(1-ply, O<p<l, x>0, y>0, x#y
zum Beweis der Ungleichung

a

a\ b
a+b<<b—b) , a>0, b>0, a#b

heranziehen? (Vgl. Aufgabe Nr. 987 in der Losung von Nr. 1081 in diesem Heft.)
H.-J. Seiffert, Berlin, D
Losungen zu den Aufgaben in Heft 1, 1994

Aufgabe 1081. Es seien a und b zwei verschiedene positive reelle Zahlen, aus denen
elementare Mittelwerte gebildet werden. Mit den Bezeichnungen

G(a,b) = Vab , A(a,b):a;b,
_a—b 4 =
L(ﬂ,b) = m 5 I(a,b) =€ (EF)
beweise man folgende Gleichungen
g . N
ca (Y5 (555) ) —A@h), ()
k=1
1 ja—b\*
A(a,b) —L(a,b
G(a,b) -exp( ( L)(a b)( ) ) =1I(a,b) . (3)

H.-J. Seiffert, Berlin, D

Auswertung der eingesandten Losungen. Es sind 10 Losungen eingetroffen: Francisco
Bellot (Valladolid, E), G. Bercea ( Miinchen, D), Jany C. Binz (Bolligen, CH), Friedhelm
Gotze (Jena, D), Walther Janous (Innsbruck, A), Hans Kappus (Rodersdorf, CH), Dieter
Koller (Ziirich, CH), Michael Vowe (Therwil, CH), Johannes Waldmann (Jena, D) und
ein unbekannter Absender aus A-4600 Wels.

Alle Einsender verwenden die Reihenentwicklungen fiir In(1+x?) und artanh(x), welche
sich in (1) und (2) bereits ankiindigen. Die verschiedenen Losungen unterscheiden sich
nur in ihrer Ausfiihrlichkeit und Ubersichtlichkeit. Wir folgen hier im wesentlichen der
Losung von Friedhelm Goétze:
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Lésung. Zum Beweis von (1) und (2) benutze man die Potenzreihen

E — =—log(1-x%), x*<1, (4)
:—1 ( ), N '
—on+1 2 P\I—x b<x<ld ()

Ausserdem wird im folgenden bei allen Umformungen a > 0, b > 0, a # b vorausgesetzt.

Setzt man x = Z%Z, so gilt |x| < 1 und die Konvergenz der beiden Potenzreihen ist
gesichert. Aus (4) ergibt sich zunéchst mit x> = (2=7 +£) und 1 — x? = ( a‘_‘f;’)z

01 ja—b\*F 1 4ab a+b A(a,b)

Z —( ) = —5log —— =log = log ——~ ,

— 2k\a+b 2 " (a+D) 2\/— G(a,b)

woraus die Gleichung (1) durch Exponentieren folgt.

Fiir die Reihe aus (2) findet man mit Hilfe von (5) und }—J_“—’; = —‘;—

- | 2k atbh & 1 g — by 2K
;2k+l<a+b) :'l+a__'5kzz;)2k+1(a+b>
= —1 Zt:-%log% (6)
:-—1+log<giz a';): (I;(([Zf;)),

woraus die Gleichung (2) wiederum durch Exponentieren folgt.
Ausgehend von (6) gilt andererseits

b2*  a+b loga—logh

Z2k+1<a—|—b) ~ T2 a-b -

1 A(a,b) — L(a,b)
=4ty T T T Ly

Wegen dieses Zusammenhangs kann man die Gleichung (2) auch in Gestalt von (3)
angeben, womit alles bewiesen ist.

Anmerkungen. Der Verfasser der Aufgabe mochte darauf hinweisen, dass mit Hilfe von
(1), (2) und (3) die folgenden drei Ungleichungen rund um das sogenannte “identic
mean” I(a, b) einfach zu beweisen sind:
G-A<L-I (H Alzer, 1986) ,
G A

=32,
F+T > 2

() <(0)"
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Ausserdem ist mit (1) und (2) die Aufgabe Nr. 987 (von H. Alzer (Waldbrol, D) in El.
Math. 44 (1989), p. 83) in folgender Weise sehr elegant zu losen.

