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Einige Anwendungen der Topologie auf die Algebra1

Heinz Hopf

Trotz der Polarität der rein algebraischen und der rein topologischen Methoden, die
man durch die Stichworte "diskret" und "kontinuierlich" anzudeuten pflegt, existieren
bekanntlich zwischen Algebra und Topologie zahlreiche und verschiedenartige
Zusammenhänge und Wechselwirkungen. Aus dem grossen Bereich dieser Beziehungen werde
ich in diesem Vortrag einige spezielle Gegenstände auswählen; sie gehören alle demselben,

im Prinzip alten Kapitel an: es sind Anwendungen topologischer Methoden in der
klassischen, "unmodernen" Algebra, also der Algebra unter Zugrundelegung des Körpers
der reellen Zahlen oder des Körpers der komplexen Zahlen, und dabei wird es sich im
wesentlichen, mehr oder weniger explizit, um Existenzbeweise für Nullstellen von
Polynomen oder Polynomsystemen handeln. Da es gerade die Begriffe der Stetigkeit sind, die
den Körper aller reellen und den aller komplexen Zahlen vor den anderen algebraischen
Körpern auszeichnen, ist es ja kein Wunder, dass sich topologische, also
"stetigkeitsgeometrische" Methoden hier wirkungsvoll anwenden lassen. Übrigens gehören hierher
natürlich Teile der klassischen algebraischen Geometrie, so die Schnittpunktsätze und
ihre Konsequenzen; aber ich möchte in meinem Vortrage nicht über Dinge sprechen,
die allen Kennern der algebraischen Geometrie geläufig sind. Vielmehr ist es meine
Absicht, nicht nur noch einmal die Anwendbarkeit topologischer Methoden in der Algebra
zu beleuchten, sondern zugleich auch die Aufmerksamkeit der Algebraiker auf einige
weniger bekannte algebraische Sätze und Probleme zu lenken, die im Laufe topologischer
Untersuchungen sichtbar geworden sind.

Der vorliegende Beitrag erschien erstmals in der Zeitschrift "Rendieonti del Seminario

Matematico, Umversitä e Politecnico Torino" 11 (1952), fh 75-01. Die Elemente der
Mathematik danken ftir die Erlaubnis, ihn hier ans Anlass des hundertsten Geburtstages

von Heinz Hopf abwlruekea — Es handelt sich bei dem Artikel im wesentliche» um
das Manuskript eines Vortrages, welchen Heim: Hopf im Fi&bjaltr 1952 m den Uni-
versitüten Turin und Genua gehalten hatte. Hopfe erstaualiche Fähigkeit, kompilierte
mathematische Zusammenhinge anschaulich darzustellen, kommt hier meisterlich zm

1) Vortrag, gehalten an den Universitäten Turin und Genua im Frühjahr 1952
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1. — Das älteste Beispiel für die Anwendung einer topologischen Methode beim Beweis
eines algebraischen Satzes dürfte die Überlegung sein, durch welche man beweist, dass

jedes reelle Polynom

f(x) =Xn + fln-iX""1 + • • • + aXX + flo, (1.1)

dessen Grad n ungerade ist, eine reelle Nullstelle besitzt; im Hinblick auf spätere
Verallgemeinerungen stelle ich den Gang dieser bekannten Überlegung ausführlich dar: Setzen

wir
g(x) xn h(x) an-xxn~x + • • • + ao, (1.2)

so dass also

ist, so ist

also

f(x)=g(x)+h(x) (1.3)

\h(x)\ < \g(x)\ für grosse \x\9 (1.4)

sign. f(x) sign. g(x) für grosse \x\. (1.5)

Da n ungerade ist, hat g(x) xn immer dasselbe Vorzeichen wie x, und daher folgt aus

(1.5):

f(r) > 0, f(—r) < 0 für grosse positive r (1.6)

Soweit hat der Beweis algebraischen Charakter; jetzt aber benutzen wir die Stetigkeit
von / und wenden den Satz von Bolzano an, also den folgenden topologischen Satz,
dem ich den Namen &\9 geben will: "Die auf einem Intervall E stetige reelle Funktion /
habe in den beiden Endpunkten von E Werte mit verschiedenen Vorzeichen; dann besitzt

/ in E eine Nullstelle." Hieraus und aus (1.6) folgt die Existenz einer Nullstelle unseres

Polynoms f(x).
Ganz analog ist der Gedankengang des folgenden bekannten Beweises für den
"Fundamentalsatz der Algebra", also für den Satz, dass jedes komplexe Polynom positiven
Grades eine Nullstelle besitzt: In (1.1) seien die ax komplexe Zahlen, x eine komplexe
Variable; mit den Definitionen (1.2) gelten (1.3) und (1.4) wie oben. Die obigen Aussagen

über gewisse Vorzeichen werden jetzt ersetzt durch Aussagen über "Umlaufzahlen":
wir betrachten die durch y f(x) bezw. y g(x) vermittelten Abbildungen der komplexen

x-Ebene in eine komplexe y-Ebene (dabei dürfen im Augenblick / und g beliebige
stetige Funktionen sein); durchläuft x den durch |x| r gegebenen Kreis Sr, so macht
der Bildpunkt f(x) eine gewisse Anzahl von Umläufen (gleich der durch 2n dividierten
Änderung seines Winkelargumentes) um den Punkt y 0; diese Anzahl bezeichnen
wir mit C\f(Sr)], und analog ist C[g(Sr)] erklärt (dabei nehmen wir übrigens an, dass

der Punkt y 0 nicht auf f(Sr) bezw. g(Sr) liegt). Eine elementare geometrische
Betrachtung, die man das Prinzip von Rouche nennt, zeigt: ist f(x) g(x) + h(x) und

|ft(*)| < \g(x)\ für |x| r, so ist C\f(Sr)] C\g(Sr)]. — Für unsere Polynome / und

g folgt somit auf Grund von (1.4) in Analogie zu (1.5):

