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Einige Anwendungen der Topologie auf die Algebra1

Heinz Hopf

Trotz der Polaritidt der rein algebraischen und der rein topologischen Methoden, die
man durch die Stichworte “diskret” und “kontinuierlich” anzudeuten pflegt, existieren
bekanntlich zwischen Algebra und Topologie zahlreiche und verschiedenartige Zusam-
menhinge und Wechselwirkungen. Aus dem grossen Bereich dieser Beziehungen werde
ich in diesem Vortrag einige spezielle Gegenstinde auswihlen; sie gehdren alle demsel-
ben, im Prinzip alten Kapitel an: es sind Anwendungen topologischer Methoden in der
klassischen, “unmodernen” Algebra, also der Algebra unter Zugrundelegung des Korpers
der reellen Zahlen oder des Korpers der komplexen Zahlen, und dabei wird es sich im
wesentlichen, mehr oder weniger explizit, um Existenzbeweise fiir Nullstellen von Poly-
nomen oder Polynomsystemen handeln. Da es gerade die Begriffe der Stetigkeit sind, die
den Korper aller reellen und den aller komplexen Zahlen vor den anderen algebraischen
Korpern auszeichnen, ist es ja kein Wunder, dass sich topologische, also “stetigkeits-
geometrische” Methoden hier wirkungsvoll anwenden lassen. Ubrigens gehoren hierher
natiirlich Teile der klassischen algebraischen Geometrie, so die Schnittpunktsitze und
ihre Konsequenzen; aber ich mochte in meinem Vortrage nicht iiber Dinge sprechen,
die allen Kennern der algebraischen Geometrie geldufig sind. Vielmehr ist es meine Ab-
sicht, nicht nur noch einmal die Anwendbarkeit topologischer Methoden in der Algebra
zu beleuchten, sondern zugleich auch die Aufmerksamkeit der Algebraiker auf einige
weniger bekannte algebraische Sétze und Probleme zu lenken, die im Laufe topologischer
Untersuchungen sichtbar geworden sind.

Der vorliegende Beitrag erschien erstmals in der Zeitschrift *“Rendiconti del Seminario
Matematico, Universita ¢ Politecnico Torino” 11 (1952), p. 75-91. Die Elemente der
Mathematik danken fiir di¢ Erlaubnis, ihn hier aus Anlass des hundertsten Geburtstages
von Heinz Hopf abzudrucken, — Es handelt sich bei dem Artikel im wesentlichen um
das Manuskript eines Vortrages, welchen Heinz Hopf im Frithjahr 1952 an den Uni-
versitiiten Turin und Genua gehalten hatte. Hopfs erstaunliche Fahigkeit, komplizierte
mathematische Zusammenhiinge anschaulich darzustellen, kommt hier meisterlich zur
Geltung.

1) Vortrag, gehalten an den Universitdten Turin und Genua im Frithjahr 1952.
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1. — Das dlteste Beispiel fiir die Anwendung einer topologischen Methode beim Beweis
eines algebraischen Satzes diirfte die Uberlegung sein, durch welche man beweist, dass
jedes reelle Polynom

fx) =x"+ a1 x" '+ +ax +ap, (1.1)
dessen Grad n ungerade ist, eine reelle Nullstelle besitzt; im Hinblick auf spitere Verall-

gemeinerungen stelle ich den Gang dieser bekannten Uberlegung ausfiihrlich dar: Setzen
wir

g(x)=x", h(x)=ap,_1x""' 4+ +ay, (1.2)
so dass also
f(x) = g(x) + h(x) (1.3)
ist, so ist
|h(x)| < |g(x)| fiir grosse [x|, (1.4)
also )
sign. f(x) = sign. g(x) fiir grosse |x|. (1.5)

Da 1 ungerade ist, hat g(x) = x” immer dasselbe Vorzeichen wie x, und daher folgt aus
(1.5):
f(r) >0, f(—r) <0 fiir grosse positive r . (1.6)

Soweit hat der Beweis algebraischen Charakter; jetzt aber benutzen wir die Stetigkeit
von f und wenden den Satz von Bolzano an, also den folgenden topologischen Satz,
dem ich den Namen ¥, geben will: “Die auf einem Intervall E stetige reelle Funktion f
habe in den beiden Endpunkten von E Werte mit verschiedenen Vorzeichen; dann besitzt
f in E eine Nullstelle.” Hieraus und aus (1.6) folgt die Existenz einer Nullstelle unseres
Polynoms f(x).

Ganz analog ist der Gedankengang des folgenden bekannten Beweises fiir den “Fun-
damentalsatz der Algebra”, also fiir den Satz, dass jedes komplexe Polynom positiven
Grades eine Nullstelle besitzt: In (1.1) seien die a; komplexe Zahlen, x eine komplexe
Variable; mit den Definitionen (1.2) gelten (1.3) und (1.4) wie oben. Die obigen Aussa-
gen iiber gewisse Vorzeichen werden jetzt ersetzt durch Aussagen iiber “Umlaufzahlen”:
wir betrachten die durch y = f(x) bezw. y = g(x) vermittelten Abbildungen der komple-
xen x-Ebene in eine komplexe y-Ebene (dabei diirfen im Augenblick f und g beliebige
stetige Funktionen sein); durchlduft x den durch |x| = r gegebenen Kreis S,, so macht
der Bildpunkt f(x) eine gewisse Anzahl von Umlidufen (gleich der durch 27 dividierten
Anderung seines Winkelargumentes) um den Punkt y = 0; diese Anzahl bezeichnen
wir mit C[f(S,)], und analog ist C[g(S,)] erkldrt (dabei nehmen wir iibrigens an, dass
der Punkt y = O nicht auf f(S,) bezw. g(S;) liegt). Eine elementare geometrische Be-
trachtung, die man das Prinzip von Rouché nennt, zeigt: ist f(x) = g(x) + h(x) und
|h(x)] < |g(x)| fiir |x| = r, so ist C[f(S;)] = C[g(S,)]. — Fiir unsere Polynome f und
g folgt somit auf Grund von (1.4) in Analogie zu (1.5):

