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Von den Keplerschen Gesetzen
zu einer minutengenauen Sonnenuhr

Christian Blatter

Christian Blatter, geboren 1935, studierte in Basel und promovierte 1960 bei Heinz
Huber iiber "Extremalldngen auf geschlossenen Flachen". Nach zwei Jahren als Vis-
iting Assistant Professor in Stanford trat er 1964 in den Dienst der ETH Ziirich
und ist dort seit 1979 ordentlicher Professor fiir Mathematik. Neben verschiedenen
Arbeiten im Kreuzungsgebiet von Funktionentheorie und Differentialgeometrie hat
er ein Lehrbuch der Analysis fiir Mathematiker und Physiker verfasst.

Die allermeisten Sonnenuhren an Gebiduden und in Parkanlagen basieren auf der An-
nahme, daB sich die Sonne jeden Tag in genau 24 Stunden einmal um die Erde herum-
bewegt und am betreffenden Ort jeden Tag zu genau derselben biirgerlichen Zeit, zum
Beispiel um 12.17 Uhr, durch den Ortsmeridian geht. In den Monographien [1] und
[3] findet man viele schone Beispiele von Sonnenuhren, die so funktionieren. In Wirk-
lichkeit sind aber die Sonnentage nicht alle gleich lang; so sind zum Beispiel die Tage
anfang Januar 40 Sekunden kiirzer als anfang Mirz. Die Kumulation dieser Zeitdif-
ferenzen hat zur Folge, daB} jede derartige Sonnenuhr an gewissen Tagen des Jahres
eine gute Viertelstunde vorgeht, an anderen fast ebensoviel nachgeht. Die resultierende
Abweichung in Funktion der Jahreszeit (Figur 3) heilt Zeitgleichung. Man findet hie und

Die astronomischen Grundtatsachen, die nbtig sind, um eine minutengenaue Sonnenuhr
zu konstruieren, sind uns allen geldufig: Die Erde bewegt sich auf einer Ellipsenbahn
um die Sonne, wobei das zweite Keplersche Gesetz erfiillt ist, und auf dieser Bahn
rotiert die Erde gleichmiissig um ihre gegen die Bahnebene geneigte Achse. Die ge-
nauen Zahlenwerte der Parameter sind in jedem Lexikon zu finden. Die mathematische
Aufgabe ist damit klar gestellt. Man erkennt ohne Mithe, dass ihre Losung mit ver-
hiilmisméssig elementaren mathematische Methoden mdglich sein wird. Aber einfach
ist die Behandlung des Problems trotzdem micht. Die genaue Analyse des komple-
xen Zusazxmens;amis der einzelnen Bewegungselemente ist eine schwxenga Aufgabe,
 welche neben einem ausgepriigten réumlichen Vorstellungsvermdgen auch ein peinlich
genaues methodisches Vorgehen verlangt. - Christian Blatter geht in seinem Beitrag
den ganzen Weg vom abstrakien theoretischen Wissen bis zur konkreten praktischen
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da Sonnenuhren, die auf mehr oder weniger kunstvolle Weise auf diese Abweichung
aufmerksam machen.

Zu dem beschriebenen Effekt kommt es erstens infolge der Neigung der Erdachse
gegeniiber der Ekliptik und zweitens, weil die Winkelgeschwindigkeit der Erde auf ihrer
Bahn um die Sonne nicht konstant ist: Die Verbindungslinie Sonne-Erde iiberfdhrt in
gleichen Zeiten nicht gleiche Winkel, sondern gleiche Flédchen.

Wenn wir eine Sonnenuhr konstruieren wollen, auf der die Zeitgleichung implementiert
ist, benotigen wir daher eine hinreichend genaue Beschreibung des Erdorts zur Jahreszeit
t sowie eine prizise Diskussion des Zusammenspiels von Erdumlauf und Erdrotation.
Vgl. hierzu auch [2].

Im folgenden werden wir Formeln herleiten, die fiir einen beliebigen Ort P auf der Erde
den von P aus gemessenen Sonnenstand x(¢,s) in Funktion der Jahreszeit { und der
Tageszeit s ausdriicken. Mit Hilfe dieser Formeln ist es dann leicht moglich, minuten-
genaue Sonnenuhren verschiedenster Art herzustellen.