C\f(Sr))=C\g(Sr)} für grosse r. (1.5')
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Aus g(x) xn folgt offenbar

c\g(sr)] n für jedes r > 0, (17)

daher folgt weiter, in Analogie zu (1 6)

C\f(Sr)]=n^0 fur grosse r (16')

Jetzt benutzen wir den folgenden topologischen Satz S2» der als eine direkte
Verallgemeinerung des elementaren Satzes ßi gelten darf "/ sei eine solche stetige Abbildung
der von Sr berandeten Kreisscheibe E in die y-Ebene, dass C\f(Sr)} ^ 0 ist, dann gibt es

in E einen Punkt, der durch / auf den Nullpunkt der y-Ebene abgebildet wird " Hieraus
und aus (16') folgt die Existenz einer Nullstelle unseres Polynoms f(x) 2) Ich werde
den Satz £2 hier nicht beweisen, wie ich überhaupt in diesem Vortrage niemals Beweise

topologischer Satze, sondern immer nur die Zuruckfuhrung algebraischer auf topologische

Satze besprechen werde Der Satz £2 ist nur ein Spezialfall eines Satzes ß*, der von
stetigen Abbildungen eines k -dimensionalen euklidischen Raumes in einen ebensolchen
Raum handelt, von diesem allgemeinen Satz und seinen Anwendungen will ich jetzt
noch sprechen Es seien also der x-Raum und der y-Raum fc-dimensionale euklidische
Räume, wir benutzen in ihnen die additive Vektorschreibweise und verstehen unter |x|
und \y\ die euklidischen Normen Sr sei die durch \x\ r gegebene (k — 1)-dimensionale
Kugelflache, E die von ihr begrenzte k dimensionale Vollkugel, / eine stetige Abbildung
von E in den y-Raum, wobei der Punkt y 0, den ich kurz o nenne, nicht auf dem Bilde
f(Sr) liegen soll, dann definiert man die Zahl C\f(Sr)]9 die man die "Ordnung von o

in bezug auf/(Sr)" oder auch die "Kroneckersche Charaktenstik von / auf Sr" nennt,
folgendermassen sie ist der Brouwersche Abbildungsgrad derjenigen Abbildung von Sr,
auf die durch \y\ 1 bestimmte Kugelflache S\ im y-Raum, welche entsteht, wenn man

f(Sr) von o aus auf S{ projiziert (und der Abbildungsgrad lasst sich charakterisieren als

die Anzahl der positiven Bedeckungen von SJ durch das Bild von Sr, vermindert um die
Anzahl der negativen Bedeckungen) Fur k 2 ist dies, wie man leicht sieht, die alte
Umlaufzahl Nun lautet der Satz ß*, den man auch den "Kroneckerschen Existenzsatz"
nennt "Es sei C\f(Sr)} j=^ 0, dann gibt es in E einen Punkt x mit f(x) 0 "3)

Dieser Satz gestattet zahlreiche Anwendungen auf Existenzsatze fur Nullstellen von
Funktionensystemen, und zwar besonders dann, wenn man ihn mit dem vorhin formulierten

Pnnzip von Rouche kombiniert, das fur den k -dimensionalen Raum genau so

lautet und genau so zu beweisen ist wie fur die Ebene Insbesondere erhalt man durch

ganz dieselben Schlüsse, die uns vorhin zum Beweis des Fundamentalsatzes der Algebra
gefuhrt haben, jetzt den folgenden Satz "Es sei / eine stetige Abbildung des ganzen
x-Raumes in den y-Raum, sie lasse sich (bei vektoneller Schreibweise) in der Form (13)
darstellen, wobei (14) gelte, ferner sei

C\g(Sr)}^0 (für grosser) (18)

2) In den üblichen Darstellungen des Beweises benutzt man anstelle des topologischen Satzes #2 den funk
tionentheoretischen Satz Wenn / analytisch ist so ist C[f(Sr)] (27a)""1 §f~xf dz - Anzahl der

Nullstellen von / in E

3) Man vergleiche Alexandroff Hopf Topologie I (Berlin 1935) 12 Kap §§12
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Dann gibt es einen Punkt x mit f(x) 0."