Aufgabe 987. Es sind beste Schranken r und s zu finden, so dass gilt

(7@ C) < ()T g

Losung. Man betrachte die Abschidtzung

00 _p 2k @
05;(2_112_21(1_1)(24-17) Sz(élﬁ”zkl—l)zl”logz ’

woraus durch Exponentieren und mit Einbezug von (1) und (2) die Ungleichung

A
1< =<
=7=

N

folgt. Dabei sind 1 und § die bestmdglichen Schranken, was im Vergleich mit (7) auf
r = e und s = 2 fiihrt.

Aufgabe 1082. Es sei p > 2 eine natiirliche Zahl. Man beweise oder widerlege die
folgende Aussage iiber den ganzen Teil zweier Terme: Fiir alle n € N gilt

7 + (n+1)F| = |(2Pn+27"1 = 1)7].
Hans Kappus, Rodersdorf, CH

Auswertung der eingesandten Losungen. Zu dieser Aufgabe ist keine Losung einge-
gangen. Joachim Klose (Bonn, D) kommt in einer umfangreichen Untersuchung zum
Schluss, dass die Zahlen p, fiir welche die Aussage der Aufgabe nicht zutrifft, hochstens
“sparlich” und “isoliert” auftreten konnen. Ein Gegenbeispiel wurde allerdings nicht
gefunden, so dass die Aufgabe immer noch offen ist.

Aufgabe 1083 (Die einfache dritte Aufgabe). Um die Hohe h eines Ballons iiber dem
Boden zu bestimmen, werden von den Eckpunkten A, B und C eines bekannten, ho-
rizontalen Dreiecks aus die drei Hohenwinkel o, # und ~ gemessen, unter denen man
den Ballon von diesen Punkten aus sichtet. Man bestimme 4 nicht nur rechnerisch, son-
dern auch konstruktiv aus folgenden Daten: BC =a=13km; CA = b = 15 km;
AB =c = 14 km; a = 54.74°; 3 = 39.23°; v = 32.31°.

Rolf Rose, Magglingen, CH
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Auswertung der eingesandten Lésungen. Es sind sechs Losungen zu dieser Aufgabe
eingetroffen: Hans Irminger (Wetzikon, CH), Walther Janous (Innsbruck, A), Hans Kap-
pus (Rodersdorf, CH), Dieter Koller (Ziirich, CH), Georg Unger (Dornach, CH), Michael
Vowe (Therwil, CH). Im folgenden die Losung nach Michael Vowe:

Konstruktive Lésung: Wir bezeichnen den Fusspunkt des Ballons in der Dreiecks-
ebene mit F und die Strecken AF, BF und CF mit u, v resp. w. Wegen tana = h/u,
tan 5 = h/v und tan~y = h/w ergibt sich u: v =tan3 : tanc und u : w = tan~y : tan a.
Der Punkt F kann also mit Apolloniuskreisen konstruiert werden. Aus u und « ist dann
auch h konstruierbar.

Rechnerische Losung: Von Euler stammt eine Formel fiir die Berechnung des Volumens
V eines Tetraeders, dessen sechs Kanten 4, b, c, p, 4 und r gegeben sind [1]:

0 p2 q2 T2 1

pr 0 & b 1
288V2=1g*> ¢ 0 a* 1
2 b a> 0 1
1 1 1 1 0

Mit a = 13, b = 15, ¢ = 14, p = h/sina = h\/3/2, q = h/sin = h\/5/2,
r =h/siny = hy/7/2 und

V= %Gh: %\/21-8-6-7-h:28h
ergibt sich die biquadratische Gleichung fiir h:
505h* — 165564h* + (13- 14-15)> =0
mit den beiden Losungen fiir h: by = 7.3392... km und h; = 16.5524 ... km.