An astronomischen Konstanten bendtigen wir die numerische Exzentrizitdt der Erdbahn,
sie besitzt den Wert k = 0.016722=1/60, weiter den Winkel ¢ = 23.45° zwischen
Ekliptik und Aquatorebene und schlieBlich den Winkel o = 78.5° zwischen Perihel und
Friihlingspunkt. In Wirklichkeit sind diese “Konstanten” nicht konstant; so dreht sich
zum Beispiel das Perihel in 21 000 Jahren einmal um die Sonne. Dies wird im folgenden
vernachlaBigt.

Alle im folgenden eingefiihrten Basen (“Dreibeine”) sind orthonormiert und rechtshidndig.
Die Transformationsmatrix T zwischen zwei derartigen Basen (in den Kolonnen ste-
hen die alten Koordinaten der neuen Basisvektoren) ist daher orthogonal, und es gilt
T—! = T’. Ist x ein Vektor im Raum, so bezeichnet x, den Kolonnenvektor der Koordi-
naten von X beziiglich der Basis (aj, ay, a3).

Wir beginnen mit einem raumfesten Dreibein (f|,f,, f3). Im Ursprung befindet sich die
Sonne, und die Erdbahn liegt in der (f;,f,)-Ebene, das Perihel auf der positiven f-
Achse (siehe die Figur 1). Die Erdbahnellipse (mit groBBer Achse 1, Exzentrizitit < und
Fliacheninhalt 7/1 — k2?) besitzt dann folgende Polardarstellung:

1 — k2

r(w) = 1+ Kcosvy :

dabei bezeichnet ¢ den Polarwinkel des Erdorts. Nach dem 2. Keplerschen Gesetz

(Flichensatz) ist
V1 — K2
dA = cdt ¢ te= ~———2———’E— ,
wobei die Konstante ¢ so festgelegt wurde, da ¢ innerhalb eines Jahres um 27 zunimmit.

Anderseits hat man )
dA = 5 7'2 d’l,b N

somit gilt
—‘g:;—z—-—:(lﬁ—ncosw) (1-—"&) / :
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Hiernach geniigt ¢(-) der Differentialgleichung
)= (1+rcosyp)? (1 - &) 72, (1)
wobei wir die Anfangsbedingung
$(0) =0 (2)

(das heiBit t = O im Perihel) zugrundelegen. Diese Differentialgleichung 148t sich sepa-
rieren und sogar elementar integrieren. Dabei erhilt man einen expliziten Ausdruck fiir
die Umkehrfunktion ) — t(¢); wir bendtigen aber explizit t — 1(t).

Nach allgemeinen Prinzipien 148t sich () in eine konvergente Reihe nach dem kleinen
Parameter x entwickeln:

Y(t) = Yj(t)el
j=0

dabei ist offensichtlich 1o(t) = t, und die weiteren 1);(-) sind 27-periodisch. Wir machen
also den Ansatz

P(t) =t +6(t), §(t) = u(t) k + v(t) K*+2%>

und 16sen (1) “auf x? genau”, das heiBt: durch Koeffizientenvergleich, wobei alle Terme
von dritter oder hoherer Ordnung in k vernachlaBigt werden.

In diesem Sinne berechnet man
P =14u(t)k +0(H)k*+I6

cos) = costcos(t) —sintsin§(t) = cost — u(t) sint k+2x>

3
(1-r) =14 §R2+?n4 :
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Hiermit ergibt sich
Y — (1 + Kkcosyp)? (1 — k)32
=1+uk+9k>— (1+2costk —2usint k? + coszt/s:2+?/~c3)(1 + %n2+?n4)
= (1—2cost)k + (v + 2usint — cos’ t — %) K263
Da hier die linke Seite identisch in ¢ (und k) verschwinden soll, folgt #(t) = 2 cos ¢ und

wegen (2) daher
u(t) = 2sint .

Weiter hat man

(cos® t — sin* t)

N W

3
b(t) = —4sin®t 4 cos®t + 5=

und folglich
o(t) = %sin(Zt) |

Wir setzen also im weiteren
) 5 . 2
6(t) :=2sint Kk + 3 sin(2t) K° .

Eine Fehlerabschitzung wiirde zeigen, daB dieses 6(-) bzw. das zugehorige v(-) fiir
alle Zeiten um weniger als 10~* von der wahren Losung des Anfangswertproblems
(1) A (2) abweicht. Dabei kommt uns zustatten, da3 die Naherungslosung fiir alle t =
kn,k € Z, von vorneherein den richtigen Wert liefert. Der hierdurch bewirkte Fehler
der Zeitgleichung u(-) ist von derselben GréBenordnung (vgl. (7)). Wird das gemiB
2w = 24 h auf die Zeitskala umgerechnet, so kommt man auf weniger als 1.5 Sekunden,
was wohl fiir die Zwecke einer Sonnenuhr vernachldfigt werden darf.