Als spezielles Beispiel zu diesem Satz will ich noch den "Fundamentalsatz der Algebra
für Quaternionen' besprechen, der von Eilenberg und Niven stammt4): Es seien ax

Hamiltonsche Quaternionen und x eine Quaternionen-Variable; ein "Monom vom Grade n"
ist ein Produkt aoxaxx... an-Xxan, wobei die at ^ 0 sind, und ein Polynom in x ist eine
Summe von endlich vielen Monomen; dabei beachte man, dass infolge der Ungültigkeit
des kommutativen Gesetzes die Summe zweier Monome gleichen Grades im allgemeinen

kein Monom ist. Der "Fundamentalsatz" lautet: "Das Quaternionen-Polynom f(x)
enthalte genau ein Monom vom Grade n, während alle anderen Monome kleineren Grad
haben; dann gibt es eine Quaternion Xo,für welche f(xo) 0 ist"
Für den Beweis dieses Satzes verstehe man unter g(x) das in f(x) enthaltene Monom
n-ten Grades und definiere h(x) durch (1.3); dann bestätigt man ganz leicht, dass (1.4)
gilt; zu beweisen bleibt (1.8), und es ist in der Tat nicht sehr schwer zu zeigen, dass

(1.7) und daher auch (1.8) gilt.
Auf weitere Anwendungen des Kroneckerschen Existenzsatzes will ich hier nicht eingehen;

viele dieser Anwendungen führen eher in die Analysis als in die Algebra. Ich will
jetzt lieber von Anwendungen topologischer Methoden in der linearen Algebra sprechen.

2. — Ein gutes Beispiel einer einfachen Anwendung der Topologie in der linearen
Algebra ist das folgende: mit Hilfe des klassischen Brouwerschen Fixpunktsatzes, welcher
besagt, dass jede stetige Abbildung eines Simplexes beliebiger Dimension in sich
einen Fixpunkt besitzt5), beweist man leicht den folgenden Satz von Frobenius: "Jede

quadratische Matrix mit lauter reellen nicht-negativen Elementen besitzt einen reellen

nicht-negativen Eigenwerf\
Es sei in der Tat (atJ) eine reelle quadratische Matrix vom Grade n mit atJ > 0; wir setzen

J2ai)x] ft(x) für jedes reelle Wertsystem x (x\,...9xn) und haben zu zeigen, dass

es eine Zahl A > 0 und ein Wertsystem x /=¦ (0,..., 0) so gibt, dass

/,(*) A*„ i=l,2,...,n (2.1)

gilt. Wir dürfen annehmen, dass es kein Wertsystem x ^ (0,..., 0) gibt, für das

alle f — 0 sind, da ein solches eine Lösung von (2.1) mit A 0 ist. Wir deuten

X\ : Xi : : xn als Koordinaten des (n — 1)-dimensionalen projektiven Raumes P; dann
ist durch

Xi =fi(x)
eine Abbildung xf f(x) von P in sich definiert, die das (n — 1)-dimensionale Simplex
T, das durch

xx > 0,..., xn > 0

gegeben ist, in sich transformiert. In T gibt es einen Fixpunkt von /; für ihn gilt (2.1),
und dabei ist, da alle xt > 0 und alle /, > 0, aber nicht alle xt 0 sind, A > 0 (und auf
Grund unserer obigen Annahme sogar A > 0).

4) S. Eilenberg und I. Niven, The Fundamental theorem of Algebra for Quaternions. Bulletin Am. Math.
Soc. 50 (1944).

5) Beweise bei Alexandroff-Hopf, I.e., pp. 377, 480, 532.
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Damit ist der Satz von Frobenius bewiesen, aber nicht nur dieser Satz, sondern folgende
Verallgemeinerung: "Die reellen Funktionen fx,... ,/„ der reellen Variablen x\9...,xn
seien überall stetig und für positive x nicht negativ; dann gibt es eine Zahl A > 0 und
ein Wertsystem x (xx,... ,xn) ^ (0,... ,0) mit xt > 0 für alle i, so dass (2.1) gilt."
Die Voraussetzungen sind z.B. erfüllt, wenn die ft Polynome mit positiven Koeffizienten
sind; dann hat man einen neuen algebraischen Satz.

3. — Als Ausgangspunkt für weitere Anwendungen der Topologie auf Existenzsätze für
reelle Eigenwerte und auf verwandte Sätze der linearen Algebra kann uns die elementare
Tatsache dienen, dass eine reelle quadratische Matrix von ungeradem Grade immer einen
reellen Eigenwert besitzt. Obwohl dieser Satz ja einfach daraus folgt, dass die charakteristische

Gleichung der Matrix ungeraden Grad hat und daher eine reelle Wurzel besitzt,
und obwohl es sich also an und für sich kaum lohnt, noch nach anderen Beweisen zu
suchen, will ich den Satz doch noch durch eine andersartige topologische Betrachtung
begründen, da diese Betrachtung uns zu gewissen Verallgemeinerungen führen wird, die
nicht ganz naheliegen.

Die topologischen Sätze, die hier ins Spiel kommen, handeln von tangentialen stetigen
Richtungsfeldern auf Sphären. Auf der (n — 1)-dimensionalen Sphäre Sn~l, die etwa
im euklidischen (x\9... ,x„)-Raum Rn durch ^2x2 l gegeben sei, kann man, wenn
n gerade ist, ein stetiges tangentiales Richtungsfeld dadurch konstruieren, dass man im
Punkt (x\,...9xn) immer den Vektor {—x2, xx,..., —xn, xn-X} anbringt; für ungerades n
aber ist etwas Ähnliches nicht möglich, denn es gilt der berühmte, von Poncare für n 3,

von Brouwer für die grösseren n bewiesene Satz, den ich kurz den "Tangentensatz"
nennen will: "Bei ungeradem n gibt es auf der Sphäre Sn~l kein tangentiales stetiges

Richtungsfeld ohne Singularitäten." Hieraus ergibt sich leicht der folgende Satz, den

man manchmal den "Igelsatz" nennt (da er für n 3 eine Aussage über die Stacheln
eines Igels enthält): "Bei ungeradem n gibt es in jedem Richtungsfeld auf der Sn~l, das

überall stetig (und daher im allgemeinen nicht tangential) ist, eine Normalenrichtung der
Sn-1." Denn andernfalls würden die Tangentialkomponenten der Richtungen ein stetiges

Tangentenfeld bilden, entgegen dem Tangentensatz50).

