Zeitschrift: Elemente der Mathematik
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 49 (1994)

Artikel: Leben und Werk von Martin Eichler
Autor: Kramer, Jurg

DOl: https://doi.org/10.5169/seals-45419

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-45419
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

El. Math. 49 (1994) 0013-6018/94/020045-16$1.50 + 0.20/0
© 1994 Birkhduser Verlag, Basel

Leben und Werk von Martin Eichler

Bei der Abfassung dieses Nachrufs standen dem Autor die beiden von M. Eichler im
Jahr 1988 niedergeschriebenen privaten Notizen ‘“Meine mathematische Lebensarbeit”
und “My life’s mathematical work™ sowie ein von Frau E. Eichler-Paffen abgefasster
Lebenslauf ihres Gatten zur Verfiigung. Diese Unterlagen haben die Arbeit am Nachruf
sehr erleichtert. Fiir wertvolle Hinweise mochte ich auch G. Faltings, M. Kneser und
S. Lang danken.

Diejenigen Arbeiten Eichlers, die wihrend der Kriegsjahre entstanden, werden im Lite-
raturverzeichnis zitiert, es wird aber nicht niher auf sie eingegangen.

1 Leben

Mit den folgenden Zeilen soll versucht werden, das Lebensbild von Martin Eichler zu
skizzieren. Dem um fast fiinfzig Jahre jiingeren Verfasser, der in den Jahren 1980-1985
zu Eichlers Schiilern gehéren durfte, sei die personliche Note der folgenden Darstellung
verziehen.
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Martin Eichler wurde am 29. Mirz 1912 als Sohn des Pastors Max Eichler und seiner
Frau Katharina, geb. Pirwitz, in Pinnow (Krs. Greifswald, Pommern) geboren. Seinen er-
sten Schulunterricht erhielt er von seinen Eltern; in Ermangelung einer geeigneten Schule
in der ndheren Umgebung seines Heimatortes schickten ihn seine Eltern danach in ein In-
ternat in Westfalen. Durch die strenge Internatserziehung wurde wohl seine bis ins hohe
Alter anhaltende Arbeitsdisziplin geprigt. Nach dem Abitur studierte er wihrend dreier
Semester Mathematik und Physik in Konigsberg. Allerdings war es damals sein Ziel,
Physiker zu werden; dazu hatten ihn wohl die bahnbrechenden Entdeckungen in der
Relativititstheorie und der Quantenmechanik bewogen. Wihrend des darauffolgenden
einjahrigen Aufenthalts in Ziirich begann er sich zunehmend fiir die reine Mathematik
zu interessieren. Entscheidend dafiir war die Bekanntschaft mit Andreas Speiser, der seit
1917 als ordentlicher Professor an der Universitdt Ziirich wirkte. Dem Rate Speisers
folgend, setzte M. Eichler nach seiner Riickkehr im Jahr 1932 seine Studien in Mathe-
matik unter der Leitung von Heinrich Brandt in Halle fort. Durch seinen Lehrer wurde
er mit der Zahlentheorie der Quaternionenalgebren bekannt. Auf diesem Gebiet promo-
vierte M. Eichler im Jahr 1935 mit der Arbeit [1]. Sein Verhdltnis zu seinem Lehrer
war zwiespiltig: Zum einen verpflichtete er sich wie dieser konsequent dem Prinzip,
einen mathematischen Gedanken solange reifen zu lassen, bis dieser vollstindig durch-
drungen war. Andererseits erkannte er Brandts ablehnende Haltung gegeniiber modernen
Begriffsbildungen (siehe dazu [36]); eine Eigenschaft, die ihm zeitlebens fremd blieb.

Wegen ernsthafter Schwierigkeiten mit den lokalen Nazi-Behorden verlor M. Eichler
seine Anstellung in Halle. Dennoch gelang es ihm, bei Helmut Hasse in Gottingen
Assistent zu werden; dort habilitierte er sich im Jahr 1938 mit der Arbeit [7]. In den
nun folgenden Kriegsjahren blieb M. Eichler zwar vom Einsatz mit der Waffe verschont;
stattdessen wurde er an die Heeresversuchsanstalt in Peenemiinde verpflichtet, wo er an
der Entwicklung der V-2-Raketen mitzuwirken hatte. Aus diesem Grunde beschiftigte
er sich in dieser Zeit mit der Losung gewisser partieller Differentialgleichungen vom
elliptischen Typ.

