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Von den Keplerschen Gesetzen

zu einer minutengenauen Sonnenuhr

Christian Blatter

Christian Blatter, geboren 1935, studierte in Basel und promovierte 1960 bei Heinz
Huber uber "Extremallangen auf geschlossenen Flachen". Nach zwei Jahren als Vis-

lting Assistant Professor in Stanford trat er 1964 in den Dienst der ETH Zürich
und ist dort seit 1979 ordentlicher Professor fur Mathematik. Neben verschiedenen
Arbeiten im Kreuzungsgebiet von Funktionentheorie und Differentialgeometne hat

er ein Lehrbuch der Analysis fur Mathematiker und Physiker verfasst.

Die allermeisten Sonnenuhren an Gebäuden und in Parkanlagen basieren auf der
Annahme, daß sich die Sonne jeden Tag in genau 24 Stunden einmal um die Erde
herumbewegt und am betreffenden Ort jeden Tag zu genau derselben bürgerlichen Zeit, zum
Beispiel um 12.17 Uhr, durch den Ortsmeridian geht. In den Monographien [1] und

[3] findet man viele schöne Beispiele von Sonnenuhren, die so funktionieren. In
Wirklichkeit sind aber die Sonnentage nicht alle gleich lang; so sind zum Beispiel die Tage

anfang Januar 40 Sekunden kürzer als anfang März. Die Kumulation dieser
Zeitdifferenzen hat zur Folge, daß jede derartige Sonnenuhr an gewissen Tagen des Jahres

eine gute Viertelstunde vorgeht, an anderen fast ebensoviel nachgeht. Die resultierende

Abweichung in Funktion der Jahreszeit (Figur 3) heißt Zeitgleichung. Man findet hie und
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zu konstruieren» sind um allen geläufig: We Ente bewegt sich auf einer Elüjsenbatat
um die Sonne, wobei das zweite Keftersche Gesetz erfüllt ist» und auf dieser Bahn
rotiert die Irde gtefctaöfeig um ihre gegen die Bahnebene geseifte Aefase, He
genauen ZaMenwerte der Parameter sind in jedem Lexikon m fnden» Die tm^mmäm\m
Aufgabe ist damit klar gestellt Man erkennt t$m Mibe* dass ihre Lösung mä ver-
hlltöfetufesig elementaren tm^&mämM M$h®dm aögtieh sein wird, Aber einfach
ist die W®hm§®ng des J^btas totidei» «febt He genaue Analyse de$ tarifle-

xm iMmmmmpmk der einzelnen Bewepögi^leiiifnie tat eine schwferlge Attfga&e*
welche «ehe« einem atisgepägto itorÄtoi %^teihmgiv€«ti^pn auch ein peWieti
genaues metoodfafa» Vis^geheii verfangt» - CMstiaii Blatter geht in seinem Beitrag
dm pmm "W$g vm& 4fe$mfctm dmttiimbm Wmm Ws wm tottfaeten fr$Mm%m
Anwendung, dm mkmim%mmm& Sonnenuhr. tm



156 El. Math. 49 (1994)

da Sonnenuhren, die auf mehr oder weniger kunstvolle Weise auf diese Abweichung
aufmerksam machen.

Zu dem beschriebenen Effekt kommt es erstens infolge der Neigung der Erdachse

gegenüber der Ekliptik und zweitens, weil die Winkelgeschwindigkeit der Erde auf ihrer
Bahn um die Sonne nicht konstant ist: Die Verbindungslinie Sonne-Erde überfährt in
gleichen Zeiten nicht gleiche Winkel, sondern gleiche Flächen.

Wenn wir eine Sonnenuhr konstruieren wollen, auf der die Zeitgleichung implementiert
ist, benötigen wir daher eine hinreichend genaue Beschreibung des Erdorts zur Jahreszeit

t sowie eine präzise Diskussion des Zusammenspiels von Erdumlauf und Erdrotation.
Vgl. hierzu auch [2].

Im folgenden werden wir Formeln herleiten, die für einen beliebigen Ort P auf der Erde
den von P aus gemessenen Sonnenstand x(r,s) in Funktion der Jahreszeit t und der

Tageszeit s ausdrücken. Mit Hilfe dieser Formeln ist es dann leicht möglich, minutengenaue

Sonnenuhren verschiedenster Art herzustellen.