C[f(S,)] = C[g(S,)] fiir grosse r. (1.5")
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Aus g(x) = x" folgt offenbar

Clg(S,;)] = n fiir jedes r > 0; (1.7)

daher folgt weiter, in Analogie zu (1.6):
Clf(Sr)] =n #0 fiir grosse r. (1.6")

Jetzt benutzen wir den folgenden topologischen Satz ¥,, der als eine direkte Verallge-
meinerung des elementaren Satzes ¥, gelten darf: “f sei eine solche stetige Abbildung
der von S, berandeten Kreisscheibe E in die y-Ebene, dass C[f(S,)] # 0 ist; dann gibt es
in E einen Punkt, der durch f auf den Nullpunkt der y-Ebene abgebildet wird.” Hieraus
und aus (1.6”) folgt die Existenz einer Nullstelle unseres Polynoms f(x).2) Ich werde
den Satz ¥, hier nicht beweisen, wie ich iiberhaupt in diesem Vortrage niemals Beweise
topologischer Sitze, sondern immer nur die Zuriickfiihrung algebraischer auf topologi-
sche Sitze besprechen werde. Der Satz &, ist nur ein Spezialfall eines Satzes ¥y, der von
stetigen Abbildungen eines k-dimensionalen euklidischen Raumes in einen ebensolchen
Raum handelt; von diesem allgemeinen Satz und seinen Anwendungen will ich jetzt
noch sprechen. Es seien also der x-Raum und der y-Raum k-dimensionale euklidische
Riume; wir benutzen in ihnen die additive Vektorschreibweise und verstehen unter |x|
und |y| die euklidischen Normen. S, sei die durch |x| = r gegebene (k — 1)-dimensionale
Kugelfliche, E die von ihr begrenzte k-dimensionale Vollkugel, f eine stetige Abbildung
von E in den y-Raum, wobei der Punkt y = 0, den ich kurz o nenne, nicht auf dem Bilde
f(S,) liegen soll; dann definiert man die Zahl C[f(S,)], die man die “Ordnung von o
in bezug auf f(S,)” oder auch die “Kroneckersche Charakteristik von f auf S,” nennt,
folgendermassen: sie ist der Brouwersche Abbildungsgrad derjenigen Abbildung von S,,
auf die durch |y| = 1 bestimmte Kugelfliche S| im y-Raum, welche entsteht, wenn man
f(S,) von o aus auf S| projiziert (und der Abbildungsgrad lisst sich charakterisieren als
die Anzahl der positiven Bedeckungen von S| durch das Bild von S,, vermindert um die
Anzahl der negativen Bedeckungen). Fiir k = 2 ist dies, wie man leicht sieht, die alte
Umlaufzahl. Nun lautet der Satz &y, den man auch den “Kroneckerschen Existenzsatz”
nennt: “Es sei C[f(S,)] # 0; dann gibt es in E einen Punkt x mit f(x) = 0.”)

Dieser Satz gestattet zahlreiche Anwendungen auf Existenzsitze fiir Nullstellen von
Funktionensystemen, und zwar besonders dann, wenn man ihn mit dem vorhin formu-
lierten Prinzip von Rouché kombiniert, das fiir den k-dimensionalen Raum genau so
lautet und genau so zu beweisen ist wie fiir die Ebene. Insbesondere erhilt man durch
ganz dieselben Schliisse, die uns vorhin zum Beweis des Fundamentalsatzes der Algebra
gefiihrt haben, jetzt den folgenden Satz: “Es sei f eine stetige Abbildung des ganzen
x-Raumes in den y-Raum; sie lasse sich (bei vektorieller Schreibweise) in der Form (1.3)
darstellen, wobei (1.4) gelte; ferner sei

Clg(S,)] #0  (fiir grosse r). (1.8)

2) In den iiblichen Darstellungen des Beweises benutzt man anstelle des topologischen Satzes &, den funk-
tionentheoretischen Satz: “Wenn f analytisch ist, so ist C[f(S;)] = (27i)~! § f~!f' dz = Anzahi der
Nullistellen von f in E.”

3) Man vergleiche Alexandroff-Hopf, Topologie I (Berlin 1935). 12. Kap. §§1.2.
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Dann gibt es einen Punkt x mit f(x) = 0.”

Als spezielles Beispiel zu diesem Satz will ich noch den “Fundamentalsatz der Algebra
fiir Quaternionen” besprechen, der von Eilenberg und Niven stammt*): Es seien a; Ha-
miltonsche Quaternionen und x eine Quaternionen-Variable; ein “Monom vom Grade n”
ist ein Produkt apxa,x .. .a,_xa,, wobei die 4; # 0 sind, und ein Polynom in x ist eine
Summe von endlich vielen Monomen; dabei beachte man, dass infolge der Ungiiltigkeit
des kommutativen Gesetzes die Summe zweier Monome gleichen Grades im allgemei-
nen kein Monom ist. Der “Fundamentalsatz” lautet: “Das Quaternionen-Polynom f(x)
enthalte genau ein Monom vom Grade n, wihrend alle anderen Monome kleineren Grad
haben; dann gibt es eine Quaternion xy, fiir welche f(xo) = 0 ist.”

