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The Magic World of Geometry —
I. The Isoperimetric Problem
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Nature is uncompromisingly effective, and from a geometrical point of view its shapes

are füll of mathematics. The study of optimal properties of geometrie objects is therefore
both interesting and important. In this article, I shall present the isoperimetric problem,
which is an archetypical problem in this context. The article is the first in a series of
three articles with the common subtitle "The Magic World of Geometry" intended to
show how geometry appeals to the imagination and how it combines the concrete with
the abstract.
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Fig 1 " Fig 2

The isopenmetne problem is one of the classical geometne vanational problems In its

simplest form the problem can be stated as follows Find the closed plane curve (without
self-intersections) of a fixed presenbed length that encloses the maximal plane area

The ancient Greeks took it for granted that the Solution to the problem is what they
regarded as the most perfect of all closed curves, namely the circle However, not until
19th Century was a complete proof given Jacob Steiner (1796-1863) suggested several

mgenious proofs, and we shall present one below

Before we embark on Steiner's proof, it will be appropnate to make some general remarks

concerning vanational problems Before Weierstrass (1815-1897) it was aeeepted without
proof that an extremal problem, of a physical or geometncal nature, always has a Solution
It is one of the many ments of Weierstrass to have pointed out that this is by no means
the case In a pnmitive, numencal way we can see this already from the real numbers
For example, the set of fractions

riii ii\2,3'4' 'n' J

does not contain a smallest positive number

Weierstrass gave several simple examples of geometncal problems without a "minimal"
Solution In Figures 1 and 2 we give two such examples In Figure 1 we consider two
points _4 and ß on a line, and seek the shortest polygonal path in the plane, which Starts

in A orthogonally to the lme and ends in ß Obviously, there is no such shortest path In
Figure 2 we consider two points on a line through the ongin in the plane If we remove
the ongin from the plane, there is no longer a shortest path connecting the two points

It is mstructive to learn that dunng the history of mathematics, even great mathematicians
hke Dmchlet (1805-1859) and Riemann (1826-1866) have overlooked that the
fundamental problem can be hidden where it is least expected In the calculus of vanations
the mam problem often is the bare question of the existence of an optimal object

In famous lectures at the University of Berlin in the 1870's, Weierstrass developed general
methods to ensure the existence of global maxima and minima of continuous functionals

Using these methods it is not difficult to prove that the isopenmetne problem has a

Solution if we restnet our attention to n-gons, i e closed plane polygonal curves without
self-intersections and with n edges First note that in a coordinate system in the plane, an

n-gon can be desenbed by the 2n coordinates of its corners Observe next that all possible
shapes of an n-gon with a fixed presenbed length can be desenbed by the coordinates

in a closed and bounded subset of 2n-dimensional real number space Smce the area

of an n-gon depends contmuously on the 2n coordinates of its corners, the area attams

a maximum value on this closed and bounded set according to a fundamental theorem
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Fig 3

of Weierstrass. This proves the existence of a Solution to the restricted isoperimetric
problem. The existence of a Solution to the general isoperimetric problem can now be

proved by approximating an arbitrary closed (rectifiable) curve with polygonal curves.
More details on the existence of a Solution to the isoperimetric problem can be found in
references ([1], §5 and §8), ([2], Chp. IV, §2.1, p. 149) and ([3], Chp. VII, §8, p. 375).

It is easy to illustrate by the following experiment that the circle is the Solution to the

isoperimetric problem. Suspend a closed curve in a small frame. The curve and the

threads with which it is attached to the frame can e.g. be sewing thread. Now dip the

frame in a suitable soap Solution. Thereby the closed curve will be placed on a soap
film. Prick a hole in the soap film inside the closed curve. Immediately the closed curve
turns into a circle; cf. Figure 3. It follows that the circle must be the Solution to the

isoperimetric problem, since the potential energy in the soap film outside the curve is

proportional to the area, so that the soap film will try to minimize the area, which on
the other hand conesponds to the area inside the closed curve being maximized.

The physical experiment is pretty convincing but not sufficient evidence from a
mathematicai point of view. We could be misled by our senses. Maybe it is only very close

to being a circle. Therefore we consider now a closed plane curve % without self-
intersections and of a fixed prescribed length L with the property that, among all such

curves, it encloses the largest plane area. Following Steiner, we shall then argue math-

ematically that % must be a circle. It should be mentioned that Steiner also took it for
granted that the isoperimetric problem has a Solution.

By considering Figure 4 it is clear that % must be convex, since if this was not the case

we could create a closed curve of the same length L as %, but enclosing a larger area,

by reflecting an inbuckling to an outbuckling.

Now choose two points A and ß on ^ that divide the curve into two arcs of equal length,
i.e. length L/2. The chord AB divides the enclosed figure into two pieces, which each

must have the same area since, otherwise, we could construct a figure of larger area by
replacing the smaller piece with the mirror image in Aß of the larger piece; cf. Figure 5.

Consider now the "half figure bounded by one of the arcs from _4 to ß of length L/2
and the line segment AB. Let P he an arbitrary point on the arc, and consider the triangle
APB. Imagine that the arc is made of steel with a hinge at P. Without changing the

length of the arc we can then bend the triangle at the corner P. Thereby it is easily seen,
that the "half figure has maximal area precisely when the triangle has a right angle at
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Fig 4 Fig 5

Fig 6

P, cf Figure 6 Since P was arbitranly chosen, we conclude that the arc from A to B

must be a semicircle, and the original closed curve % therefore a circle
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