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Aufgaben

Neue Aufgaben

Losungen sind erbeten bis zum 10 August 1995 an

- Peter Galhn, Tüfenbach 176, CH-8494 Bauma

oder

- Hans Walser, Gerlikonerstrasse 29, CH-8500 Frauenfeld

Aufgabe 1093: Bei welchen Vierecken ist das von den Mittelsenkrechten der vier Seiten

gebildete Vierseit kongruent zum Ausgangsviereck'?

Beispiel

Hans Walser, Frauenfeld, CH

Aufgabe 1094: Man zeige, dass fur alle natürlichen Zahlen n gilt

n + 1 (i^n)4
<e <

n + 1

(yn amV

(Mit e wird wie üblich die Eulersche Zahl bezeichnet)

R Bil, Kiel, D
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Aufgabe 1095 (Die einfache dritte Aufgabe): Wie lässt sich die gewichtete
arithmetisch-geometrische Ungleichung

xvyx~v <px+ (1 -p)y 0<p<l, x>0, y>0, x^y
zum Beweis der Ungleichung

(aa\^
a + b<l-g) fl > 0 fr>0, a^b

heranziehen? (Vgl. Aufgabe Nr. 987 in der Lösung von Nr. 1081 in diesem Heft.)

H.-J. Seiffert, Berlin, D

Lösungen zu den Aufgaben in Heft 1, 1994

Aufgabe 1081. Es seien a und b zwei verschiedene positive reelle Zahlen, aus denen
elementare Mittelwerte gebildet werden. Mit den Bezeichnungen

G(a,b) Väb A(«,b) ^,
L(a, b) a~\ J(a, b) e~l (£) a~b

v ' } loga-logb ' v ' ybbJ

beweise man folgende Gleichungen

(oo
+ / n — h\2k \^2k\7Tb) A^b)- O

(2)

H.-J. Seiffert, Berlin, D

Auswertung der eingesandten Lösungen. Es sind 10 Lösungen eingetroffen: Francisco
Beilot (Valladolid, E), G. Bercea München, D), Jany C. Binz (Bolligen, CH), Friedhelm
Götze (Jena, D), Walther Janous (Innsbruck, A), Hans Kappus (Rodersdorf, CH), Dieter
Koller (Zürich, CH), Michael Vowe (Therwil, CH), Johannes Waldmann (Jena, D) und
ein unbekannter Absender aus A-4600 Wels.

Alle Einsender verwenden die Reihenentwicklungen für ln(l -fx2) und artanh(x), welche
sich in (1) und (2) bereits ankündigen. Die verschiedenen Lösungen unterscheiden sich

nur in ihrer Ausführlichkeit und Übersichtlichkeit. Wir folgen hier im wesentlichen der

Lösung von Friedhelm Götze:
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Lösung. Zum Beweis von (1) und (2) benutze man die Potenzreihen

00 2n

£^- -log(l-x2), x2<l, (4)
n=\

r2n+l~ xln+> 1/1+XXS^TT 2l08(T^)' -K*<1- (5)

Ausserdem wird im folgenden bei allen Umformungen a> 0,b > 0,aj^b vorausgesetzt.
Setzt man x — ^|, so gilt |x| < 1 und die Konvergenz der beiden Potenzreihen ist

gesichert. Aus (4) ergibt sich zunächst mit x2 — (f^f)2 und 1 — x2 ,^2
2k^ 1 (a-b\lK 1 4a2? a + b A(fl,

^2fctaJ =-2l0gM^ l0g^^ l0gG(fl:
A(*,b)

*=i
woraus die Gleichung (1) durch Exponentieren folgt.
Für die Reihe aus (2) findet man mit Hilfe von (5) und j±| g

y 1 (*-1>\2k a + b^ 1 (<>-b\2k+l
f^2k + l\a + b) " + a-b f^2k + l\a + b)
k=l k=0

a + b 1 fl ,_,x-1 + E'öl°gl 6
a-b 2 b

1 /fl\SI f 1, fl^~l

/fl^ fl"2\ I(fl,fr)

woraus die Gleichung (2) wiederum durch Exponentieren folgt.