Nach einer Verlegung auf die Insel Usedom lernte M. Eichler seine zukiinftige Frau,
Erika Paffen, kennen, die dort ebenfalls einen Kriegsdienst versah. Nachdem sich die
beiden kriegsbedingt aber schon bald aus den Augen verloren hatten, fanden sie sich
nach Kriegsende auf abenteuerliche Weise wieder und heirateten im Januar 1947. Aus
Angst vor russischen Deportationen deutscher Wissenschaftler musste M. Eichler seine
in Gottingen wiederaufgenommene Dozententitigkeit aufgeben und mit seiner Frau nach
England fliichten. Dort beschiftigte er sich mit Problemen der Aerodynamik.

Im Jahre 1949, nach einem zweijdhrigen England-Aufenthalt, kehrte die Familie mit
ihrem inzwischen geborenen Sohn Ralph — ihm folgte ein Jahr spéter der zweite Sohn
Norbert — nach Deutschland zuriick. Zunichst wirkte M. Eichler als Dozent am Ma-
thematischen Institut der Universitidt Miinster, wo er endlich die Gelegenheit fand, seine
grundlegenden Beitrdge zur arithmetischen Theorie der quadratischen Formen systema-
tisch zusammenzutragen und im Buch “Quadratische Formen und orthogonale Gruppen”,
welches im Jahr 1952 erschien und 1974 ein zweites Mal aufgelegt wurde, festzuhalten.
Ab 1954 wandte sich sein Interesse zunehmend der Theorie der elliptischen Modulfor-
men zu. In dieser Periode fand er einen Beweis der Ramanujan-Petersson-Vermutung fiir
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das Gewicht k = 2. Die erfolgreiche Tétigkeit dieser Jahre fiihrte 1956 zur Berufung an
die Universitidt Marburg.

Im Jahr 1958 folgte er einem Ruf an die Universitdt Basel. Dort setzte er seine Un-
tersuchungen zur Theorie der Modulformen fort und verfasste sein zweites Buch, “Ein-
fiihrung in die Theorie der algebraischen Zahlen und Funktionen”, welches im Jahr
1963 erschien. Im weiteren Verlauf der sechziger Jahre begann er sich zunehmend fiir
den Riemann-Rochschen Satz zu interessieren. Die nach seinem eigenen Urteil nicht
voll befriedigenden Ergebnisse zu diesem Thema finden sich im Springer Lecture Notes
Band “Projective varieties and modular forms” zusammengefasst. In den siebziger Jahren
wandte sich M. Eichler wieder der Theorie der elliptischen und Siegelschen Modulfor-
men zu. Ein Teil dieser Arbeiten bereitete ihn auf das erst nach seiner Emeritierung
im Jahr 1980 gemeinsam mit D. Zagier durchgefiihrte systematische Studium der Ja-
cobiformen vor, welches seinen Niederschlag in der 1985 veréffentlichten Monographie
“The theory of Jacobi forms” fand. In den folgenden Jahren musste er wegen gesund-
heitlicher Probleme seine mathematische Forschungstétigkeit zunehmend einschridnken.
Dennoch gelangen ihm neue Entdeckungen, wie z.B. in seiner letzten, gemeinsam mit
J. Brzezinski publizierten Arbeit [89], in der ein auf C. F. Gauss zuriickgehendes Re-
sultat verallgemeinert wurde. Ab 1990 begann sich sein Gesundheitszustand leider noch
stirker zu verschlechtern. Nach langem Leiden verstarb M. Eichler am 7. Oktober 1992
in seinem nun zur Heimat gewordenen Arlesheim bei Basel.