Fiir den Beweis dieses Satzes verstehe man unter g(x) das in f(x) enthaltene Monom
n-ten Grades und definiere h(x) durch (1.3); dann bestitigt man ganz leicht, dass (1.4)
gilt; zu beweisen bleibt (1.8), und es ist in der Tat nicht sehr schwer zu zeigen, dass
(1.7) und daher auch (1.8) gilt.

Auf weitere Anwendungen des Kroneckerschen Existenzsatzes will ich hier nicht einge-
hen; viele dieser Anwendungen fiihren eher in die Analysis als in die Algebra. Ich will
jetzt lieber von Anwendungen topologischer Methoden in der linearen Algebra sprechen.

2. — Ein gutes Beispiel einer einfachen Anwendung der Topologie in der linearen Al-
gebra ist das folgende: mit Hilfe des klassischen Brouwerschen Fixpunktsatzes, welcher
besagt, dass jede stetige Abbildung eines Simplexes beliebiger Dimension in sich ei-
nen Fixpunkt besitzt’), beweist man leicht den folgenden Satz von Frobenius: “Jede
quadratische Matrix mit lauter reellen nicht-negativen Elementen besitzt einen reellen
nicht-negativen Eigenwert”.

Es sei in der Tat (a;;) eine reelle quadratische Matrix vom Grade 7 mit a;; > 0; wir setzen

Y aijx; = fi(x) fiir jedes reelle Wertsystem x = (xy,...,X,) und haben zu zeigen, dass
es eine Zahl A > 0 und ein Wertsystem x # (0, ...,0) so gibt, dass
fi(x) = Axi, i=1,2,...,n (2.1)

gilt. Wir diirfen annehmen, dass es kein Wertsystem x # (0,...,0) gibt, fiir das
alle f; = 0 sind, da ein solches eine Losung von (2.1) mit A = 0 ist. Wir deuten
Xy :Xp:...:X, als Koordinaten des (n — 1)-dimensionalen projektiven Raumes P; dann

ist durch
xi = fi(x)

eine Abbildung x’ = f(x) von P in sich definiert, die das (n — 1)-dimensionale Simplex
T, das durch
x] ZO,..-,xn 20

gegeben ist, in sich transformiert. In T gibt es einen Fixpunkt von f; fiir ihn gilt (2.1),
und dabei ist, da alle x; > 0 und alle f; > 0, aber nicht alle x; = 0 sind, A > 0 (und auf
Grund unserer obigen Annahme sogar A > 0).

4) S. Eilenberg und 1. Niven, The Fundamental theorem of Algebra for Quaternions. Bulletin Am. Math.
Soc. 50 (1944).

5) Beweise bei Alexandroff-Hopf, l.c., pp. 377, 480, 532.
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Damit ist der Satz von Frobenius bewiesen, aber nicht nur dieser Satz, sondern folgende

Verallgemeinerung: “Die reellen Funktionen fi, ..., f, der reellen Variablen xi,...,x,
seien iiberall stetig und fiir positive x nicht negativ; dann gibt es eine Zahl A > 0 und
ein Wertsystem x = (x,...,x,) # (0,...,0) mit x; > O fiir alle i, so dass (2.1) gilt.”

Die Voraussetzungen sind z.B. erfiillt, wenn die f; Polynome mit positiven Koeffizienten
sind; dann hat man einen neuen algebraischen Satz.

3. — Als Ausgangspunkt fiir weitere Anwendungen der Topologie auf Existenzsitze fiir
reelle Eigenwerte und auf verwandte Sitze der linearen Algebra kann uns die elementare
Tatsache dienen, dass eine reelle quadratische Matrix von ungeradem Grade immer einen
reellen Eigenwert besitzt. Obwohl dieser Satz ja einfach daraus folgt, dass die charakte-
ristische Gleichung der Matrix ungeraden Grad hat und daher eine reelle Wurzel besitzt,
und obwohl es sich also an und fiir sich kaum lohnt, noch nach anderen Beweisen zu
suchen, will ich den Satz doch noch durch eine andersartige topologische Betrachtung

begriinden, da diese Betrachtung uns zu gewissen Verallgemeinerungen fiithren wird, die
nicht ganz naheliegen.

Die topologischen Sitze, die hier ins Spiel kommen, handeln von tangentialen stetigen
Richtungsfeldern auf Sphéren. Auf der (n — 1)-dimensionalen Sphire S"~!, die etwa
im euklidischen (xi,...,x,)-Raum R" durch 3 x? = 1 gegeben sei, kann man, wenn
n gerade ist, ein stetiges tangentiales Richtungsfeld dadurch konstruieren, dass man im
Punkt (xy,...,x,) immer den Vektor {—x;,xy,...,—Xy, X,_1} anbringt; fiir ungerades n
aber ist etwas Ahnliches nicht moglich, denn es gilt der beriihmte, von Poncaré fiir n = 3,
von Brouwer fiir die grosseren n bewiesene Satz, den ich kurz den “Tangentensatz”
nennen will: “Bei ungeradem n gibt es auf der Sphire S"~! kein tangentiales stetiges
Richtungsfeld ohne Singularititen.” Hieraus ergibt sich leicht der folgende Satz, den
man manchmal den “Igelsatz” nennt (da er fiir n = 3 eine Aussage iiber die Stacheln
eines Igels enthilt): “Bei ungeradem n gibt es in jedem Richtungsfeld auf der $"~!, das
iiberall stetig (und daher im allgemeinen nicht tangential) ist, eine Normalenrichtung der
S$"~1” Denn andernfalls wiirden die Tangentialkomponenten der Richtungen ein stetiges
Tangentenfeld bilden, entgegen dem Tangentensatz>).