Ausgehend von (6) gilt andererseits

^2k + 1 \a + b) ~~
2

'

a-b
Jt=i

1
t

A(a,b)-L(a,b)
L(a,b) L(a,b)

Wegen dieses Zusammenhangs kann man die Gleichung (2) auch in Gestalt von (3)

angeben, womit alles bewiesen ist.

Anmerkungen. Der Verfasser der Aufgabe möchte darauf hinweisen, dass mit Hilfe von

(1), (2) und (3) die folgenden drei Ungleichungen rund um das sogenannte "identic

mean" I(a9b) einfach zu beweisen sind:

GA<LI (H. Alzer, 1986)

G A „
7 + r>2'
(.)'<(.A\A
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Ausserdem ist mit (1) und (2) die Aufgabe Nr. 987 (von H. Alzer (Waldbröl, D) in El.
Math. 44 (1989), p. 83) in folgender Weise sehr elegant zu lösen.

Aufgabe 987. Es sind beste Schranken r und s zu finden, so dass gilt

b-a ,s,^a,u,h ,„ i u, b-am <(;)() <m • ct)

Lösung. Man betrachte die Abschätzung

2k oo

^1
k=l "" ' '"" ' "" k=

woraus durch Exponentieren und mit Einbezug von (1) und (2) die Ungleichung

•*£(h-S^T)&<-1(SF" jh) --**2

folgt. Dabei sind 1 und | die bestmöglichen Schranken, was im Vergleich mit (7) auf
r e und s 2 führt.

Aufgabe 1082. Es sei p > 2 eine natürliche Zahl. Man beweise oder widerlege die

folgende Aussage über den ganzen Teil zweier Terme: Für alle n £ N gilt

[m +(n + l)p\ \_(2?n + 2^"1 - 1)p J.

Hans Kappus, Rodersdorf, CH

Auswertung der eingesandten Lösungen. Zu dieser Aufgabe ist keine Lösung
eingegangen. Joachim Klose (Bonn, D) kommt in einer umfangreichen Untersuchung zum
Schluss, dass die Zahlen p, für welche die Aussage der Aufgabe nicht zutrifft, höchstens

"spärlich" und "isoliert" auftreten können. Ein Gegenbeispiel wurde allerdings nicht
gefunden, so dass die Aufgabe immer noch offen ist.

Aufgabe 1083 (Die einfache dritte Aufgabe). Um die Höhe h eines Ballons über dem
Boden zu bestimmen, werden von den Eckpunkten A, B und C eines bekannten,
horizontalen Dreiecks aus die drei Höhenwinkel a, ß und 7 gemessen, unter denen man
den Ballon von diesen Punkten aus sichtet. Man bestimme h nicht nur rechnerisch,
sondern auch konstruktiv aus folgenden Daten: BC a 13 km; CA b 15 km;
AB c 14 km; a 54.74°; ß 39.23°; 7 32.31°.

Rolf Rose, Magglingen, CH
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Auswertung der eingesandten Losungen. Es sind sechs Losungen zu dieser Aufgabe
eingetroffen. Hans Irminger (Wetzikon, CH), Walther Janous (Innsbruck, A), Hans Kappus

(Rodersdorf, CH), Dieter Koller (Zürich, CH), Georg Unger (Domach, CH), Michael
Vowe (Therwil, CH). Im folgenden die Losung nach Michael Vowe

Konstruktive Losung Wir bezeichnen den Fusspunkt des Ballons in der Dreiecksebene

mit F und die Strecken AF, BF und CF mit u, v resp. w. Wegen tana h/u,
tan ß h/v und tan 7 h/w ergibt sich u v tan ß tan a und u : w tan 7 : tan a.
Der Punkt F kann also mit Apolloniuskreisen konstruiert werden Aus u und a ist dann
auch h konstruierbar.