Damit besitzt der Einheitsvektor von der Sonne zur Erde im f-System die folgende
Parameterdarstellung:

t — (cos(t+6(t)),sin(t+6(t)),0) . (3)

Von nun an betrachten wir die Sonne von der Erde aus: Der von der Erde zur Sonne
weisende Richtungsvektor ist nach (3) gegeben durch

—cos(t + 6(t))
Xf:= | —sin(t + 6(t))
0

Die (fiktive) dynamische mittlere Sonne rotiert mit konstanter Geschwindigkeit in der
Ekliptik und ist gleichzeitig mit der wahren Sonne in Perihel und Aphel. Um ihren (von
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der Erde aus gesehenen) Ort y zu erhalten, miissen wir im Ausdruck fiir x den Parameter
k bzw. die Funktion 6(-) gleich O setzen. Es ergibt sich

—cost
yf= | —sint
0

Das ebenf_alls raumfeste Dreibein (f'l ,_f'z,f}) ist folgendermaBen festgelegt (siche die
figur 1) f:l liegt in der Knotenlinie, f, ist senkrecht dazu in der Aquatorebene, und
f; :=f; x f,. Die Transformationsmatrix Tff- hat dann folgende Gestalt:

COSax — SN COSE sin «e sin €
Tff- = | sin@x COSQCOS€E — COSSINE
0 sine COS €

Hiernach ist die wahre Sonne im f-System gegeben durch

cos sin 0 — cos(t + 6(t))
X7 = Tf’f— Xf = | —sinacose cosacose sine —sin(t + 6(t))
sinasine —cosasine COSe 0

—cos(t+6(t) — a)
= | —sin(t + §(t) — a)cose | ,
| sin(t + 6(t) — @) sine

und fiir die dynamische mittlere Sonne erhilt man

—cos(t — a)
Yy = | —sin(f — a)cose
sin(t — ) sine

Die (ebenfalls fiktive) mittlere Sonne koinzidiert zur Zeit t = o mit der dynamischen
mittleren Sonne im Frithlingspunkt und rotiert mit konstanter Geschwindigkeit in der
Aquatorebene. Thr Ort z ist folglich im f-System gegeben durch

—cos(t — a)
zp= | —sin(t — a)
0

Das &-Dreibein ist starr mit der rotierenden Erde verbunden, und zwar liegen €; und €;
in der Aquatorebene, €, auf dem Ortsmeridian von P, und €; zeigt zum Nordpol (siehe
die Figur 2). Die Transformationsmatrix vom f- zum &-System ist somit gegeben durch

cost —sinTt 0
Tfé = |sint cosT O} ;
0 0 1
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Fig. 2

dabei bezeichnet T die Sternzeit: Eine volle Erddrehung gegeniiber dem Fixsternhimmel
entspricht einer Zunahme von 7 um 27; um den Nullpunkt von 7 brauchen wir uns im
Augenblick nicht zu kiimmern.

Fiir z;, ausgedriickt in den Zeitvariablen ¢ und 7, erhalten wir

cost sinT 0 —cos(t — a) —cos(T —t+ )
z; = T}é zg= | —sinT cosT 0 —sin(t—a) | = | sin(r—t+a) | . (4)
0 0 1 0 0

Die mittlere Ortszeit s auf dem Meridian von P ist folgendermaBen festgelegt: Zwischen
zwei aufeinanderfolgenden Kulminationen der mittleren Sonne, das heifit: innerhalb von
24 Stunden, nimmt s um 27 zu, und s = 7 (mod 27) im Moment der Kulmination. Die
Kulmination findet in dem Moment statt, wo die €;-Komponente von z maximal ist. Der
Gleichung (4) entnimmt man somit, da die drei Zeitvariablen f, 7 und s miteinander
verkniipft sind durch