Die Existenz eines reellen Eigenwertes einer reellen quadratischen n-reihigen Matrix A =

(a;j) bei ungeradem n ist ein Korollar des Igelsatzes: in jedem Punkt x = (x,...,Xy)
der S"~! bringe man den Vektor p’ = Ap an, also denjenigen, der aus dem Vektor
p = {x1,...,xn} durch die lineare Transformation A hervorgeht; falls A singuldr ist, ist

A = 0 ein Eigenwert; ist A regulr, so bilden die p’ ein stetiges Richtungsfeld auf S"~!;
nach dem Igelsatz gibt es eine Stelle x, an der p’ die Richtung der Normalen, also auch
die Richtung von p hat; dort ist p’ = Ap = Ap; dann ist A ein Eigenwert von A.

In neuerer Zeit hat man nun, veranlasst durch die oben festgestellte Tatsache, dass es
auf einer Spire S"~! mit geradem n immer ein stetiges Tangentenfeld gibt, gefragt, ob
man auf einer solchen Sphire nicht vielleicht noch ein zweites, von dem ersten linear
unabhiingiges Feld anbringen konne, und vielleicht noch ein drittes usw.; die Frage
ldsst sich so prizisieren: “Wie gross ist, bei gegebenem n, die Maximalzahl stetiger
Tangentenfelder auf der S"~!, welche iiberall linear unabhéngig sind?” Es ist zwar bisher

54) L.c. (°), p. 481.
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nicht gelungen, diese Maximalzahl fiir beliebiges n anzugeben, aber man hat immerhin
folgenden Satz bewiesen: “Es sei

n=2".gq, g ungerade, (3.1)

und auf der S"~! gebe es r — 1 stetige, iiberall linear unabhiingige Tangentenfelder; dann
ist
r<2m (3.2)

also die Anzahl der Felder kleiner als 2™.” Fiir ungerades n, also fiir 2" = 1, ist dies der
alte Tangentensatz; fiir n = 4k + 2, also fiir 2™ = 2, besagt der Satz, dass es fiir je zwei
stetige Tangentenfelder auf der S***! einen Punkt gibt, in dem die beiden Feldrichtungen
gleich oder entgegengesetzt sind; usw. — In der soeben formulierten Allgemeinheit ist
der Satz erst 1951 von J.H.C. Whitehead bewiesen worden®); aber schon vorher hatte
E. Stiefel denselben Satz fiir Richtungsfelder im (n— 1)-dimensionalen projektiven Raum
bewiesen oder, was dasselbe ist, fiir solche Felder auf der Sphire S”~!, die bei Spiegelung
am Mittelpunkt der Sphére in sich iibergehen; aus diesem speziellen Satz hat Stiefel die
algebraischen Folgerungen gezogen, von denen wir jetzt sprechen werden.”)

Es seien Ay,...,A, reelle quadratische Matrizen von Grade n; sie spannen die lineare
Schar der Matrizen

ylAl w ahlR R o yrAr (33)
mit beliebigen, reellen Parametern y;, . ..,y auf; wir nennen die Schar “regular”, wenn

alle Matrizen (3.3), ausser derjenigen mit (v1,...,%) = (0,...,0), reguldr sind; dann
gilt der Satz: “Es gelte (3.1), und es gebe eine regulire Schar (3.3) mit r Parametern;
dann gilt (3.2).”

Wir wollen diesen Satz sogleich auf den obigen Satz iiber Tangentenfelder auf Sphiren
zurtickfiihren: Da die Schar (3.3) regulér ist, ist speziell die Matrix A, regulir; es existiert
also die reguldre Matrix A ! und da sich nichts @ndert, wenn wir alle Matrizen mit einer
festen reguldren Matrix, also z.B. mit A~ 1 multiplizieren, diirfen wir von vornherein an-
nehmen, dass A, = E (Einheitsmatrix) ist. Fiir jeden Einheitsvektor p des R" betrachten
wir die Vektoren A;p = p; (also die Vektoren, in die p durch die linearen Abbildungen
A; iibergeht); wir deuten p = p, als Ortsvektor eines Punktes x der S"~! und bringen in
x die Vektoren p,,...,p,_, an; die Tangentialkomponenten der p; beziiglich der S"~!
sind dann die Vektoren p; = p; — (p;p)p. Nun folgt erstens aus der Regularitit der Ma-
trizenschar (3.3) die lineare Unabhéngigkeit der Vektoren p,,...,p,_;, P, und zweitens
hieraus die lineare Unabhingigkeit der r — 1 Vektoren p},...,p,_,. Es gibt also auf
S"=1 ein System von 7 — 1 linear unabhiingigen stetigen Richtungsfeldern; folglich gilt
(3.2).

Der somit bewiesene Satz iiber Matrizenscharen besagt fiir ungerades n, also fiir 2" = 1,
dass dann bereits jede 2-parametrige Schar eine singuldre Matrix enthilt, und diese

6) N.E. Steenrod and J.H.C. Whitehead, Vector fields on the n-sphere. Proc. Nat. Acad. Sci. 37 (1951).