Rechnerische Losung Von Euler stammt eine Formel fur die Berechnung des Volumens

V eines Tetraeders, dessen sechs Kanten fl, b, c, p, q und r gegeben sind [!]•

288 V2

Mit fl 13, b 15, c 14, p

r h/smj hy/l/2 und

r0
c2

b2

1

r
b2

fl2

0
1

h/sma hyJ3/2, q h/smß hy/5/29

V-
1

-Gh= -V21 8 6 7 h 2Sh
3 3

ergibt sich die biquadratische Gleichung fur h

505fr4-165564/z2 +(13 14 15)2 0

mit den beiden Losungen fur h hx 1 3392 km und h2 16 5524 km.

[1] R Stark Beispiele zur Anwendung eines Computeralgebrasystems in der Geometrie El Math 48(1993),

108

Ergänzungen zu den Aufgaben 1070 und 1074

Aufgabe 1070. Ein Freund bringt mir einen achterformigen Papierstreifen, gefertigt aus

einem um 360° verdrehten geschlossenen Band mit Einschnitten an gegenüberliegenden

Stellen, so dass die Rander zwei in parallelen Ebenen liegende Kurven sind.

Die Randkurven sehen der Bernoullischen Lemniskate sehr ähnlich. Man bestimme den

Unterschied zwischen Lemniskate und der elastischen Achterschleife praktisch und

prinzipiell.

Georg Unger, Dornach, CH
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Auswertung der Zuschriften. Nach einer Verlängerung der Einsendefrist von August
1993 auf August 1994 sind einige Beiträge eingetroffen. Allen voran weist Rolfdieter
Frank (Darmstadt, D) darauf hin, dass bereits Leonhard Euler vor genau 250 Jahren das

Problem der elastischen Kurven gelöst hat [1]. Sodann war der Aufgabensteller Georg
Unger (Dornach, CH) auf seiner Suche nach einer geschlossenen Parameterdarstellung
erfolgreich. Schliesslich hat sich Anne Drangeid (Zürich, CH) zur Eulerschen
Differentialgleichung geäussert.

Auszug aus Eulers Schrift nach Rolfdieter Frank. In einem Brief an Euler wies 1742

Daniel Bernoulli darauf hin, dass die Energie, die ein gekrümmtes elastisches Band

enthält, proportional ist zu f0 ^ds (R Krümmungsradius, s Bogenlänge,
L Länge des Bandes) und dass dieser Ausdruck bei der elastischen Kurve ein Minimum
werden muss. Bernoulli fügte hinzu: "Da niemand die isoperimetrische Methode (d.h. die

Variationsrechnung, die Euler begründet hat) so vollkommen beherrscht wie Sie, werden
Sie dieses Problem gar leicht solvieren." Euler löste das Problem wie folgt:

Ist die Kurve durch y
Daher ist

y(x) gegeben, so gilt R

/*. (i + (y02)

(i+CyQ2)*
y"

dx,

und ds i/l + (yf)2dx.

und dieser Ausdruck muss ein Minimum werden unter der Nebenbedingung

\ J\ + {y>)2dx
JX\

(1)

(2)

Mit den Methoden der Variationsrechnung, die im nächsten Abschnitt genauer dargelegt
werden, folgt hieraus bei geeigneter Wahl des Koordinatenursprungs die Differentialgleichung

v
-c2 + x2

y/(c2-x2){2a2-c2 + x2)
(3)

welche nicht elementar integrierbar ist. Jede ihrer Lösungskurven ist nur für -c < x < c

definiert und hat an den Randstellen x ±c senkrechte Tangenten. Wegen }/(x) —

\/(-x) ist sie punktsymmetrisch zu ihrem Schnittpunkt mit der y-Achse. Die folgende
Figur zeigt das Ergebnis einer numerischen Integration mit c 4, a 3 und y(0) 0.
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Indem Euler die rechte Seite der Differentialgleichung (3) in eine Potenzreihe in \Jc2 - x2
entwickelt und dann gliedweise integriert, erhält er

y(c )___ fx/dx
Jo

na

_V2
l2-32 5 l2 • 32 • 52 7 J>

22 l 2a2 22 • 42 3 4a4 22 • 42 • 62
'