[1] R. Stirk: Beispiele zur Anwendung eines Computeralgebrasystems in der Geometrie. El. Math. 48 (1993),
108.

Erginzungen zu den Aufgaben 1070 und 1074

Aufgabe 1070. Ein Freund bringt mir einen achterférmigen Papierstreifen, gefertigt aus
einem um 360° verdrehten geschlossenen Band mit Einschnitten an gegeniiberliegenden
Stellen, so dass die Réander zwei in parallelen Ebenen liegende Kurven sind.

Die Randkurven sehen der Bernoullischen Lemniskate sehr &hnlich. Man bestimme den
Unterschied zwischen Lemniskate und der elastischen Achterschleife praktisch und prin-

zipiell.
Georg Unger, Dornach, CH
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Auswertung der Zuschriften. Nach einer Verldngerung der Einsendefrist von August
1993 auf August 1994 sind einige Beitrdge eingetroffen. Allen voran weist Rolfdieter
Frank (Darmstadt, D) darauf hin, dass bereits Leonhard Euler vor genau 250 Jahren das
Problem der elastischen Kurven gelost hat [1]. Sodann war der Aufgabensteller Georg
Unger (Dornach, CH) auf seiner Suche nach einer geschlossenen Parameterdarstellung
erfolgreich. Schliesslich hat sich Anne Drangeid (Ziirich, CH) zur Eulerschen Differen-
tialgleichung gedussert.

Auszug aus Eulers Schrift nach Rolfdieter Frank. In einem Brief an Euler wies 1742
Daniel Bernoulli darauf hin, dass die Energie, die ein gekriimmtes elastisches Band
enthilt, proportional ist zu f +ds (R = Kriimmungsradius, s = Bogenlinge,
L = Linge des Bandes) und dass dleser Ausdruck bei der elastischen Kurve ein Minimum
werden muss. Bernoulli fiigte hinzu: “Da niemand die isoperimetrische Methode (d.h. die
Variationsrechnung, die Euler begriindet hat) so vollkommen beherrscht wie Sie, werden
Sie dieses Problem ... gar leicht solvieren.” Euler 10ste das Problem wie folgt:

: - : _ (1+(Z)
Ist die Kurve durch y = y(x) gegeben, so gilt R = ;7 und ds = /1 + (v)%dx.

Dabher ist L ° (y”)2
/0 ﬁds:/x] ———-—(1+(y,)2)%dx, (1)

und dieser Ausdruck muss ein Minimum werden unter der Nebenbedingung

/xxz,/1+(y)2dx=.—z,. 2)

Mit den Methoden der Variationsrechnung, die im néchsten Abschnitt genauer dargelegt
werden, folgt hieraus bei geeigneter Wahl des Koordinatenursprungs die Differential-
gleichung
/ = a? —c? + x?
Ve -2 -+

welche nicht elementar integrierbar ist. Jede ihrer Losungskurven ist nur fiir —c < x <¢
definiert und hat an den Randstellen x = ¢ senkrechte Tangenten. Wegen i/ (x) =
Y/ (—x) ist sie punktsymmetrisch zu ihrem Schnittpunkt mit der y-Achse. Die folgende
Figur zeigt das Ergebnis einer numerischen Integration mit ¢ = 4, 2 = 3 und y(0) = 0.

(3)

y
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Indem Euler die rechte Seite der Differentialgleichung (3) in eine Potenzreihe in v/c2 — x2
entwickelt und dann gliedweise integriert, erhilt er

_/vﬁ_wa1123& 12.32 5 ¢4 12.32.52 7 (©

B 22 1 222 2242 3 4g° 22.42.62 5 8ab )
fiir jede Losungskurve durch den Koordinatenursprung. Ist diese nun die Hilfte einer
geschlossenen Acht, so gilt y(c) =0, d. h. v := 2%22 muss die Gleichung

1=

v’ + v

7
-6

N N

13 1-135 1-1-3-3
22 2-244 2-2.4-4.

erfiillen. Hieraus berechnet Euler v ~ 0.835934. Fiir den Winkel ¢ zwischen den beiden
Tangenten im Kreuzungspunkt gilt

® a? — ¢? 1—-2v
tan — = 1/ (0) = = :
2 cv2a2 — 2 Vv —v?