M. Eichlers Leben war geprigt durch einen hohen Selbstanspruch und ein hohes Arbeits-
ethos. Er genoss deshalb grosse Anerkennung in Fachkreisen. Dies zeigte sich in der
Ernennung zum Beiratsmitglied der Zeitschrift “Acta Arithmetica” und zum korrespon-
dierenden Mitglied der Akademie der Wissenschaften in Gottingen sowie der Verleihung
der Ehrendoktorwiirde durch die Universitdt Miinster. Als Lehrer glinzte M. Eichler
nicht durch seine Vorlesungen; er begeisterte seine Schiiler vielmehr durch personliche
Bemerkungen, welche seinen mathematischen Weitblick immer wieder erkennen lies-
sen. Dazu kam seine verantwortungsbewusste Betreuung seiner Doktoranden, in der sich
neben seiner fachlichen Kompetenz auch seine menschliche Grosse zeigte.

2 Mathematisches Werk

2.1 Arithmetik der Algebren

In seiner Dissertation [1] gelang es Eichler, die Brandt’sche Kompositionstheorie qua-
terndrer quadratischer Formen (s. [91]) auf nicht-maximale Ideale in rationalen Qua-
ternionenalgebren zu iibertragen, indem er diejenigen nicht-maximalen Ideale charak-
terisierte, welche invertierbar sind. Als zweites konnte er die maximalen Ordnungen
aufzihlen, welche eine gegebene nicht-maximale Ordnung umfassen.

Als nichstes beschiftigte sich Eichler mit der Idealklassenzahl zentral einfacher Algebren
A vom Grad n iiber einem Zahlkorper k. Bezeichnet m das Produkt der unendlichen
Primstellen von k, an welchen A verzweigt ist, so findet sich in [3] der Satz: Ist n > 2
oder ist A nicht an allen unendlichen Stellen von k verzweigt, so ist die Idealklassenzahl
von A gleich der Strahlklassenzahl mod m von k. Dies verallgemeinerte das Resultat
[102] von A. Meyer, dass indefinite terndre quadratische Formen tiber Q unter gewissen
Voraussetzungen Klassenzahl Eins besitzen. Ein neuer Beweis dieses fundamentalen Sat-
zes wird in [5] gegeben. Eine weitere Verallgemeinerung dieser Ergebnisse findet sich
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in [7]. Damit blieb einzig die Idealklassenzahl total-definiter Quaternionenalgebren iiber
total-reellen Zahlkorpern k offen. Diese bestimmte Eichler in [4]. Fiir k = Q und eine
tiber der Primzahl 4 und im Unendlichen verzweigte Quaternionenalgebra D,/Q ergibt
sich die Klassenzahl h, zu

L E)AR) o

Danach versuchte Eichler Dirichlets Einheitentheorie auf Hauptordnungen in normalen
einfachen Divisionsalgebren zu iibertragen. Hier war ihm nur ein Teilerfolg beschieden.
Ein schones Resultat in diesem Zusammenhang ist die Beschreibung der Einheitengruppe
einer nullteilerfreien, indefiniten Quaternionenalgebra iiber ) durch Erzeugende und
Relationen. Dazu beachte man die Arbeiten [2], [9].

Einen ausgezeichneten Uberblick iiber Eichlers Beitriige zur Zahlentheorie der Algebren
vor dem Zweiten Weltkrieg erhilt man durch seinen Vortrag [6] vor der Deutschen
Mathematiker- Vereinigung.

2.2 Quadratische Formen

Mit den beiden Noten [15] und [18] begann Eichler seine systematischen Studien zur
Theorie der quadratischen Formen. Es war sein Anliegen, die bekannte Arithmetik der
Quaternionenalgebren zu einer arithmetischen Theorie quadratischer Formen beliebiger
Reihenzahl zu erweitern. Dies vollbrachte er in den Arbeiten [21], [26], [27], [30], welche
er in seinem Buch [31] iiber quadratische Formen und orthogonale Gruppen zusammen-
fasste; in diesen Zusammenhang gehoren auch die Arbeiten [28], [29]. Entscheidend fiir
den Erfolg der Brandtschen Untersuchungen im Bereich der quaterniren quadratischen
Formen ist die Tatsache, dass einer Quaternionenalgebra sowohl eine additive als auch
eine multiplikative Struktur zugrunde liegen. Bei der Untersuchung beliebiger quadrati-
scher Formen hingegen hat man zwischen einem linearen metrischen Raum V iiber einem
Zahlkorper k (versehen mit einem nicht-ausgearteten Skalarprodukt (-, -)) einerseits, und
der Gruppe GSO(V) der eigentlichen Ahnlichkeitstransformationen von V andererseits,
zu unterscheiden.