5
'

8a6
1___

3 c

für jede Lösungskurve durch den Koordinatenursprung. Ist diese nun die Hälfte einer

geschlossenen Acht, so gilt y(c) 0, d. h. v := ^ muss die Gleichung

1-3 11351 v +2-2 2-2-4.4
i>' +

1 - 1-3-3-5-7
2-2-4-4-6-Ö

v> +

erfüllen. Hieraus berechnet Euler v « 0.835934. Für den Winkel 4> zwischen den beiden
Tangenten im Kreuzungspunkt gilt

tan Y(o)
1 -2v

c\j2a2 - c2 2y/v - v2

Dies ergibt </> « 81.365°. Die folgende Figur zeigt die zu diesem Wert von v und c 4

gehörige Lösungskurve als halbe Acht im Innern der in der Aufgabenstellung angesprochenen

vollständigen Bernoullischen Lemniskate y :

welche einen Kreuzungswinkel von 90° aufweist.
±^^f^2x2-c 2 + VSc2x2 + c4,

Eulersche Differentialgleichung nach Anne Drangeid. Das vorgegebene Problem ist eine

Extremalaufgabe mit Nebenbedingung: Das Integral (1) f** G(x,y,yf,yf,)dx soll unter

der Nebenbedingung (2) f**N(x,y,x/,f)dx L extremal werden. Nach einem

Satz von Euler [2] lässt sich die Nebenbedingung durch Einführung eines Lagrange-

Multiplikators A so einbauen, dass nur noch das Integral ^H(x,y^,\f')dx mit

H G + XN extremal gemacht werden muss. Durch Betrachten von Nachbarfunktionen

von y y(x) erhält man daraus die Eulersche Differentialgleichung

d rr dl
LJ

Hy-JiH* + d*H*' 0.
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Dabei wird jeweils nach den im Index angegebenen Variablen partiell abgeleitet. Da hier
H nur nur von \f und y" abhängt, ist zunächst einmal Hy 0, was eine erste Integration
über x erlaubt und eine Konstante Cx zur Folge hat:

%-^V=C,. (4)

Da H(yf,yff) auch von x nicht abhängt, ist es von Vorteil, in (4) die totale Ableitung
nach x auszuführen:

Hy> ~ Hynyf\/f - Hy'ry»}/" Cl

Multipliziert man diese Gleichung mit y" und addiert links 0 Hy»yf" — Hynyff\
ergibt sich Hy>y" + Hy»}/" - Hy)/" - y"Hy„y>y" - y"Hry»f Cxy", was ein totales
Differential

A(H-j/'Hy,)=Ciy"

darstellt und eine erneute Integration erlaubt:

H-y"Hy>,=Cxy' + C2.

Jetzt werden die konkreten Integranden

GWy)=,,??L,> und W) >Ji + W)2
(l + (i/)2)2 v

aus (1) und (2) in H G + XN eingesetzt, was die Differentialgleichung

(l + (i/)2)l V y(l + (y02)*

liefert, die noch etwas übersichtlicher dargestellt werden kann:

Cxi/ + C2
(/¦o2 (i + (i/)2)3(A- L/y+L2).

Diese Differentialgleichung wird für C2 0 von \f aus (3) erfüllt, wobei Cx und A durch
fl und c festgelegt werden.

Die Bernoullische Methode nach Georg Unger. Jakob Bernoulli hat vor genau 300 Jahren

[3] einen ganz anderen Weg zur Lösung des Problems der Elastica gewählt. Während
Euler die Biegeenergie zu einem Minimum macht, verwendet Bernoulli die Proportionalität

von Krümmung und Biegemoment. Unger verwendet diese Methode und kommt
so sehr rasch auf eine Differentialgleichung für die gesuchte Kurve: Das elastische Band
sei im Punkt P(x/y) so eingespannt, dass die Tangente an das Band mit der x-Achse
den Winkel r einschliesst. Das Band gehe durch den Ursprung. Dort greife die zur x-
Achse parallele Kraft K an. Dann ist das Biegemoment bezüglich P einerseits —K • y
und andererseits f-%, wobei s die Bogenlänge des Bandes und / eine Materialkonstante
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bedeuten Um auf eine Differentialgleichung fur r(s) zu kommen, differenziert man
—K y — f % nach s und verwendet ^ sin r