Die Existenz eines reellen Eigenwertes einer reellen quadratischen n-reihigen Matrix A
(at]) bei ungeradem n ist ein Korollar des Igelsatzes: in jedem Punkt x (x\9...9xn)
der Sn~l bringe man den Vektor p' Ap an, also denjenigen, der aus dem Vektor

p {xx,..., xn} durch die lineare Transformation _4 hervorgeht; falls A singulär ist, ist
A 0 ein Eigenwert; ist _4 regulär, so bilden die p' ein stetiges Richtungsfeld auf Sn~l;
nach dem Igelsatz gibt es eine Stelle x, an der p' die Richtung der Normalen, also auch

die Richtung von p hat; dort ist p' Ap Ap; dann ist A ein Eigenwert von A.

In neuerer Zeit hat man nun, veranlasst durch die oben festgestellte Tatsache, dass es

auf einer Spare Sn~l mit geradem n immer ein stetiges Tangentenfeld gibt, gefragt, ob

man auf einer solchen Sphäre nicht vielleicht noch ein zweites, von dem ersten linear

unabhängiges Feld anbringen könne, und vielleicht noch ein drittes usw.; die Frage
lässt sich so präzisieren: "Wie gross ist, bei gegebenem n, die Maximalzahl stetiger

Tangentenfelder auf der Sn~\ welche überall linear unabhängig sind?" Es ist zwar bisher

5fl) L.c. (5),p. 481.
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nicht gelungen, diese Maximalzahl fur beliebiges n anzugeben, aber man hat immerhin
folgenden Satz bewiesen "Es sei

n 2m q, q ungerade, (3 1)

und auf der Sn~l gebe esr—l stetige, überall linear unabhängige Tangentenfelder, dann

ist
r < 2m, (3 2)

also die Anzahl der Felder kleiner als 2m " Fur ungerades n, also fur 2m 1, ist dies der
alte Tangentensatz, fur n Ak + 2, also fur 2m 2, besagt der Satz, dass es fur je zwei
stetige Tangentenfelder auf der S4k+l einen Punkt gibt, in dem die beiden Feldnchtungen
gleich oder entgegengesetzt sind, usw — In der soeben formulierten Allgemeinheit ist
der Satz erst 1951 von JHC Whitehead bewiesen worden6), aber schon vorher hatte
E Stiefel denselben Satz fur Richtungsfelder im (n— 1)-dimensionalen projektiven Raum
bewiesen oder, was dasselbe ist, fur solche Felder auf der Sphäre Sn~l, die bei Spiegelung
am Mittelpunkt der Sphäre in sich übergehen, aus diesem speziellen Satz hat Stiefel die

algebraischen Folgerungen gezogen, von denen wir jetzt sprechen werden 7)

Es seien A\9 ,_4r reelle quadratische Matnzen von Grade n, sie spannen die lineare
Schar der Matnzen

yxAx+ +yrAr (3 3)

mit beliebigen, reellen Parametern yx, yr auf, wir nennen die Schar "regulär", wenn
alle Matnzen (3 3), ausser derjenigen mit (yx, ,yr) (0, ,0), regulär sind, dann

gilt der Satz "Es gelte (3 1), und es gebe eine reguläre Schar (3 3) mit r Parametern
dann gilt (3 2) "

Wir wollen diesen Satz sogleich auf den obigen Satz uber Tangentenfelder auf Sphären
zurückfuhren Da die Schar (3 3) regulär ist, ist speziell die Matrix Ar regulär, es existiert
also die reguläre Matnx A~l, und da sich nichts ändert, wenn wir alle Matnzen mit einer
festen regulären Matnx, also z B mit A~l, multiplizieren, dürfen wir von vornherein
annehmen, dass Ar E (Einheitsmatrix) ist Fur jeden Einheitsvektor p des Rn betrachten

wir die Vektoren Atp pt (also die Vektoren, in die p durch die linearen Abbildungen
_4j übergeht), wir deuten p pr als Ortsvektor eines Punktes x der Sn~{ und bnngen in
x die Vektoren p{, Pr_i an, die Tangentialkomponenten der pt bezüglich der Sn~l

sind dann die Vektoren p[ p2 — (p^p)p Nun folgt erstens aus der Regulantat der Ma-
tnzenschar (3 3) die lineare Unabhängigkeit der Vektoren pl5 pr_1? p, und zweitens
hieraus die lineare Unabhängigkeit der r — 1 Vektoren p'l5 Pr-i ^s 81Dt also au^

Sn~l em System von r — 1 linear unabhängigen stetigen Richtungsfeldern, folglich gilt
(3 2)

Der somit bewiesene Satz uber Matnzenscharen besagt fur ungerades n, also fur 2m 1,

dass dann bereits jede 2-parametnge Schar eine singulare Matnx enthalt, und diese