Zunichst untersucht Eichler nun das Gruppenpaar V, GSO(V) niher: Es stellt sich her-
aus, dass der metrische Raum V durch den sogenannten Raumtyp charakterisiert wird.
Die Raumtypen ihrerseits lassen sich eindeutig kennzeichnen durch die Paritit ihrer
Dimension, die Diskriminante, die Signatur an allen archimedischen Stellen und die so-
genannten Charaktere an allen endlichen Primstellen von k. Die Gesamtheit der Raum-
typen bildet die Wittsche Gruppe. Ist SO(V) die spezielle orthogonale Gruppe von V
und ist § € SO(V) als ein Produkt von 2m Spiegelungen an den zu den Vektoren
vy,...,U2m € V senkrechten Hyperebenen dargestellt, so erhilt man durch die Zuord-
nung

g (v1,v1) - ... (V2m,Vom) mod k*?

einen Homomorphismus

v:SO(V) — k*/k*2,
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welchen Eichler als Spinor-Norm bezeichnet; diese Norm wurde bereits von R. Lipschitz
eingefiihrt (s. [101], S. 76). Ist V isotrop, dimx V > 5 und —1 ¢ kerv, so zeigt sich
z.B., dass der Kern ker v von v eine einfache Gruppe ist.

Wir kommen nun zur Darstellung von Eichlers Beitridgen zur Zahlentheorie der quadrati-
schen Formen. Dazu betrachten wir projektive 0-Moduln ¥ C V von maximalem Rang,
auch Gitter genannt; hierbei ist 0 die Hauptordnung von k. Ist p ein Primideal von o,
so bezeichnet im Folgenden o, die Vervollstindigung von 0 an der Stelle p mit dem
Quotientenkorper ky; weiter setzen wir V, := V ® ky, Jp := I ® 0y. Zwei Gitter J, {
heissen dghnlich, falls g € GSO(V) mit

f=g3
existiert. Fiir das Folgende halten wir das Gitter J fest und setzen

Ky := {8 € GSO(W) g =},

Der Idealkomplex von 3 ist nun gegeben durch den Nebenklassenraum

1 Gsow)/Ks,

P endl.

wobei der Strich andeutet, dass das Produkt im restringierten Sinne zu verstehen ist.
Dieser zerfillt in Ahnlichkeitsklassen, gegeben durch den Doppelnebenklassenraum

& := GSO(V)\ [[ ' GSO(V)/Ka,

p endl.

und es zeigt sich, dass & die Struktur eines Gruppoids triagt. Grober als die Einteilung
des Idealkomplexes in Ahnlichkeitsklassen ist die Einteilung in Geschlechter und Spinor-
Geschlechter.

Zur Beschreibung des Hauptresultats, bei welchem sich die multiplikative Struktur von
GSO(V) in der additiven Struktur von V widerspiegelt, legen wir ein vollstindiges
Reprisentantensystem i, ..., 3, des vorgegebenen Idealkomplexes zugrunde und defi-
nieren die Anzahlmatrix P(1n) zu einem ganzen Ideal 1 von k durch

P(n):= (pjvk(n))lsj’kgh )
wo pji(n) die Anzahl der Untergitter & C Jx der Norm n(&) = nn(Jx) mit vorge-

schriebenem Elementarteilersystem ist, welche zum Gitter J; dhnlich sind. Fir teiler-
fremde ganze Ideale m und 1 notieren wir die Vertauschungsregel

P(m)-P(n) = P(m-n)=P(n)-P(m).
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Schliesslich teilen wir die Vektoren v € J; (j = 1,...,h) in endlich viele Klassen §;
(I =1,2,...) ein, deren Elemente jeweils in gleichvielen Untergittern (von fester Norm
und festem Elementarteilersystem) liegen, und setzen noch

ej = |Gj|, wo Gj = {g € GSO(V) |g3; =},
ej(v) :=|G;(v)], wo Gj(v) = {g € G| gv = v}.