-K S1nr=/g (5)

Diese Differentialgleichung ist strukturgleich mit derjenigen fur das mathematische Pendel

mit dem Auslenkungswinkel ij)9 der Pendellange /, der Gravitationskonstanten g und
der Zeit t

-g sin^/^
Nun multipliziert man die Gleichung (5) mit ^ und kann sie dann nach s integrieren

f(*L\2
2\ds)

Setzt man C -K cos a so ergibt sich

l(dr,2 K, dr
-(-—) -- (cosr — cosa) oder as —-=
2 ds f w y^(cosr - cosa)

Weil fur r a die Ableitung ^ 0 wird, bedeutet a den Steigungswinkel der

Wendetangente Verwendet man jetzt dx — ds cos r und dy ds sm r und setzt den Grossenfaktor

W 1, so erhalt man eine Parameterdarstellung der gesuchten Kurve

c(0 T -_f__±_= und y(f) =_ /'
Jo v cos r — cos a Jo

sin n/r
y (6)

V cos r — cos a

Mit Hilfe der Elliptischen Integrale erster und zweiter Art

F($9m)= / (l-msm2v) 2dv und £($,ra) / (1-rasin i/)'di/
Jo ^°

kann man diese Parameterdarstellung geschlossen schreiben Dazu wird in (6) die

Substitution X

sm x
sin v —-

ausgeführt Damit erhalt man nach längerer Rechnung

x(v) ^2(2E (i/, sin |) - F (i/, sin |)) und y(i/) 2>/2(l - cos i/) sin |
Die folgende Figur zeigt die Losungskurven für die Wendetangentenwinkel a i ^~,
wobei i £ {1, ,8} Den Steigungswinkel 130 7° hat man numerisch so bestimmt,
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dass der erste Wendepunkt gerade auf die y-Achse fällt. Daraus berechnet sich durch
2(130.7° — 90°) 81.4° der bekannte Kreuzungswinkel der geschlossenen Acht.

[1] J. Bernoulli u. L. Euler: Abhandlungen uber das Gleichgewicht und die Schwingungen der ebenen elasti¬
schen Kurven, Ostwalds Klassiker der exakten Wissenschaften, Leipzig 1910.

[2] W.I. Smirnow Lehrgang der höheren Mathematik, Teil IV, Deutscher Verlag der Wissenschaften, Berlin
1968.

[3] C. Truesdell in Euler: Opera Omnia 2.

Entgegnung zur Lösung von Aufgabe 1074 von Klaus-Dieter Drews, Rostock, D.

In der Aufgabe 1074 (El. Math. 48 (1993), p. 80) wurden den ersten beiden
Potenzgesetzen Logarithmengesetze als Partner gegenübergestellt. Für das dritte Potenzgesetz
sollte ein entsprechender Partner noch gefunden werden. Angeregt durch die
Schlussbemerkung in der Lösung zur Aufgabe 1074 (El. Math. 49 (1994), p. 83) analysiere
ich hier die Herleitbarkeit des dritten Potenzgesetzes und die vermeintliche Unnötigkeit
seines Partners.

Wir vermeiden weitgehend die Schreibweise an und betrachten Funktionen F(a,ri) mit
positiven reellen Zahlen a und n sowie die sogenannten Potenzgesetze

F(a, n) -F(fl,m) F(fl,n-(-m), (1)

F(F(a,n),m) F(a,n-m), (2)

F(a,n)'F(b,n)=F(a-b,n). (3)

1. Gleichung (1) ist die Funktionalgleichung der Exponentialfunktionen. Wählt man
die positive reelle Zahl F(fl, 1), so besitzt (1) die einzige in n stetige Lösung

F(a,n) (F(a,l))n.