6) NE Steenrod and J H C Whitehead Vector fields on the n sphere Proc Nat Acad Sei 37(1951)

7) E Stiefel Uber Richtungsfelder in den projektiven Räumen und einen Satz aus der reellen Algebra
Comment Math Helvet 13 (1941) — Man vergl auch H Hopf Ein topologischer Beitrag zur reellen

Algebra ibidem
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Aussage ist identisch mit dem alten Satz über die Existenz eines reellen Eigenwertes
einer Matrix ungeraden Grades; für n 4k +2, also 2m 2, besagt unser Satz, dass jede
3-parametrige Schar eine singulare Matrix oder, was damit äquivalent ist, dass jede 2-

parametrige Schar eine Matrix mit einem reellen Eigenwert enthält — usw. Ferner heben

wir das folgende Korollar unseres Satzes hervor: "Eine n-parametrige reguläre Schar

n-reihiger Matrizen kann es höchstens dann geben, wenn n 2m ist." — Die Frage,
ob es für jedes n eine 2m-parametrige reguläre Schar n-reihiger Matrizen gibt, ist offen
— wahrscheinlich ist sie zu verneinen; eine Klärung dieser Frage wäre aufschlussreich
sowohl für die Algebra als auch für die Topologie.

Der Fall r n, von dem das soeben formulierte Korollar handelt, spielt eine Rolle
bei der Untersuchung der nicht notwendigerweise assoziativen Divisions-Algebren über
dem Körper der reellen Zahlen. Eine solche Algebra vom Grade n ist bekanntlich so
erklärt: man hat den n-dimensionalen reellen Vektorraum Rn mit seinen gewöhnlichen
Operationen und ausserdem in ihm eine Multiplikation der Vektoren, die distributiv mit
der Addition verknüpft ist; sie erfüllt ferner folgende Regel, wobei £, t) Vektoren, ß, b

Zahlen sind: (a£) • (btj) — (ab) • (gt)); schliesslich soll die Division durch jeden von 0
verschiedenen Vektor eindeutig ausführbar sein, was gleichbedeutend damit ist, dass es

keine Nullteiler gibt. Dagegen braucht das assoziative Gesetz der Multiplikation nicht zu
gelten. Dass wir uns hier auch für nicht-assoziative Algebren interessieren, ist sowohl
dadurch gerechtfertigt, dass nicht-assoziative Strukturen (z.B. "loops") heute ohnehin
den Gegenstand algebraischer Untersuchungen bilden, als auch besonders dadurch, dass

es eine nicht-assoziative Divisions-Algebra über dem Körper der reellen Zahlen gibt,
die aus algebraischen und aus geometrischen Gründen wichtig und interessant ist: das

System der Cayleyschen Oktaven; es hat den Grad 8.8)

Nach einem klassischen Satz von Frobenius bilden die komplexen Zahlen und die
Quaternionen die einzigen Divisions-Algebren über dem reellen Körper, welche assoziativ

sind; dann ist also n 2 oder n 4. Ein Satz von Hurwitz (über Multiplikationstheoreme

von Quadratsummen)9) lehrt: die einzigen Algebren (nicht notwendigerweise
assoziativ), in welchen die Normenproduktregel |£t)| |E|-|t)| gilt (die die Nicht-Existenz

von Nullteilern, also die Divisions-Eigenschaft impliziert), sind die Systeme der
komplexen Zahlen, der Quaternionen und der Cayleyschen Oktaven; dann ist also n 2,4
oder 8. Ob es noch für andere Grade n als 2,4,8 Divisions-Algebren (in denen dann

weder das assoziative Gesetz noch die Normenproduktregel gelten kann) über dem reellen

Körper gibt, ist nicht bekannt; zu diesem Problem liefert aber die im Vorstehenden

besprochene Theorie von Stiefel folgenden Beitrag: uDer Grad einer solchen Algebra
ist notwendigerweise eine Potenz von 2."

In der Tat: Seien ti\9...9nn Basisvektoren eines solchen Systems und ihre Produkte

durch

8) Man vergl. etwa L.E. Dickson, Algebren und ihre Zahlentheorie (Zunch 1927), §133.

9) A. Hurwitz, Uber die Komposition der quadratischen Formen von beliebig vielen Variablen. Nachr. Ges.

d. Wiss. Gottingen 1898 Math. Werke, Bd. II (Basel 1933), p. 565).
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gegeben, so dass also für £ YjXlnl9 \) Y2 y]n} das Produkt durch

Et) £Vn*, zk J2xlyJaij

bestimmt ist. Es sei £ty 0, ty ^ 0, also

£(EA*)*'=0, k l,...,n, (3.5)

und (yi,... ,y„) ^ 0. Da es keine Nullteiler gibt, wird das Gleichungssystem (3.5) nur

durch £ (0,..., 0) befriedigt, die Matrix (]T\ yla^ ist also regulär. Diese Matrix ist

gleich
ylAx +...+ fAn mit _4; (0*),

(wobei also i, k die Zeilen- und Spalten-Indices sind). Wir haben somit eine n-para-
metrige reguläre Schar n-reihiger Matrizen; daher ist, wie wir vorhin gesehen haben,
n 2m.

Ob es aber derartige Algebren mit n 2m > 16 gibt, ist nicht bekannt.

4. — Ich will jetzt einen algebraischen Satz, der ganz in den soeben besprochenen
Problemkreis gehört, mit einer topologischen Methode beweisen, die von der bisherigen
vollständig verschieden ist.