Mit den sogenannten Darstellungsmassen

-
m;(t) == Zej(]v)’ resp. m;(t, &) : Z e,

(v) (v)in&

wobei die Summe iiber ein Représentantensystem aller Klassen assoziierter Vektoren aus
; der Norm tn(33;), resp. der entsprechenden Klassen in §;, zu nehmen ist, erhilt man
die wichtige Formel

(m; = 361 (my(nt, 1) o

mit gewissen Anzahlen p(&;).

Viele der von M. Eichler initiierten Gedanken zum Themenkreis der quadratischen For-
men regten M. Kneser zu weiteren Untersuchungen an, so z.B. zu seinen Beitrdgen zur
starken Approximation in algebraischen Gruppen (s. [99]).

2.3 Modulformen

Eichlers Beitridge zur Theorie der Modulformen einer Variablen sind vielfiltig. Um sie
beschreiben zu konnen, miissen wir zuerst einige Begriffe zusammenstellen. Dazu fixie-
ren wir eine Primzahl q. Die Kongruenzuntergruppe

To(q) = {(‘C’ Z) € SLy(Z) | ¢ = Omod q}

operiert stark diskontinuierlich auf der oberen Halbebene = {r € C | Im7 > 0}.
Der Quotient I'y(q)\$ ldsst sich durch Hinzunahme zweier Spitzen zu einer kompakten
Riemannschen Fliche To(4)\$ vom Geschlecht

I R) SR o

mit der Klassenzahl h; aus (1) machen. Zu geradem k definiert man den Raum M (I'o(q))
der Modulformen vom Gewicht k zu I'y(q) als die Menge der holomorphen Funktionen
f : © — C, welche der Funktionalgleichung

FEE) r vy =)

ct+d
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fiir alle (g Z) € I'p(q) geniigen und eine Fourierentwicklung der Form

w .
f(T) — ZaneZmnr '
n=0

besitzen. Gilt a9 = 0, so heisst f Spitzenform; ist zudem a; = 1, so nennt man f
normiert. Der Raum der Spitzenformen sei durch Si(I'o(g)) bezeichnet. Modulformen
entsprechen holomorphen Differentialformen k /2-ten Grades mit gewissen Polen in den

beiden Spitzen. Es zeigt sich, dass I'g(9)\$ ein iiber Q definiertes Modell, die sogenannte
Modulkurve Xy(g), besitzt; Xo(q) ist eine iiber Q definierte, glatte, projektiv algebraische
Kurve mit der Eigenschaft Xo(9)(C) = I'o(g)\ 9. Nach [98] hat X(g) einzig an der Stelle
q schlechte Reduktion; fiir alle Primzahlen p # q sind somit die Reduktionen Xo(q)/F,
von Xo(q) mod p glatte Kurven vom Geschlecht g,. Aufgrund der Tatsache, dass die
Modulkurve X,(g) Isomorphieklassen elliptischer Kurven [E] mit fixierter zyklischer
Untergruppe der Ordnung g klassifiziert, erkldrt man durch die Zuordnung

[E]— Y [E/C],

CCE

ICl=p
wobei die (formale) Summe iiber alle Untergruppen C C E der Ordnung p zu nehmen
ist, die Hecke-Korrespondenzen t, von Xo(g). Die ¢,’s (p # q, Primzahl) erzeugen die
Heckealgebra #. Die Hecke-Korrespondenzen induzieren Endomorphismen T(p) von
Mi(T'o(g)), gegeben durch die Formel

FITE) () =p for) +p7' 3 f<T+b ) | (4)

bmod p P

Wir erhalten damit Darstellungen pi der Heckealgebra 7€ in My (I'o(g)). Da # kommuta-
tiv ist und die T'(p)’s beziiglich des Peterssonschen Skalarprodukts selbstadjungiert sind,

gibt es eine Basis von M (T'¢(g)), welche aus simultanen Eigenfunktionen beziiglich ¥,
den Eigenformen, besteht.

Wir erldutern nun die uns am wichtigsten erscheinenden Beitrige Eichlers zum Themen-
kreis der Modulformen. Der Artikel [43] bietet hierzu eine ausgezeichnete Ubersicht.