T—t+a=s (mod 27) ;

wir konnen daher 7 mit Hilfe von
Ti=(—a)+s (5)
aus unseren Gleichungen eliminieren. Als erstes ergibt sich
z; = (— coss,sins, 0) ;

in Worten: Die mittlere Sonne umliuft Tag fiir Tag den Aquator (von Norden gesehen)
im Uhrzeigersinn in genau 24 Stunden.
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Wegen (5) 4Bt sich Ty, als Produkt schreiben:

cos(t —a) —sin(t—a) 0 coss —sins 0
Ty, = | sin(t—a) cos(ft—a) Of-|sins coss O] ,
0 0 1 0 0 1

so daB3 wir fiir die wahre Sonne im e-System das folgende erhalten:

coss sins 0 cos(t —a) sin(t—a) 0
X = T;-e_ X = | —sins coss 0 —sin(t —a) cos(t—a) O
0 0 1 0 0 1

—cos(t + 6(t) — a)
x | —sin(t+6(t) — a)(1 — 2sin* 5)
sin(t + 6() — ) sine

coss sins 0 —cos 6(t) + 2sin* §sin(t + 6(t) — @) sin(t — a)
= | —sins coss 0 —siné(t) + 2sin® £ sin(t + 6(¢) — a) cos(t — a)
0 0 1 sin(f + 6(t) — a) sine

Der zweite Faktor rechter Hand (:: W(t)) ist ein Einheitsvektor und 148t sich daher in
der Form

w = (—rcospu,rsinp,h)

schreiben; dabei ist

h(t) == sin(t + 6(t) — ) sine , r(t) :=1/1—Hh2(t)

—sin§(t) + 2sin” §sin(t + 6(¢) — a) cos(t — a)

und

t) ;= arctan
u(t) cos §(t) — 2sin® £ sin(t + 6(t) — @) sin(t — a) ©)
_ arctan — sin 6(t) + tan” £ sin(2(t — @) + 6(t))
= A s 6(t) + tan® § cos(2(t — ) + 6(t))
Mit den neu eingefiihrten Bezeichnungen haben wir
coss sins 0 —r(t) cos(s + u(t))
xe = | —sins coss O w(t)= | r(t)sin(s +pu(t)) | . (7)
0 0 1 h(t)

Wir wollen die Jahreszeit t und die Tageszeit s fiir einen Moment als unabhéngige
Variable betrachten. Die Formel (7) 1468t sich dann folgendermafen interpretieren: Fiir
festes t und variables s beschreibt die Sonne wihrend eines Tages auf der Himmelskugel
einen Kreis in einer zum Aquator parallelen Ebene der geographischen Breite 7(t) :=
arcsin h(t); die maximale im Laufe eines Jahres auftretende Breite ist e. Wiahrend die
mittlere Sonne jeden Tag zur Zeit s = m kulminiert, ist das fiir die wahre Sonne zur Zeit
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s = m — p(t) der Fall. Eine nach der mittleren Sonne “gerichtete” Sonnenuhr wird also
um den (im Laufe eines Jahres verdnderlichen) Betrag p(t) vorgehen. Die Funktion p(-)
heiBt Zeitgleichung (siche die Figur 3).

Halten wir jedoch die Tageszeit s fest, zum Beispiel s := 7, so sagt uns (7) bei variablem
t, an welcher Stelle des Himmels sich die Sonne an den verschiedenen Tagen des Jahres
um 12 Uhr Ortszeit befindet: Der Sonnenstand hat (bezogen auf den Ortsmeridian) die
geographische Linge —u(t) und die geographische Breite 7)(t). Die fiir kontinuierlich
verdnderliches f resultierende Kurve ist kein Meridianbogen, sondern hat die Form einer
8, siche die Figur 4.

Zur Konstruktion von Sonnenuhren benétigen wir eine bequeme Beschreibung des Son-
nenstands am Orte P. Das e-Dreibein ist wie folgt definiert (sieche die Figur 5): Der
Ursprung liegt in P, e; zeigt in der Horizontebene von P nach Osten, e, nach Norden,
und e; zeigt vertikal nach oben. Liegt P auf der geographischen Breite 6, so ist damit
die Transformationsmatrix T gegeben durch

0O —sinf cosf
Tge == 1 0 O
0 cosf sind

Mit (7) erhalten wir damit fiir den Sonnenstand im e-System:

0 1 0 —r(t) cos(s + u(t))
xe=T,, x;= | —sinf 0 cosf r(t)sin(s + p(t)) | s
cosd O sind h(t)

die Koordinaten (x;,x,,x3) von X, sind somit gegeben durch
xy = r(t)sin(s + p(t))
xy = r(t) cos(s + p(t)) sinf + h(t)cosd (8)
x3 = —r(t) cos(s + p(t)) cos 8 + h(t) sin @
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Zum SchluB bendtigen wir eine Formel, die die mitteleuropidische Zeit S (Einheit: Stun-
den, S = 12 ist Mittag) fiir einen Ort P der geographischen Linge ¢ (Einheit: Grad,
¢ = 0 ist der Meridian von Greenwich) auf die Variable s umrechnet. Die mittel-
europdische Zeit ist definiert als mittlere Ortszeit auf dem 15. Langengrad. Da die mittlere
Sonne pro Stunde 15° zuriicklegt, erhélt man damit ohne weiteres

)

S_?T
12

(s + 9)
Wir wollen nun wirklich eine Sonnenuhr fabrizieren und wihlen das folgende einfache
Design: Wir bringen im Punkt (0, 0, 1) des e-Systems eine kleine Kugel an und verfolgen
ihren Schatten auf der (e, e;)-Ebene fiir feste Zeiten S := 7,8, ..., 17, 18 als Funktion
der Jahreszeit t. Wir erhalten eine Kollektion von Achterschleifen, die mit den Zahlen
7 bis 18 angeschrieben werden konnen (siehe die Figur 6). Die Uhr wird in der Weise
abgelesen, daf} aus der Lage des Kugelschattens in dem Schleifenmuster die gesuchte
Zeit S interpoliert wird. Dabei ist zu beriicksichtigen, da zum Kalenderintervall ~21.
Dezember bis ~21. Juni jeweils der “absteigende” Teil jeder Schleife gehort, zur zweiten
Jahreshilfte der “aufsteigende” Teil (siche die Pfeile in der Figur 6).

Die Figur 6 wird im einzelnen folgendermaBlen erhalten: Der zur Tageszeit s und zur
Jahreszeit t gehorende Sonnenstrahl durch den Punkt (0,0, 1) = e; besitzt die Parame-
terdarstellung

u — e;—ux(s,t)

und schneidet die (e, e;)-Ebene zur “Lichtzeit” 4 = 1/x3. Der Schnittpunkt p(s,t) hat

daher die Koordinaten
Xy X2

1:‘:——-—-» 2:-—-——'
P X F X

Mit diesen Formeln und (9) 148t sich leicht ein Programm schreiben, das die gewiinschten
Schleifen fiir gegebene Werte von S zeichnet. — In dhnlicher Weise berechnet man mit
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Fig. 7

Hilfe von (8) und (9) das Schleifenmuster fiir ein vertikales Zifferblatt, dessen Normale
in eine vorgegebene Himmelsrichtung zeigt.

Es 1aBt sich nicht von der Hand weisen, dal} das Ablesen der genauen Zeit in dem re-
sultierenden Schleifenmuster nicht ganz einfach ist. Es entsteht damit die interessante
Aufgabe, eine Sonnenuhr zu konzipieren, ber der eine einzige Achterschleife fiir alle
Tageszeiten dient. Eine gewisse Verbreitung haben die Uhren des Ingenieurs Martin Bern-
hardt gefunden, bei denen der schattenwerfende Stab als geschwungene Keule ausgebildet
ist (genaugenommen braucht es zwei Keulen, die an den Sonnwenden gegeneinander
ausgetauscht werden, siche [3], Bd. 1, pp. 87 und 144); eine dhnliche Konstruktion findet
sich als Tischuhr in vielen physikalischen Sammlungen. Eine besonders schone Losung
aus neuester Zeit stammt von Heinz Schilt, CH-3506 GroBhochstetten (Figur 7): Der
um die Erdachse drehbare Messingring besitzt auf halber Hohe ein kleines kreisrundes
Loch, und auf der gegeniiberliegenden Innenseite ist eine Achterschleife mit Monats-
angaben eingraviert. Das Zifferblatt liegt in der Aquatorebene und ist fest mit dem
Messingring verbunden; an seiner Peripherie ist eine Zeitskala mit Zehnminutenstrichen
angebracht. Nachdem man die Uhr korrekt aufgestellt hat, muss man den Messingring
so lange drehen, bis die Sonne durch das kleine Loch hindurch einen Lichtpunkt an der
richtigen Stelle der Achterschleife erzeugt. Mithilfe eines Nonius am oberen Rand der
Aquatorebene kann dann die Zeit minutengenau abgelesen werden.
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