Fügen wir den Postulaten für die "nicht notwendigerweise assoziativen Divisions-Al-
gebren über dem reellen Körper" noch die Forderung hinzu, dass die Multiplikation
kommutativ sein soll, dann wird die Situation natürlich radikal vereinfacht, und es ist
nicht zu verwundern, dass es dann keine offenen Probleme mehr gibt. In der Tat gilt
der Satz10): "Eine kommutative Divisions-Algebra über dem Körper der reellen Zahlen,
assoziativ oder nicht, hat den Grad 2."

Wenn wir überdies die Forderung hinzunehmen, dass die Algebra ein Eins-Element
enthalten soll, dann folgt aus diesem Satz durch ganz elementare Schlüsse weiter, dass die

Algebra der Körper der komplexen Zahlen ist; man kann also sagen: Für eine Algebra
(endlichen Grades) über dem Körper der reellen Zahlen ist das assoziative Gesetz der

Multiplikation eine Folge aus der Divisions-Eigenschaft (Nicht-Existenz von Nullteilern),
dem kommutativen Gesetz und der Existenz einer Eins.

Ich komme zu dem topologischen Beweis unseres Satzes. Die in dem Satz ausgedrückte
Auszeichnung der Zahl 2 vor allen grösseren Zahlen wird sich dabei folgendermassen
äussern: Für n 2, aber nicht für n > 2, sind die (n — 1)-dimensionale Sphäre Sn~x

und der (n — 1)-dimensionale reelle projektive Raum Pn~x miteinander homöomorph
(topologisch äquivalent); in der Tat sind sowohl die Kreislinie Sl als auch die projektive
Gerade P1 einfach geschlossene Linien, während für n > 2 zwar die Sphäre Sn~l einfach
zusammenhängend ist (d.h. dass man auf ihr jeden geschlossenen Weg in einen Punkt

10) H. Hopf, Systeme symmetrischer Bilinearformen und euklidische Modelle der projektiven Räume, Viertel-
jahrsschnft Naturf. Ges. Zunch, LXXXV (1940), Festschnft Rudolf Fueter), p 165.



El. Math. 49 (1994) 145

deformieren kann), aber nicht der projektive Raum Pn l (da in ihm z.B. eine projektive
Gerade nicht zusammenziehbar ist).

Wir nehmen nun eine Algebra vom Grade n, die alle vorausgesetzten Eigenschaften hat.
In dem Raum Rn, dessen Vektoren die Elemente der Algebra sind, sei o der Nullpunkt;
das Bündel der Geraden durch o repräsentiert einen Pn~l, die Mannigfaltigkeit der von
o ausgehenden Halbstrahlen eine Sn~l. Es sei q eine Abbildung des Rn in sich, die

jedem Vektor £ sein Quadrat ££ £2 (im Sinne der Multiplikation in unserer Algebra)
zuordnet: q(%) £2. Für jede reelle Zahl c ist q(c%) c2£2; daher bildet q jede Gerade
durch o in einen von o ausgehenden Halbstrahl ab; es wird also eine Abbildung Q von
Pn~l in Sn~l bewirkt. Q ist natürlich stetig; ich behaupte: Q ist eineindeutig. In der
Tat: Seien £, ty zwei Vektoren, deren Geraden in denselben Halbstrahl abgebildet werden;
dann unterscheiden sich q(£) und q(ty) nur durch einen reellen Faktor, der nicht negativ
ist und den wir daher c2 nennen dürfen:

ty2 c2l2;

infolge der Kommutativität

t)2-C2£2 (t)-fC£)(t)-C£),

also ist

0) + ce)0)-cj)=O

und, da es keine Nullteiler gibt,
ty ±c£;

das heisst: £ und ty liegen auf derselben Geraden. Wir haben also eine stetige und

eineindeutige Abbildung Q von Pn~l in Sn~l; nun sind aber Pn~x und Sn~~x geschlossene

Mannigfaltigkeiten, und aus ganz einfachen und allgemeinen topologischen Tatsachen

folgt daher, dass Q eine Homöomorphie ist. Mithin ist n — 1 1, n 2.

Damit ist unser Satz bewiesen. Ich möchte bemerken, dass ich für ihn keinen Beweis
kenne, der mit üblichen algebraischen Methoden und ohne Topologie arbeitet; einen
solchen Beweis zu finden, halte ich für eine interessante Aufgabe, von der ich mir, im
Hinblick auf die Einfachheit sowohl des Satzes selbst als auch unseres topologischen
Beweises, nicht denken kann, dass es allzu schwierig ist.

5. — Man kann unseren eben bewiesenen Satz so wenden, dass eine neue algebraische
Fragestellung sichtbar wird, die sich ebenfalls topologisch angreifen lässt.