7) E. Stiefel, Uber Richtungsfelder in den projektiven Riumen und einen Satz aus der reellen Algebra.
Comment. Math. Helvet. 13 (1941). — Man vergl. auch H. Hopf, Ein topologischer Beitrag zur reellen
Algebra, ibidem.
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Aussage ist identisch mit dem alten Satz iiber die Existenz eines reellen Eigenwertes
einer Matrix ungeraden Grades; fiir n = 4k +2, also 2™ = 2, besagt unser Satz, dass jede
3-parametrige Schar eine singuldre Matrix oder, was damit dquivalent ist, dass jede 2-
parametrige Schar eine Matrix mit einem reellen Eigenwert enthdlt — usw. Ferner heben
wir das folgende Korollar unseres Satzes hervor: “Eine n-parametrige reguldre Schar
n-reihiger Matrizen kann es hochstens dann geben, wenn n = 2™ ist.”” — Die Frage,
ob es fiir jedes n eine 2™-parametrige reguldre Schar n-reihiger Matrizen gibt, ist offen
— wahrscheinlich ist sie zu verneinen; eine Klidrung dieser Frage wire aufschlussreich
sowohl fiir die Algebra als auch fiir die Topologie.

Der Fall » = n, von dem das soeben formulierte Korollar handelt, spielt eine Rolle
bei der Untersuchung der nicht notwendigerweise assoziativen Divisions-Algebren iiber
dem Korper der reellen Zahlen. Eine solche Algebra vom Grade n ist bekanntlich so
erkldrt: man hat den n-dimensionalen reellen Vektorraum R" mit seinen gewdhnlichen
Operationen und ausserdem in ihm eine Multiplikation der Vektoren, die distributiv mit
der Addition verkniipft ist; sie erfiillt ferner folgende Regel, wobei t, 1) Vektoren, a,b
Zahlen sind: (ax) - (by) = (ab) - (rY); schliesslich soll die Division durch jeden von 0
verschiedenen Vektor eindeutig ausfiihrbar sein, was gleichbedeutend damit ist, dass es
keine Nullteiler gibt. Dagegen braucht das assoziative Gesetz der Multiplikation nicht zu
gelten. Dass wir uns hier auch fiir nicht-assoziative Algebren interessieren, ist sowohl
dadurch gerechtfertigt, dass nicht-assoziative Strukturen (z.B. “loops”) heute ohnehin
den Gegenstand algebraischer Untersuchungen bilden, als auch besonders dadurch, dass
es eine nicht-assoziative Divisions-Algebra iiber dem Korper der reellen Zahlen gibt,
die aus algebraischen und aus geometrischen Griinden wichtig und interessant ist: das
System der Cayleyschen Oktaven; es hat den Grad 8.3)

Nach einem klassischen Satz von Frobenius bilden die komplexen Zahlen und die Qua-
ternionen die einzigen Divisions-Algebren iiber dem reellen Korper, welche assoziativ
sind; dann ist also n = 2 oder n = 4. Ein Satz von Hurwitz (iiber Multiplikations-
theoreme von Quadratsummen)®) lehrt: die einzigen Algebren (nicht notwendigerweise
assoziativ), in welchen die Normenproduktregel |th)| = |t|-|b]| gilt (die die Nicht-Existenz
von Nullteilern, also die Divisions-Eigenschaft impliziert), sind die Systeme der kom-
plexen Zahlen, der Quaternionen und der Cayleyschen Oktaven; dann ist also n = 2,4
oder 8. Ob es noch fiir andere Grade n als 2,4,8 Divisions-Algebren (in denen dann
weder das assoziative Gesetz noch die Normenproduktregel gelten kann) iiber dem reel-
len Korper gibt, ist nicht bekannt; zu diesem Problem liefert aber die im Vorstehenden
besprochene Theorie von Stiefel folgenden Beitrag: “Der Grad einer solchen Algebra
ist notwendigerweise eine Potenz von 2.”

In der Tat: Seien ny,...,n, Basisvektoren eines solchen Systems und ihre Produkte
durch

ninj = Za;‘jnk (3.4)

8) Man vergl. etwa L.E. Dickson, Algebren und ihre Zahlentheorie (Ziirich 1927), §133.

9) A. Hurwitz, Uber die Komposition der quadratischen Formen von beliebig vielen Variablen. Nachr. Ges.
d. Wiss. Gottingen 1898 (= Math. Werke, Bd. II (Basel 1933), p. 565).
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gegeben, so dass also fiir £ = ) x'n;, ) = > y/n; das Produkt durch

Ly = sznk, zk = inyfafj

bestimmt ist. Es sei £y = 0, §) # 0, also

Z(Zyjafj) X¥=0, k=1,...,n, (3.5)

i .

]

und (y1,...,¥.) # 0. Da es keine Nullteiler gibt, wird das Gleichungssystem (3.5) nur
durch £ = (0, ...,0) befriedigt, die Matrix (Z] y a{‘j) ist also regulir. Diese Matrix ist
gleich

YA +...+ YA, mit Aj= (a,"j),

(wobei also 7, k die Zeilen- und Spalten-Indices sind). Wir haben somit eine n-para-
metrige reguldre Schar n-reihiger Matrizen; daher ist, wie wir vorhin gesehen haben,
n=2"

Ob es aber derartige Algebren mit n = 2™ > 16 gibt, ist nicht bekannt.