An astronomischen Konstanten benötigen wir die numerische Exzentrizität der Erdbahn,
sie besitzt den Wert k 0.016722=1/60, weiter den Winkel e 23.45° zwischen

Ekliptik und Äquatorebene und schließlich den Winkel a IS.5° zwischen Perihel und

Frühlingspunkt. In Wirklichkeit sind diese "Konstanten" nicht konstant; so dreht sich

zum Beispiel das Perihel in 21 000 Jahren einmal um die Sonne. Dies wird im folgenden
vemachläßigt.

Alle im folgenden eingeführten Basen ("Dreibeine") sind orthonormiert und rechtshändig.
Die Transformationsmatrix T zwischen zwei derartigen Basen (in den Kolonnen
stehen die alten Koordinaten der neuen Basisvektoren) ist daher orthogonal, und es gilt
T~l T'. Ist x ein Vektor im Raum, so bezeichnet xa den Kolonnenvektor der Koordinaten

von x bezüglich der Basis (ai,a2,a3).
Wir beginnen mit einem raumfesten Dreibein (fi,f2,f3). Im Ursprung befindet sich die

Sonne, und die Erdbahn liegt in der (Fi,f^)-Ebene, das Perihel auf der positiven fi-
Achse (siehe die Figur 1). Die Erdbahnellipse (mit großer Achse 1, Exzentrizität k und
Flächeninhalt 7iVl — ft2) besitzt dann folgende Polardarstellung:

l-K2
'WO

1 -f ft COS ll)

dabei bezeichnet ip den Polarwinkel des Erdorts. Nach dem 2. Keplerschen Gesetz

(Flächensatz) ist

aa al y/T^K2
dA cdt c :=

wobei die Konstante c so festgelegt wurde, daß t innerhalb eines Jahres um 2tt zunimmt.
Anderseits hat man

dA l-r2diP;
2 r

somit gilt
_J ^ (i+«cos^)2(i-K2r3/2-
dt r2
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Fig 1

(1)

Hiernach genügt ip(-) der Differentialgleichung

V> (1 + ftCOS^)2 (1 - K2)-3/2

wobei wir die Anfangsbedingung
HO) 0 (2)

(das heißt t — 0 im Perihel) zugrundelegen. Diese Differentialgleichung läßt sich
separieren und sogar elementar integrieren. Dabei erhält man einen expliziten Ausdruck für
die Umkehrfunktion ip i—> t(ip); wir benötigen aber explizit 11-> ip(t).

Nach allgemeinen Prinzipien läßt sich ip(-) in eine konvergente Reihe nach dem kleinen
Parameter k entwickeln:

dabei ist offensichtlich ipo(t) t, und die weiteren ißj(-) sind 27r-periodisch. Wir machen

also den Ansatz

^(t) := t + 6(t) 6(t) := u(t) ft + v(t) ft2+?ft3

und lösen (1) "auf ft2 genau", das heißt: durch Koeffizientenvergleich, wobei alle Terme

von dritter oder höherer Ordnung in ft vernachläßigt werden.

In diesem Sinne berechnet man

ip= 1 +ü(t)K + v(t)K2+ln3

cos iß cos t cos 6(t) - sin t sin 6(t) cos t - u(t) sin t k+?k2

(l-«2)-V2_=l + !«2+?„*.
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Hiermit ergibt sich

lp - (l+K COS ljj)2(l -tt2)-3/2

1 +ÜK + VK2 - (1 +2costK-2usintK2 + cos2^2+?ft3)(l + -ft2+?ft4)

(ü — 2cost) k,+ (v + 2usint — cos21 — - j ft2+?ft3

Da hier die linke Seite identisch in t (und ft) verschwinden soll, folgt ü(t) 2 cos t und

wegen (2) daher

u(t) 2 sin t

Weiter hat man

3 5
v(t) -4 sin2 t + cos2 £ + - -(cos21 - sin21)

und folglich

v(t) 1 sin(2f)

Wir setzen also im weiteren

S(t) := 2 sin £« + - sin(2f) ft2

Eine Fehlerabschätzung würde zeigen, daß dieses £(•) bzw. das zugehörige ip(-) für
alle Zeiten um weniger als IO-4 von der wahren Lösung des Anfangswertproblems
(1) A (2) abweicht. Dabei kommt uns zustatten, daß die Näherungslösung für alle t
kn,k € Z, von vorneherein den richtigen Wert liefert. Der hierdurch bewirkte Fehler
der Zeitgleichung p(-) ist von derselben Größenordnung (vgl. (7)). Wird das gemäß
2n 24 h auf die Zeitskala umgerechnet, so kommt man auf weniger als 1.5 Sekunden,

was wohl für die Zwecke einer Sonnenuhr vernachläßigt werden darf.