Unser Satz besagt: "Es sei n > 2, und man habe über dem Körper der reellen Zahlen
eine Algebra n-ten Grades, die nicht notwendigerweise assoziativ, aber kommutativ ist;
dann besitzt diese Algebra Nullteiler." Benutzen wir denselben Formalismus wie am
Ende von Nr. 3, so dass also die Multiplikation durch (3.4) gegeben ist; dann sind die n
Matrizen

/.* («*), k l,...,n,
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(wobei jetzt i9j die Zeilen- und Spalten-Indices sind) infolge der Kommutativität der

Multiplikation symmetrisch; ich benutze die Symbole Ak gleichzeitig als Funktionszeichen

für die symmetrischen Bilinearformen

AHx,y) J2aijxly]'

Die Existenz von Nullteilern bedeutet, dass das Gleichungssystem (3.5), also das System

A*(*,y) 0, /c l,...,n,

ein Lösungspaar x ^ (0,..., 0), y ^ (0,..., 0) besitzt. Das heisst in geometrischer
Sprache: "Im reellen projektiven Raum Pd der Dimension d n — 1 > 1 seien durch
die Gleichungen

Ak(x,x) 0 k l,...,n,
d + 1 Flächen 2. Ordnung gegeben; dann gibt es zwei reelle Punkte x,y, die in bezug

aufjede dieser Flächen zueinander polar sind."

Dieser Satz ist äquivalent mit unserem Satz in Nr. 4 über kommutative Divisions-
Algebren. Jetzt aber entsteht die natürliche Frage, ob dieselbe Behauptung — nämlich
die Existenz von zwei Punkten, die bezüglich aller gegebenen Flächen polar sind —
nicht auch gültig bleibt, wenn man mehr als d + 1 Flächen hat; dies ist nun in der Tat
der Fall; es gilt nämlich folgender Satz: "Im reellen projektiven Raum Pd, d > 1, seien

s reelle Flächen 2. Ordnung gegeben; dann ist jede der nachstehenden Bedingungen
(A) und (B) hinreichend für die Existenz eines reellen Punktpaares x,y, welches sich in
bezug auf jede dieser Flächen in polarer Lage befindet:

s<d + 2; (A)

s < 2i - 1, wobei 2[~x <d<21 ist." (B)

Die Bedingung (A) bedeutet für alle d, die Bedingung (B) bedeutet für die meisten d —
nämlich für diejenigen, die nicht gleich 2' — 1 oder gleich 2^—2 sind — eine Verschärfung
unseres früheren Satzes über d + 1 Flächen; für die meisten d ist die Bedingung (B) viel
besser als (A), das heisst: man darf meistens viel mehr als d + 2 Flächen zulassen.

Welches die grosste Zahl s* s*(d) ist, für welche die Existenz eines Punktpaares x,y
der genannten Art für jedes System von s* Flächen gesichert ist, weiss ich nicht — ich
möchte auf dieses Problem aus der reellen algebraischen Geometrie hier hinweisen.

Was die Beweise von (A) und (B) betrifft, so lässt sich (A) durch eine Verschärfung
unserer topologischen Betrachtung aus Nr. 4 begründen; anstelle der Tatsache, dass für
n > 2 der projektive Raum Pn~~[ nicht mit der Sphäre Sn~x homöomorph ist, benutzt

man die schärfere Tatsache, dass Pn~x kein topologisches Modell im euklidischen Raum
Rn besitzt*). Die Bedingung (B) ergibt sich aus einem Satz von Stiefel im Rahmen der

*) siehe Fussnote 10
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Theone, von der in Nr 3 die Rede war, den wir aber dort nicht formuliert haben**)
Wegen der Einzelheiten verweise ich auf die Literatur — ich mochte meine ohnehin
schon recht langen Ausfuhrungen nicht noch weiter ausdehnen11)

6. — Nur einige Bemerkungen prinzipieller Art will ich noch machen Wir haben hier
von algebraischen Sätzen gesprochen, die man mit topologischen Mitteln beweisen kann
und die ubngens auch fast alle auf topologischen Wegen entdeckt worden sind Nun darf
es zwar, wie ich schon in der Einleitung gesagt habe, wohl als sachgemass gelten, dass

man in der Algebra uber dem Korper der reellen Zahlen (oder auch, was schliesslich
nichts anderes ist, uber dem Korper der komplexen Zahlen) topologische Hilfsmittel
benutzt, da ja in der Definition der reellen Zahlen Stetigkeitsbegriffe vorkommen, trotzdem
ist es, wenn man im Laufe topologischer Untersuchungen Satze von der Art unserer
algebraischen Satze in Nr 3, 4, 5 entdeckt hat, auch verstandlich, dass man noch nicht ganz
befriedigt ist, sondern wünscht, fur dieselben Satze, die doch unleugbar einen gewissen

"algebraischen" Charakter haben, auch "algebraische Beweise" zu finden Hier aber

muss man wohl etwas weiter ausholen und zunächst einmal fragen, was denn hier unter
einem algebraischen Satz und unter einem algebraischen Beweis zu verstehen sei Ich
habe bei verschiedenen Gelegenheiten dazu folgenden Vorschlag gemacht (wobei man,
um sich nicht in Allgemeinheiten zu verlieren, immer die Satze, die wir hier besprochen
haben, im Auge behalten möge) "Man ersetze in der Formulierung der Satze den Korper
der reellen Zahlen durch einen reell-abgeschlossenen Korper im Sinne der Theorie von
Artin-Schreier12) und beweise die so entstehenden allgemeineren Behauptungen " In der
Tat wird ja auf diese Weise das Archimedische Axiom, also das wesentliche Stetigkeitsaxiom,

ausgeschaltet Fur den Satz aus Nr 3 und fur andere damit zusammenhangende
Satze, auf die ich nicht eingegangen bin, ist die so formulierte Aufgabe von F Behrend

gelost worden13) Andere rein algebraische Beweise fur topologisch entdeckte Satze hat