4. — Ich will jetzt einen algebraischen Satz, der ganz in den soeben besprochenen
Problemkreis gehort, mit einer topologischen Methode beweisen, die von der bisherigen
vollstindig verschieden ist.

Fiigen wir den Postulaten fiir die “nicht notwendigerweise assoziativen Divisions-Al-
gebren iiber dem reellen Korper” noch die Forderung hinzu, dass die Multiplikation
kommutativ sein soll, dann wird die Situation natiirlich radikal vereinfacht, und es ist
nicht zu verwundern, dass es dann keine offenen Probleme mehr gibt. In der Tat gilt
der Satz!®): “Eine kommutative Divisions-Algebra iiber dem Kirper der reellen Zahlen,
assoziativ oder nicht, hat den Grad 2.”

Wenn wir iiberdies die Forderung hinzunehmen, dass die Algebra ein Eins-Element ent-
halten soll, dann folgt aus diesem. Satz durch ganz elementare Schliisse weiter, dass die
Algebra der Kérper der komplexen Zahlen ist; man kann also sagen: Fiir eine Algebra
(endlichen Grades) iiber dem Korper der reellen Zahlen ist das assoziative Gesetz der
Multiplikation eine Folge aus der Divisions-Eigenschaft (Nicht-Existenz von Nullteilern),
dem kommutativen Gesetz und der Existenz einer Eins.

Ich komme zu dem topologischen Beweis unseres Satzes. Die in dem Satz ausgedriickte
Auszeichnung der Zahl 2 vor allen grosseren Zahlen wird sich dabei folgendermassen
dussern: Fiir n = 2, aber nicht fiir n > 2, sind die (n — 1)-dimensionale Sphire S"~!
und der (n — 1)-dimensionale reelle projektive Raum P"~! miteinander homéomorph
(topologisch dquivalent); in der Tat sind sowohl die Kreislinie S! als auch die projektive
Gerade P! einfach geschlossene Linien, wihrend fiir n > 2 zwar die Sphire $"~! einfach
zusammenhingend ist (d.h. dass man auf ihr jeden geschlossenen Weg in einen Punkt

10) H. Hopf, Systeme symmetrischer Bilinearformen und euklidische Modelle der projektiven Rdume, Viertel-
jahrsschrift Naturf. Ges. Ziirich, LXXXV (1940), (= Festschrift Rudolf Fueter), p. 165.
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deformieren kann), aber nicht der projektive Raum P"~! (da in ihm z.B. eine projektive
Gerade nicht zusammenziehbar ist).

Wir nehmen nun eine Algebra vom Grade n, die alle vorausgesetzten Eigenschaften hat.
In dem Raum R", dessen Vektoren die Elemente der Algebra sind, sei o der Nullpunkt;
das Biindel der Geraden durch o reprisentiert einen P"~!, die Mannigfaltigkeit der von
o ausgehenden Halbstrahlen eine S"~!. Es sei g eine Abbildung des R" in sich, die
jedem Vektor r sein Quadrat rr = r? (im Sinne der Multiplikation in unserer Algebra)
zuordnet: q(x) = r?. Fiir jede reelle Zahl ¢ ist g(cx) = c?x?; daher bildet g jede Gerade
durch o in einen von o ausgehenden Halbstrahl ab; es wird also eine Abbildung Q von
P"=1in §"~! bewirkt. Q ist natiirlich stetig; ich behaupte: Q ist eineindeutig. In der
Tat: Seien £, I) zwei Vektoren, deren Geraden in denselben Halbstrahl abgebildet werden;

dann unterscheiden sich g(r) und g(1) nur durch einen reellen Faktor, der nicht negativ
ist und den wir daher ¢? nennen diirfen:

y? = 22

infolge der Kommutativitit

Y2 — c%r? = (Y +cx)(h — cx),

also ist
(h+cr)(h—cr) =0

und, da es keine Nullteiler gibt,
h = *ct;

das heisst: £ und 1) liegen auf derselben Geraden. Wir haben also eine stetige und
eineindeutige Abbildung Q von P"~! in $"~!; nun sind aber P"~! und S"~! geschlossene
Mannigfaltigkeiten, und aus ganz einfachen und allgemeinen topologischen Tatsachen
folgt daher, dass QQ eine Homdomorphie ist. Mithin ist n — 1 = 1, n = 2.

Damit ist unser Satz bewiesen. Ich mochte bemerken, dass ich fiir ihn keinen Beweis
kenne, der mit iiblichen algebraischen Methoden und ohne Topologie arbeitet; einen
solchen Beweis zu finden, halte ich fiir eine interessante Aufgabe, von der ich mir, im
Hinblick auf die Einfachheit sowohl des Satzes selbst als auch unseres topologischen
Beweises, nicht denken kann, dass es allzu schwierig ist.

5. — Man kann unseren eben bewiesenen Satz so wenden, dass eine neue algebraische
Fragestellung sichtbar wird, die sich ebenfalls topologisch angreifen lisst.