Damit besitzt der Einheitsvektor von der Sonne zur Erde im f-System die folgende
Parameterdarstellung:

t h-> (cos(t + 6(t))9sin(t + 6(t))9Ö) (3)

Von nun an betrachten wir die Sonne von der Erde aus: Der von der Erde zur Sonne

weisende Richtungsvektor ist nach (3) gegeben durch

x/:=
¦cos(t + ö(t))
-sin(t + ö(t))

0

Die (fiktive) dynamische mittlere Sonne rotiert mit konstanter Geschwindigkeit in der

Ekliptik und ist gleichzeitig mit der wahren Sonne in Perihel und Aphel. Um ihren (von
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der Erde aus gesehenen) Ort y zu erhalten, müssen wir im Ausdruck für x den Parameter

k bzw. die Funktion 6(-) gleich 0 setzen. Es ergibt sich

y/
— cosf
— sinf

0

Das ebenfalls raumfeste Dreibein (fi, F2, F3) ist folgendermaßen festgelegt (siehe die

Figur 1): Fi liegt in der Knotenlinie, fi ist senkrecht dazu in der Äquatorebene, und
f3 := fj x fi. Die Transformationsmatrix Ter hat dann folgende Gestalt:

Lff

cos a — sm a cos e

sin a cos a cos e

0 sine

sin a sm e

- cos a sin e

cose

Hiernach ist die wahre Sonne im f-System gegeben durch

cosa sina 0 "-cos(f + S(t))

v r;/X/ — sin a cos e cos a cos e sine -sin(t + ö(t))
sm a sin e — cos a sin e cose 0

-cos(t + 8(t) -a)
- sin(t + ö(t) — a) cos e

sin(f + 6(t) — a) sine

und für die dynamische mittlere Sonne erhält man

y/
— cos(f — a)

- sin(t — a) cos e

sin(t — a) sine

Die (ebenfalls fiktive) mittlere Sonne koinzidiert zur Zeit t a mit der dynamischen
mittleren Sonne im Frühlingspunkt und rotiert mit konstanter Geschwindigkeit in der

Äquatorebene. Ihr Ort z ist folglich im f-System gegeben durch

— cos(f — a)
— sin(t — a)

0

Das e-Dreibein ist starr mit der rotierenden Erde verbunden, und zwar liegen ei und ti
in der Äquatorebene, ei auf dem Ortsmeridian von P, und €3 zeigt zum Nordpol (siehe

die Figur 2). Die Transformationsmatrix vom f- zum e-System ist somit gegeben durch

Tft
cos r — sin r 0

sin r cos r 0
0 0 1
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af

Fig. 2

dabei bezeichnet r die Sternzeit: Eine volle Erddrehung gegenüber dem Fixsternhimmel
entspricht einer Zunahme von r um 2ir\ um den Nullpunkt von r brauchen wir uns im

Augenblick nicht zu kümmern.

Für %e, ausgedrückt in den Zeitvariablen t und r, erhalten wir

Zg — Tßg if —

cosr sinr 0 — cos(t --a) — cos(r — t + a
-sinr cosr 0 — sin(t --a) sin(r — t + a)

0 0 1 0 0
• (4)

Die mittlere Ortszeit s auf dem Meridian von P ist folgendermaßen festgelegt: Zwischen
zwei aufeinanderfolgenden Kulminationen der mittleren Sonne, das heißt: innerhalb von
24 Stunden, nimmt s um 2n zu, und s tt (mod 2n) im Moment der Kulmination. Die
Kulmination findet in dem Moment statt, wo die ex -Komponente von z maximal ist. Der

Gleichung (4) entnimmt man somit, daß die drei Zeitvariablen t, r und s miteinander

verknüpft sind durch

t — t + a s (mod 2-k) ;

wir können daher r mit Hilfe von

t:=(*-q) + s (5)

aus unseren Gleichungen eliminieren. Als erstes ergibt sich

zs — (— cos s, sin s, 0) ;

in Worten: Die mittlere Sonne umläuft Tag für Tag den Äquator (von Norden gesehen)
im Uhrzeigersinn in genau 24 Stunden.
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Wegen (5) läßt sich T& als Produkt schreiben:

Tß
cos(t — a) — sin(t — a) 0

sin(f — a) cos(t — a) 0
0 0 1

coss — sins 0
sins coss 0

0 0 1

so daß wir für die wahre Sonne im e-System das folgende erhalten:

Xg - Vj. Xß -
cos s sin s 0

— sin s cos s 0
0 0 1

-cos(t + ö(t) -a)

cos(t — a) sin(t — a) 0
— sin(t — a) cos(t — a) 0

0 0 1

sin(t + 6(t)-a)(l -2sin2§)
sin(t + 6(t) — a) sine

cos s sin s 0
— sin s cos s 0

0 0 1

¦ cos 8(t) + 2 sin2 § sin (t + 6(t) - a) sin(t - a)
¦ sin 6(t) +2 sin2 | sin(f + 6(t) - a) cos(t - a)

sin(t + 6(t) — a) sine

Der zweite Faktor rechter Hand (=: w(f)) ist ein Einheitsvektor und läßt sich daher in
der Form

w (—r cos /x, r sin //, h)

schreiben; dabei ist

und

h(t) := sin(t + 6(t) - a) sine r(t) := \Jl -h2(t)

— sin 6(t) + 2 sin2 | sin (t + 6(t) — a) cos(t — a)
cos 6(t) - 2 sin2 | sin(t + ö(t) - a) sin(t - a)

- sin 6(t) -htan2 \ sin(2(t - a) + 6(t))

p(t) :— arctan

(6)

arctan
cos 6(t) + tan2 | cos(2(£ - a) + 6(t))

Mit den neu eingeführten Bezeichnungen haben wir

Xg :

cos s sin s 0
— sin s cos s 0

0 0 1

w(0
-r(t)cos(s + p(t))
r(t) sin(s + ß(t))

h(t)
(7)

Wir wollen die Jahreszeit t und die Tageszeit s für einen Moment als unabhängige
Variable betrachten. Die Formel (7) läßt sich dann folgendermaßen interpretieren: Für
festes t und variables s beschreibt die Sonne während eines Tages auf der Himmelskugel
einen Kreis in einer zum Äquator parallelen Ebene der geographischen Breite rj(t) :=
aresin h(t); die maximale im Laufe eines Jahres auftretende Breite ist e. Während die

mittlere Sonne jeden Tag zur Zeit s n kulminiert, ist das für die wahre Sonne zur Zeit
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s 7r — /i(f) der Fall. Eine nach der mittleren Sonne "gerichtete" Sonnenuhr wird also

um den (im Laufe eines Jahres veränderlichen) Betrag p(t) vorgehen. Die Funktion /_.(•)

heißt Zeitgleichung (siehe die Figur 3).

Halten wir jedoch die Tageszeit s fest, zum Beispiel s := rc, so sagt uns (7) bei variablem
t, an welcher Stelle des Himmels sich die Sonne an den verschiedenen Tagen des Jahres

um 12 Uhr Ortszeit befindet: Der Sonnenstand hat (bezogen auf den Ortsmeridian) die

geographische Länge —p(t) und die geographische Breite rj(t). Die für kontinuierlich
veränderliches t resultierende Kurve ist kein Meridianbogen, sondern hat die Form einer
8, siehe die Figur 4.

Zur Konstruktion von Sonnenuhren benötigen wir eine bequeme Beschreibung des
Sonnenstands am Orte P. Das e-Dreibein ist wie folgt definiert (siehe die Figur 5): Der

Ursprung liegt in P, ex zeigt in der Horizontebene von P nach Osten, ei nach Norden,
und e3 zeigt vertikal nach oben. Liegt P auf der geographischen Breite 0, so ist damit
die Transformationsmatrix Tge gegeben durch

Tge —

0 — sin 0 cos 0

1 0 0
0 cos 0 sin 0

Mit (7) erhalten wir damit für den Sonnenstand im e-System:

'0 1 Ol r-r(£)cos(s + p,(t))
-sinr^ 0 cos0 r(t) sin(s + p(t))
cos 0 0 sin 0 [ h(t)

lge Xg

die Koordinaten (xX}Xi,x^) von x^ sind somit gegeben durch

xx r(t)sin(s + p(t))
x2 r(f)cos(s + p(t)) sin 0 + h(t) cos 0

x3 —r(t)cos(s + p(t)) cosö + h(t) sin0

(8)
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Zum Schluß benotigen wir eine Formel, die die mitteleuropäische Zeit S (Einheit Stunden,

S 12 ist Mittag) fur einen Ort P der geographischen Lange <p (Einheit Grad,
<p 0 ist der Meridian von Greenwich) auf die Vanable s umrechnet Die mittel
europaische Zeit ist definiert als mittlere Ortszeit auf dem 15 Langengrad Da die mittlere
Sonne pro Stunde 15° zurücklegt, erhalt man damit ohne weiteres

n\ 15 / (9)

Wir wollen nun wirklich eine Sonnenuhr fabnzieren und wählen das folgende einfache

Design Wir bnngen im Punkt (0,0,1) des e-Systems eine kleine Kugel an und verfolgen
ihren Schatten auf der (ei,e2)-Ebene fur feste Zeiten S 7,8, 17,18 als Funktion
der Jahreszeit t Wir erhalten eine Kollektion von Achterschleifen, die mit den Zahlen
7 bis 18 angeschneben werden können (siehe die Figur 6) Die Uhr wird in der Weise

abgelesen, daß aus der Lage des Kugelschattens in dem Schleifenmuster die gesuchte
Zeit S interpoliert wird Dabei ist zu berücksichtigen, daß zum Kalendenntervall ~21
Dezember bis ~21 Juni jeweils der "absteigende" Teil jeder Schleife gehört, zur zweiten
Jahreshälfte der "aufsteigende" Teil (siehe die Pfeile in der Figur 6)

Die Figur 6 wird im einzelnen folgendermaßen erhalten Der zur Tageszeit s und zur
Jahreszeit t gehörende Sonnenstrahl durch den Punkt (0,0,1) e3 besitzt die Parame

terdarstellung
u •-> e3 — ux(s,t)

und schneidet die (ei,e2)-Ebene zur "Lichtzeit" u
daher die Koordinaten

Pi ~;
xx

p2 -:

l/x3 Der Schnittpunkt p(s, £) hat

x2

X3
'

X3

Mit diesen Formeln und (9) laßt sich leicht em Programm schreiben, das die gewünschten
Schleifen fur gegebene Werte von S zeichnet — In ähnlicher Weise berechnet man mit
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Fig. 7

Hilfe von (8) und (9) das Schleifenmuster für ein vertikales Zifferblatt, dessen Normale
in eine vorgegebene Himmelsrichtung zeigt.

Es läßt sich nicht von der Hand weisen, daß das Ablesen der genauen Zeit in dem
resultierenden Schleifenmuster nicht ganz einfach ist. Es entsteht damit die interessante

Aufgabe, eine Sonnenuhr zu konzipieren, bei der eine einzige Achterschleife für alle

Tageszeiten dient. Eine gewisse Verbreitung haben die Uhren des Ingenieurs Martin Bernhardt

gefunden, bei denen der schattenwerfende Stab als geschwungene Keule ausgebildet
ist (genaugenommen braucht es zwei Keulen, die an den Sonnwenden gegeneinander

ausgetauscht werden, siehe [3], Bd. 1, pp. 87 und 144); eine ähnliche Konstruktion findet
sich als Tischuhr in vielen physikalischen Sammlungen. Eine besonders schöne Lösung
aus neuester Zeit stammt von Heinz Schilt, CH-3506 Großhöchstetten (Figur 7): Der
um die Erdachse drehbare Messingring besitzt auf halber Höhe ein kleines kreisrundes
Loch, und auf der gegenüberliegenden Innenseite ist eine Achterschleife mit
Monatsangaben eingraviert. Das Zifferblatt liegt in der Äquatorebene und ist fest mit dem

Messingring verbunden; an seiner Peripherie ist eine Zeitskala mit Zehnminutenstrichen
angebracht. Nachdem man die Uhr korrekt aufgestellt hat, muss man den Messingring
so lange drehen, bis die Sonne durch das kleine Loch hindurch einen Lichtpunkt an der

richtigen Stelle der Achterschleife erzeugt. Mithilfe eines Nonius am oberen Rand der
Äquatorebene kann dann die Zeit minutengenau abgelesen werden.
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