Dies ergibt ¢ ~ 81.365°. Die folgende Figur zeigt die zu diesem Wert von v und ¢ = 4
gehorige Losungskurve als halbe Acht im Innern der in der Aufgabenstellung angespro-

chenen vollstindigen Bernoullischen Lemniskate y = i—vlfi V=2x2 — 2 + v/8c2x2 + ¢4,
welche einen Kreuzungswinkel von 90° aufweist.

y

Eulersche Differentialgleichung nach Anne Drangeid. Das vorgegebene Problem ist eine
Extremalaufgabe mit Nebenbedingung: Das Integral (1) f G(x,y,v,y")dx soll un-

ter der Nebenbedingung (2) f “N(@x,y,y,y)dx = L extremal werden. Nach einem
Satz von Euler [2] lédsst sich die Nebenbedingung durch Emfuhrung eines Lagrange-
Multiplikators A so einbauen, dass nur noch das Integral f H(x,y,y,y")dx mit
H = G + AN extremal gemacht werden muss. Durch Betrachten von Nachbarfunktionen
von y = y(x) erhdlt man daraus die Eulersche Differentialgleichung

d2
; Hy, + -——Hyn =0.
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Dabei wird jeweils nach den im Index angegebenen Variablen partiell abgeleitet. Da hier
H nur nur von v/ und i’ abhingt, ist zunichst einmal H, = 0, was eine erste Integration
iber x erlaubt und eine Konstante C; zur Folge hat:

Iiy""i

——Hyr =Ci. (4)

Da H(y/,y") auch von x nicht abhingt, ist es von Vorteil, in (4) die totale Ableitung

nach x auszufiihren:
/ 7
H ;r — Hy//y/y — Hyuyu = C1 .

Multipliziert man diese Gleichung mit y”” und addiert links 0 = Hyy" — Hypy”,
gibt sich Hyy" + Hyy/"' — Hyy" —y'Hyryy' — y'Hyr oy’ = Cly” was ein totales

Differential p
(H=y'Hy) =Ciy’
darstellt und eine erneute Integration erlaubt:
H—-y'Hy =Ciy/ +C,.

Jetzt werden die konkreten Integranden

y” und N =,4/1 /)2
G,y = s )i ) + ()

aus (1) und (2) in H = G + AN eingesetzt, was die Differentialgleichung

e ,
T+ i V! y(l y’)z Y+

liefert, die noch etwas iibersichtlicher dargestellt werden kann:

ne 23y Gy +GC
W=+ (A~ )

Diese Differentialgleichung wird fiir C; = 0 von i/ aus (3) erfiillt, wobei C, und A durch
a und c festgelegt werden.

Die Bernoullische Methode nach Georg Unger. Jakob Bernoulli hat vor genau 300 Jahren
[3] einen ganz anderen Weg zur Losung des Problems der Elastica gewihlt. Wihrend
Euler die Biegeenergie zu einem Minimum macht, verwendet Bernoulli die Proportio-
nalitit von Kriimmung und Biegemoment. Unger verwendet diese Methode und kommt
so sehr rasch auf eine Differentialgleichung fiir die gesuchte Kurve: Das elastische Band
sei im Punkt P(x/y) so eingespannt, dass die Tangente an das Band mit der x-Achse
den Winkel 7 einschliesst. Das Band gehe durch den Ursprung. Dort greife die zur x-
Achse parallele Kraft K an. Dann ist das Biegemoment beziiglich P einerseits —K -y
und andererseits f- 4T, wobei s die Bogenlinge des Bandes und f eine Materialkonstante
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bedeuten. Um auf eine Differentialgleichung fiir 7(s) zu kommen, differenziert man
—K -y = f- % nach s und verwendet %15’- = sin 7:

2
—K-sinT:f%. (5)

Diese Differentialgleichung ist strukturgleich mit derjenigen fiir das mathematische Pen-

del mit dem Auslenkungswinkel 1, der Pendelldnge [, der Gravitationskonstanten g und
der Zeit t:
d>y

Nun multipliziert man die Gleichung (5) mit ‘;—g und kann sie dann nach s integrieren:

K~cosr+C:f-(g—T—)2.