Für F(fl, 1) ^ 1 besitzt u — F(a,n) in n eine Umkehrfunktion n — cf)(a, ü), und aus (1)
folgt äquivalent das dem Potenzgesetz (1) gegenüberstehende Logarithmengesetz:

<t>(a, u-v) <p(a, F(fl, <p(a, u)) • F(a, 0(a, v)))
<j)(a} F (fl, <p(a, u) + 0(a, v)))
<j>(a,u) + (f>(a,v).
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Wegen der freien Wahl von F(fl, 1) und F(b9l) haben die Funktionen F(a9n) und F(b9n)
zunächst keine Beziehung zueinander Sämtliche stetigen Losungen von (1) können
jedoch auf eine einzige, z B auf F(e, n) (e ist die Eulersche Zahl) zurückgeführt werden
durch

F(a,n) =F(e,n 0(e, ^^ fl)),
e

wobei man F (fl, 1) ^^ a gewählt hat

Anmerkung Ia Mit
F (_,«) (__)"

haben wir Beispiele von Funktionen, die zwar Gleichung (1), nicht aber Gleichung (3)
erfüllen

Anmerkung Ib Fordert man F(e, 1) e und damit allgemein F(fl, 1) fl, so stellt
dies einen Zusammmenhang zwischen den Anfangswerten der Exponentialfunktionen
F(fl, n) und den Werten der linearen Potenzfunktion her Dann gilt fur die F(fl, n) auch

die Gleichung (3)

F(fl,rc) F(M)=F(e,n 0(e,«)) F(e,w </>(e9b))

F(e,w (0(e,ö) + 0(e,b)))

F(e,w 0(e,fl b))

F(a M)

2 Die Gleichung (3) ist die Funktionalgleichung der Potenzfunktionen Durch die

Festlegung
F(a9n) =a]nF{en)

konstruieren wir Losungen von (3) Dabei schranken wir uns auf rationale Exponenten

lnF(e,n) ein, damit die üblichen Wurzelgesetze zur Verifikation von (3) herangezogen

werden können

Anmerkung 2a Mit
F(a9n)=a2"2

haben wir Beispiele von Funktionen, die zwar Gleichung (3), nicht aber Gleichung (1)

und auch nicht Gleichung (2) erfüllen

Anmerkung 2b Fordert man F(e, w) e", so stellt dies einen Zusammenhang zwischen

den Anfangswerten der Potenzfunktionen F(a,n) und den Werten der Exponentialfunktion

en her Dann lassen sich fur die F(fl, n) auch die Gleichungen (1) und (2) mit Hilfe

der Wurzelgesetze beweisen

3 Die Ausfuhrungen zeigen, dass (1) und (3) unabhängige Axiome sind, andererseits

jedoch bei entsprechendem Aufbau gegenseitig beweisbar werden Beides scheint mir

somit kein Grund fur das Fehlen eines Partners von (3) zu sein Wie den Gleichungen

(1) und (2) äquivalente Gesetze der Umkehrfunktion entsprechen, konnte dies auch bei
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(3) sein. Ist nun a ip(u,n) die Umkehrfunktion von u F(fl,n), so folgt aus (3)
äquivalent

rp(u9n) • ij)(v9n) iß(F(iß(u9n) - ip(v9n)9n)9n)

tj)(F (ip(u9 n),n) • F ty(v9n)9n)9n)

— ip(u -v,ri).
Die Umkehrfunktion genügt demnach derselben Funktionalgleichung!

Partner der Gleichung (3) ist also die Gleichung selbst; die Umkehrfunktion einer
Potenzfunktion u — F(a,n) an ist wieder eine Potenzfunktion. Man nutzt dies schon in der

Bezeichung a i/j(u9n) — u*. Damit folgt, dass der Partner zu an ¦ bn (a • b)n das

Gesetz u» -v» (u-v)« ist, was bei beliebigem n nur eine geänderte Schreibweise für
das gleiche Gesetz bedeutet.
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