— im Sinne meines Vorschlages — W Habicht gefunden14) Dagegen ist fur den Satz

aus Nr 4 das Analoge, soviel ich weiss, bisher nicht gelungen (worüber ich mich, wie
ich schon am Schluss von Nr 4 angedeutet habe, wundere, zumal die topologischen
Tatsachen, die in Nr 4 auftreten, viel einfacher sind als diejenigen in Nr 3)

Diese Fragestellung hat eine ganz neue und, wie ich finde, sehr ubereaschende Wendung
durch die Ergebnisse beweistheoretischer Untersuchungen von A Tarski erhalten15), fur

**) siehe Fussnote 7

11) Weitere in den Rahmen dieses Vortrages passende Satze und Beweise findet man ausser in den in Fussnote

7 zitierten auch in den folgenden Arbeiten H Hopf und M Rueff, Uber faserungstreue Abbildungen der
Spha/en, Comment Math Helvet 11 (1939) —B Eckmann, Systeme von Richtungsfeldern in Sphären

und stetige Losungen komplexer linearer Gleichungen, Comment Math Helvet 15 (1943), sowie Stetige

Losungen linearer Gleichungssysteme, ibidem

12) Man vergl z B B L van der Waerden, Moderne Algebra, 1 Teil (2 Aufl Berlin 1937), p 235 ff

13) F Behrend, Uber Systeme reeller algebraischer Gleichungen Compos Math 7 (1939)

14) W Habicht, Uber die Lösbarkeit gewisser algebraischer Gleichungssysteme, Comment Math Helvet 18

(1946), sowie Ein Existenzsatz uber reelle definite Polynome, ibidem

15) A Tarski, A decision method for elementary Algebra and Geometry (2 edition, University of California

Press, (Berkeley and Los Angeles 1951), bes pp 62-63



148 El. Math. 49 (1994)

eine grosse Klasse "algebraischer" Sätze, die ich hier nicht definiere, die aber jedenfalls
unsere oben besprochenen Sätze enthält, gilt nämlich, wie Tarski gezeigt hat, Folgendes:
"Wenn ein solcher Satz in bezug auf einen reell-abgeschlossenen Körper beweisbar ist,
so ist er in bezug auf jeden reell-abgeschlossenen Körper gültig." — Infolgedessen gilt
also z.B. unser Satz aus Nr. 4 tatsächlich für jeden reell-abgeschlossenen Körper, und
der Beweis hierfür hat zwei Teile: erstens unseren alten topologischen Beweis in bezug
auf den Körper der reellen Zahlen, zweitens die Anwendung des Prinzips von Tarski.

Auf Grund dieses Prinzips ist in gewissem Sinne mein oben formulierter Vorschlag und
sind in gewissem Sinne auch die erwähnten Arbeiten von Behrend und Habicht
überflüssig geworden. Trotzdem wird man diese und ähnliche Arbeiten auch heute nicht als
inhaltslos ansehen können: sie zeigen topologisch entdeckte Sätze in neuer algebraischer

Beleuchtung; und ich glaube auch nicht, dass das Herz eines Algebraikers beruhigt
wird durch den topologisch-metamathematischen Beweis des Satzes über die kommutativen

Divisions-Algebren, von dem wir soeben gesprochen haben. Man musste wohl,
wenn man versuchen will, hier Klarheit zu schaffen, die Frage "was ist ein algebraischer
Beweis?" systematisch diskutieren; aber das überschreitet natürlich bei weitem mein
Programm.

Hopf erwähnt in seinem Vortrag eine Anzahl offener Probleme; die meisten davon
sind auch heute noch nicht gelöst. Eine Ausnahme bilden lediglich die im 3. Abschnitt
erwähnten Fragen über die Existenz von linear unabhängigen Richtungsfeldern auf
Sphären, bzw. über die Existenz von reellen Divisionsalgebren. Hier erfolgten
bahnbrechende Fortschritte durch M. Kervaire und J. Milnor (beide 1958) und wenig später
durch J.F. Adams (1960). Nach diesen Resultaten ist heute bekannt, dass die Sphäre
Sn~x einzig für n 2,4,8 ein System von n — l stetigen linear unabängigen
Tangentenfeldern zulasst. Konsequenterweise kann es nur in den Dimensionen 1,2,4,8
relle Divisionsalgebren geben. Für diesen Satz über die Divisionsalgebren scheint es

bis heute keinen Beweis zu geben, der die starken topologischen Hilfsmittel (u.a. den
Periodizitätssatz von R. Bott) vermeidet. Auch für den von Hopf im 4. Abschnitt
erwähnten Satz über kommutative reelle Divisionsalgebren scheint bis heute kein rein
algebraischer Beweis bekannt zu sein.

Für diese Zusammenhänge und für die weitere Entwicklung der hier angesprochenen
Themen verweisen wir auf das Buch

Ebbinghaus et al.: Zahlen. Springer Verlag, 3. Auflage 1992,

insbesondere auf die Kapitel 8, 9, 10 (M. Koecher, R. Remmert) und Kapitel 11

(F. Hirzebruch), und ferner auf den Beitrag

Beno Eckmann: Continuous Solutions of linear equations — An old problem, its

history, and its Solution. Expo. Math. 9 (1991) 351-365.
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