2 \ds
Setzt man C = —K cos « so ergibt sich
d
l<d—T)2 = E(COST—COSQ) oder ds = T :
2%ds f zfl-(-(cos T — COS )

Weil fiir 7 = « die Ableitung %Z— = 0 wird, bedeutet a den Steigungswinkel der Wende-
tangente. Verwendet man jetzt dx = dscos T und dy = dssin7 und setzt den Grossen-
faktor %{S = 1, so erhilt man eine Parameterdarstellung der gesuchten Kurve:

t

¢ cos TdT sin 7dT
x(t) = und y(t) = - (6)
0 V/COST —Ccos 0 V/COST — COS

Mit Hilfe der Elliptischen Integrale erster und zweiter Art

|
5

o , ®
F((I),m)——-/ (l—msinzu)*idu und E(‘I),m):/ (1 —msin®v)*dv
0 0

kann man diese Parameterdarstellung geschlossen schreiben. Dazu wird in (6) die Sub-

stitution .y
sin 3

siny = —
sm%

ausgefiihrt. Damit erhélt man nach lingerer Rechnung

x(v) = \/§<2E (v, sin %) — F(v,sin %)) und y(v) = 2v2(1 — cos v) sin % .

Die folgende Figur zeigt die Losungskurven fiir die Wendetangentenwinkel o = i '-3—(’7+7-,

wobei i € {1,---,8}. Den Steigungswinkel 130.7° hat man numerisch so bestimmt,
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dass der erste Wendepunkt gerade auf die y-Achse fillt. Daraus berechnet sich durch
2(130.7° — 90°) = 81.4° der bekannte Kreuzungswinkel der geschlossenen Acht.

(1] J. Bernoulli u. L. Euler: Abhandlungen iiber das Gleichgewicht und die Schwingungen der ebenen elasti-
schen Kurven, Ostwalds Klassiker der exakten Wissenschaften, Leipzig 1910.

[2] W.I. Smirmnow: Lehrgang der héheren Mathematik, Teil 1V, Deutscher Verlag der Wissenschaften, Berlin
1968.

{3] C. Truesdell in Euler: Opera Omnia 2.

Entgegnung zur Losung von Aufgabe 1074 von Klaus-Dieter Drews, Rostock, D.

In der Aufgabe 1074 (El. Math. 48 (1993), p. 80) wurden den ersten beiden Potenz-
gesetzen Logarithmengesetze als Partner gegeniibergestellt. Fiir das dritte Potenzgesetz
sollte ein entsprechender Partner noch gefunden werden. Angeregt durch die Schluss-
bemerkung in der Losung zur Aufgabe 1074 (El. Math. 49 (1994), p. 83) analysiere
ich hier die Herleitbarkeit des dritten Potenzgesetzes und die vermeintliche Unnotigkeit
seines Partners.