Unser Satz besagt: “Es sei n > 2, und man habe iiber dem Korper der reellen Zahlen
eine Algebra n-ten Grades, die nicht notwendigerweise assoziativ, aber kommutativ ist;
dann besitzt diese Algebra Nullteiler.”” Benutzen wir denselben Formalismus wie am
Ende von Nr. 3, so dass also die Multiplikation durch (3.4) gegeben ist; dann sind die n
Matrizen
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(wobei jetzt 1, j die Zeilen- und Spalten-Indices sind) infolge der Kommutativitdt der
Multiplikation symmetrisch; ich benutze die Symbole A* gleichzeitig als Funktionszei-
chen fiir die symmetrischen Bilinearformen

Ak (x,y) = Zafjxiyf.
Die Existenz von Nullteilern bedeutet, dass das Gleichungssystem (3.5), also das System
Ak(x,y)zo, k=1,...,n,

ein Losungspaar x # (0,...,0), y # (0,...,0) besitzt. Das heisst in geometrischer
Sprache: “Im reellen projektiven Raum P® der Dimension d = n — 1 > 1 seien durch
die Gleichungen

Ak(x,x) =0 k=1,...,n,

d + 1 Fldchen 2. Ordnung gegeben; dann gibt es zwei reelle Punkte x,y, die in bezug
auf jede dieser Fldchen zueinander polar sind.”

Dieser Satz ist dquivalent mit unserem Satz in Nr. 4 iiber kommutative Divisions-
Algebren. Jetzt aber entsteht die natiirliche Frage, ob dieselbe Behauptung — nimlich
die Existenz von zwei Punkten, die beziiglich aller gegebenen Fldchen polar sind —
nicht auch giiltig bleibt, wenn man mehr als d + 1 Fliachen hat; dies ist nun in der Tat
der Fall; es gilt namlich folgender Satz: “Im reellen projektiven Raum P?, d > 1, seien
s reelle Fldchen 2. Ordnung gegeben; dann ist jede der nachstehenden Bedingungen
(A) und (B) hinreichend fiir die Existenz eines reellen Punktpaares x,y, welches sich in
bezug auf jede dieser Fldchen in polarer Lage befindet:

s<d+2; (A)
s<2'—1, wobei 2'7' <d <2 ist” (B)

Die Bedingung (A) bedeutet fiir alle d, die Bedingung (B) bedeutet fiir die meisten d —
némlich fiir diejenigen, die nicht gleich 2/ —1 oder gleich 2‘ —2 sind — eine Verschirfung
unseres frilheren Satzes iiber d + 1 Fldchen; fiir die meisten d ist die Bedingung (B) viel
besser als (A), das heisst: man darf meistens viel mehr als d + 2 Flichen zulassen.
Welches die grosste Zahl s* = s*(d) ist, fiir welche die Existenz eines Punktpaares x,y
der genannten Art fiir jedes System von s* Flidchen gesichert ist, weiss ich nicht — ich
mochte auf dieses Problem aus der reellen algebraischen Geometrie hier hinweisen.

Was die Beweise von (A) und (B) betrifft, so ldsst sich (A) durch eine Verschiarfung
unserer topologischen Betrachtung aus Nr. 4 begriinden; anstelle der Tatsache, dass fiir
n > 2 der projektive Raum P"~! nicht mit der Sphire S”~! hom&omorph ist, benutzt
man die schiirfere Tatsache, dass P"~! kein topologisches Modell im euklidischen Raum
R" besitzt*). Die Bedingung (B) ergibt sich aus einem Satz von Stiefel im Rahmen der

x) siehe Fussnote 10
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Theorie, von der in Nr. 3 die Rede war, den wir aber dort nicht formuliert haben**).
Wegen der Einzelheiten verweise ich auf die Literatur — ich mochte meine ohnehin
schon recht langen Ausfiihrungen nicht noch weiter ausdehnen'!).

6. — Nur einige Bemerkungen prinzipieller Art will ich noch machen. Wir haben hier
von algebraischen Sitzen gesprochen, die man mit topologischen Mitteln beweisen kann
und die iibrigens auch fast alle auf topologischen Wegen entdeckt worden sind. Nun darf
es zwar, wie ich schon in der Einleitung gesagt habe, wohl als sachgemiss gelten, dass
man in der Algebra iliber dem Korper der reellen Zahlen (oder auch, was schliesslich
nichts anderes ist, liber dem Korper der komplexen Zahlen) topologische Hilfsmittel be-
nutzt, da ja in der Definition der reellen Zahlen Stetigkeitsbegriffe vorkommen; trotzdem
ist es, wenn man im Laufe topologischer Untersuchungen Séatze von der Art unserer alge-
braischen Sitze in Nr. 3, 4, 5 entdeckt hat, auch verstdndlich, dass man noch nicht ganz
befriedigt ist, sondern wiinscht, fiir dieselben Sitze, die doch unleugbar einen gewis-
sen “algebraischen” Charakter haben, auch “algebraische Beweise” zu finden. Hier aber
muss man wohl etwas weiter ausholen und zunéchst einmal fragen, was denn hier unter
einem algebraischen Satz und unter einem algebraischen Beweis zu verstehen sei. Ich
habe bei verschiedenen Gelegenheiten dazu folgenden Vorschlag gemacht (wobei man,
um sich nicht in Allgemeinheiten zu verlieren, immer die Sitze, die wir hier besprochen
haben, im Auge behalten moge): “Man ersetze in der Formulierung der Sitze den Korper
der reellen Zahlen durch einen reell-abgeschlossenen Korper im Sinne der Theorie von
Artin-Schreier'?) und beweise die so entstehenden allgemeineren Behauptungen.” In der
Tat wird ja auf diese Weise das Archimedische Axiom, also das wesentliche Stetigkeits-
axiom, ausgeschaltet. Fiir den Satz aus Nr. 3 und fiir andere damit zusammenhingende
Sitze, auf die ich nicht eingegangen bin, ist die so formulierte Aufgabe von F. Behrend
gelost worden'?). Andere rein algebraische Beweise fiir topologisch entdeckte Sétze hat
— im Sinne meines Vorschlages — W. Habicht gefunden'#). Dagegen ist fiir den Satz
aus Nr. 4 das Analoge, soviel ich weiss, bisher nicht gelungen (woriiber ich mich, wie
ich schon am Schluss von Nr. 4 angedeutet habe, wundere, zumal die topologischen
Tatsachen, die in Nr. 4 auftreten, viel einfacher sind als diejenigen in Nr. 3).