Wir vermeiden weitgehend die Schreibweise 4" und betrachten Funktionen F (a,7) mit
positiven reellen Zahlen a und n sowie die sogenannten Potenzgesetze

F(a,n)-F(a,m) =F(a,n+m), (1)
F(F(a,n),m)=F(a,n-m), (2)
F(a,n)-F(b,n) =F(a-b,n). (3)

1. Gleichung (1) ist die Funktionalgleichung der Exponentialfunktionen. Wihlt man
die positive reelle Zahl F (a, 1), so besitzt (1) die einzige in n stetige Losung

F(a,n) = (F(a,1))".
Fiir F(a, 1) # 1 besitzt u = F(a,n) in n eine Umkehrfunktion n = ¢(a, u), und aus (1)
folgt dquivalent das dem Potenzgesetz (1) gegeniiberstehende Logarithmengesetz:
¢(a,u-v) = ¢(a,F(a,¢(a,u)) - F(a, $(a,v)))
= ¢(a7F(a7 ¢(aa u) + d)(a’ U)))
= ¢(a,u) + ¢(a,v).
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Wegen der freien Wahl von F (4, 1) und F (b, 1) haben die Funktionen F (a,n) und F (b, n)
zunichst keine Beziehung zueinander. Sdmtliche stetigen Losungen von (1) konnen je-

doch auf eine einzige, z. B. auf F (e, n) (e ist die Eulersche Zahl) zuriickgefiihrt werden
durch

F(a,n):=F(e,n- ¢(e, F(ee’ D .a)),

F(e,1)

wobei man F(a,1) = —

-a gewdhlt hat.
Anmerkung la: Mit
F(a,n) = (2a)"

haben wir Beispiele von Funktionen, die zwar Gleichung (1), nicht aber Gleichung (3)
erfiillen.

Anmerkung I1b: Fordert man F(e,1) = e und damit allgemein F(a,1) = a, so stellt
dies einen Zusammmenhang zwischen den Anfangswerten der Exponentialfunktionen
F(a,n) und den Werten der linearen Potenzfunktion her. Dann gilt fiir die F (a,n) auch
die Gleichung (3):

F(a,n)-F(bn) =

2. Die Gleichung (3) ist die Funktionalgleichung der Potenzfunktionen. Durch die
Festlegung
F(a,n):=a"tn

konstruieren wir Losungen von (3). Dabei schrinken wir uns auf rationale Exponenten
InF (e,n) ein, damit die iiblichen Wurzelgesetze zur Verifikation von (3) herangezogen
werden konnen.

Anmerkung 2a: Mit 2
F(a,n) = a*"

haben wir Beispiele von Funktionen, die zwar Gleichung (3), nicht aber Gleichung (1)
und auch nicht Gleichung (2) erfiillen.

Anmerkung 2b: Fordert man F (e, 1) = €, so stellt dies einen Zusammenhang zwischen
den Anfangswerten der Potenzfunktionen F(a,n) und den Werten der Exponentialfunk-
tion e" her. Dann lassen sich fiir die F (a,7) auch die Gleichungen (1) und (2) mit Hilfe
der Wurzelgesetze beweisen.

3. Die Ausfithrungen zeigen, dass (1) und (3) unabhingige Axiome sind, andererseits
jedoch bei entsprechendem Aufbau gegenseitig beweisbar werden. Beides scheint mir
somit kein Grund fiir das Fehlen eines Partners von (3) zu sein. Wie den Gleichungen
(1) und (2) aquivalente Gesetze der Umkehrfunktion entsprechen, konnte dies auch bei
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(3) sein. Ist nun a = v (u,n) die Umkehrfunktion von u = F(a,n), so folgt aus (3)
dquivalent

P(u,n) - Y(v,n) = P(F (Y(u,n) - Y(v,n),n),n)
= ¢(F (¥ (u,n),n) - F(¢(v,n),n),n)
=(u-v,n).
Die Umkehrfunktion geniigt demnach derselben Funktionalgleichung!

Partner der Gleichung (3) ist also die Gleichung selbst; die Umkehrfunktion einer Potenz-
funktion u = F (a,n) = a" ist wieder eine Potenzfunktion. Man nutzt dies schon in der
Bezeichung a = v (u,n) = us. Damit folgt, dass der Partner zu a" - b" = (a - b)" das
Gesetz ui - vi = (u- v)% ist, was bei beliebigem n nur eine gednderte Schreibweise fiir
das gleiche Gesetz bedeutet.
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