Diese Fragestellung hat eine ganz neue und, wie ich finde, sehr iiberraschende Wendung
durch die Ergebnisse beweistheoretischer Untersuchungen von A. Tarski erhalten!®); fiir

**) siche Fussnote 7

11) Weitere in den Rahmen dieses Vortrages passende Sitze und Beweise findet man ausser in den in Fussnote

7 zitiergen auch in den folgenden Arbeiten: H. Hopf und M. Rueff, Uber faserungstreue Abbildungen der
Spyg: Comment. Math. Helvet. 11 (1939). — B. Eckmann, Systeme von Richtungsfeldern in Sphdren
und stetige Losungen komplexer linearer Gleichungen, Comment. Math. Helvet. 15 (1943); sowie: Stetige
Lésungen linearer Gleichungssysteme, ibidem.

12) Man vergl. z.B. B.L. van der Waerden, Moderne Algebra, 1. Teil (2. Aufl. Berlin 1937), p. 235 ff.
13) E Behrend, Uber Systeme reeller algebraischer Gleichungen, Compos. Math. 7 (1939).

14) W. Habicht, Uber die Lisbarkeit gewisser algebraischer Gleichungssysteme, Comment. Math. Helvet. 18
(1946); sowie: Ein Existenzsatz iiber reelle definite Polynome, ibidem.

15) A. Tarski, A decision method for elementary Algebra and Geometry (2. edition, University of California
Press, (Berkeley and Los Angeles 1951); bes. pp. 62-63.
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eine grosse Klasse “algebraischer” Sitze, die ich hier nicht definiere, die aber jedenfalls
unsere oben besprochenen Sitze enthilt, gilt namlich, wie Tarski gezeigt hat, Folgendes:
“Wenn ein solcher Satz in bezug auf einen reell-abgeschlossenen Korper beweisbar ist,
so ist er in bezug auf jeden reell-abgeschlossenen Korper giiltig.” — Infolgedessen gilt
also z.B. unser Satz aus Nr. 4 tatsdchlich fiir jeden reell-abgeschlossenen Korper, und
der Beweis hierfiir hat zwei Teile: erstens unseren alten topologischen Beweis in bezug
auf den Korper der reellen Zahlen, zweitens die Anwendung des Prinzips von Tarski.

Auf Grund dieses Prinzips ist in gewissem Sinne mein oben formulierter Vorschlag und
sind in gewissem Sinne auch die erwidhnten Arbeiten von Behrend und Habicht iiber-
fliissig geworden. Trotzdem wird man diese und &dhnliche Arbeiten auch heute nicht als
inhaltslos ansehen konnen: sie zeigen topologisch entdeckte Siétze in neuer algebrai-
scher Beleuchtung; und ich glaube auch nicht, dass das Herz eines Algebraikers beruhigt
wird durch den topologisch-metamathematischen Beweis des Satzes iiber die kommu-
tativen Divisions-Algebren, von dem wir soeben gesprochen haben. Man miisste wohl,
wenn man versuchen will, hier Klarheit zu schaffen, die Frage “was ist ein algebraischer
Beweis?” systematisch diskutieren; aber das iiberschreitet natiirlich bei weitem mein
Programm.

Hopf erwihnt in seinem Vortrag eine Anzahl offener Probleme; die meisten davon
sind auch heute noch nicht gelost. Eine Ausnahme bilden lediglich die im 3. Abschnitt
erwihnten Fragen iiber die Existenz von linear unabhingigen Richtungsfeldern auf
Sphiren, bzw. iiber die Existenz von reellen Divisionsalgebren. Hier erfolgten bahn-
brechende Fortschritte durch M. Kervaire und J. Milnor (beide 1958) und wenig spiter
durch J.F. Adams (1960). Nach diesen Resultaten ist heute bekannt, dass die Sphire
S"~! einzig fiir n = 2,4,8 ein System von n — 1 stetigen linear unabiingigen Tan-
gentenfeldern zuldsst. Konsequenterweise kann es nur in den Dimensionen 1,2,4,8
relle Divisionsalgebren geben. Fiir diesen Satz iiber die Divisionsalgebren scheint es
bis heute keinen Beweis zu geben, der die starken topologischen Hilfsmittel (u.a. den
Periodizititssatz von R. Bott) vermeidet. Auch fiir den von Hopf im 4. Abschnitt er-
wiahnten Satz iiber kommutative reelle Divisionsalgebren scheint bis heute kein rein
algebraischer Beweis bekannt zu sein.

Fiir diese Zusammenhénge und fiir die weitere Entwicklung der hier angesprochenen
Themen verweisen wir auf das Buch

Ebbinghaus et al.: Zahlen. Springer Verlag, 3. Auflage 1992,

insbesondere auf die Kapitel 8, 9, 10 (M. Koecher, R. Remmert) und Kapitel 11
(F. Hirzebruch), und ferner auf den Beitrag

Beno Eckmann: Continuous solutions of linear equations — An old problem, its
history, and its solution. Expo. Math. 9 (1991) 351-365.
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