A. Kongruenzrelation. Fiir die nach Reduktion mod p (p # g) induzierte Korrespondenz
f, von Xo(q)/F, beweist Eichler in [32] die Zerlegung

t,=F,+V, (5)

wobei F), resp. V}, die Frobenius-Korrespondenz, resp. die Verschiebung, von Xo(g)/Fp
bedeuten'). Wegen F,oV, = pk“id geniigt F, damit einer quadratischen Gleichung iiber

1) Eichler beweist die Zerlegung (5) sogar fiir beliebige Stufe g, allerdings nur fiir Primzahlen p, welche
nicht einer endlichen (nicht explizit gegebenen) Ausnahmemenge angehdren.
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#€. Dieses Resultat wurde von G. Shimura auf Siegelsche Modulformen vom Geschlecht
2 und spiter von P. Deligne (unverdffentlicht) und G. Faltings (s. [93]) auf Siegelsche
Modulformen beliebigen Grades verallgemeinert. Indem Eichler die Zerlegung (5) zu-
sammen mit der nach H. Hasse und A. Weil bekannten Abschéitzung der Eigenwerte von
F, kombinierte, gelang ihm die Abschitzung

lay| < 2v/p

fir den p-ten (p # g, Primzahl) Fourierkoeffizienten einer normierten Eigenform f €
52(T'o(g)). Dies lieferte den Beweis der Petersson-Vermutung fiir Gewicht k = 2; man
findet ihn ebenfalls in der Arbeit [32] (s. auch [33]). Weitere Verallgemeinerungen dieser
Ergebnisse folgten kurz darauf von G. Shimura (als erstes s. [106]). Der Beweis der
Ramanujan-Petersson- Vermutung fiir beliebige Gewichte k gelang schliesslich P. Deligne
in [92].

B. Spurformel. Mit Formel (3) erhdlt man
dimM(T'o(q)) = g + 1 = h,.

Dies veranlasste E. Hecke bereits im Jahr 1940 zur Vermutung, dass die Thetareihen
zu den quaterniren quadratischen Formen der Diskriminante 4> den Raum M;(T'y(q))
erzeugen. Den Beweis dieser Vermutung (Basisproblem) erbrachte Eichler in den bei-
den Arbeiten [34], [35] auf folgende Art: Es sei D,/Q die in Abschnitt 1 eingefiihrte
definite Quaternionenalgebra, £, = ¢ eine Maximalordnung und my, .. ., My, ein
Reprisentantensystem aller Idealklassen mit Linksordnung £,; die Rechtsordnung von
m; sei £;. Nach Brandt reprisentieren damit mj”lmk (j,k =1,...,hy) samtliche Ide-
alklassen mit Linksordnung £J; und Rechtsordnung £y in D,. Mit den Brandtschen
Anzahlmatrizen

B(n) = (bj,k(n))lgj,kghq’

wo bjx(n) die Anzahl der ganzen Ideale der Norm # mit Linksordnung £, bedeutet,
welche rechtsdquivalent zu mj“mk sind, erhdlt man in der Form

I1) = k() igjuan, s Ojk(7) =D bk(n) ™,
n=0

simtliche Thetareihen zu quaterniren quadratischen Formen der Diskriminante g%; es
sind Elemente von M;(I'o(q)). Eine Anwendung der Formel (2) in diesem speziellen
Fall zeigt, dass die Wirkung des Hecke-Operators T(p) auf J(7) gegeben ist durch

(@ | T(p)) (r) = B(p) - (7).

Bezeichnet © den Span der Thetareihen 9 (7), so erhilt man neben der durch (4)
gegebenen Darstellung p, von ¥ in M,(I'o(g)) eine weitere Darstellung pg von € in ©,
gegeben durch die Brandtschen Anzahlmatrizen. Die Spuren von p; lassen sich mit Hilfe
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einer auf A. Hurwitz zuriickgehenden Formel (s. [97], Formel (29)), einer frithen Form
des Lefschetzschen Fixpunktsatzes, ermitteln. Fiir die Spuren von pg erhilt Eichler die
Formel

r ~ ttB(p) = ~ _ [ =42 h((0® —4p)f2)
woo(T(p) = Bp) = 3 ) ({7 s
(=2yP <0 <2p, 0<f, (6> —4p)f 2 =0 oder 1 mod 4),

wobei h(—d), resp. w(—d) die Klassenzahl, resp. die Anzahl der Einheiten von Q(v/—d)
bedeuten und {——} ein verallgemeinertes Legendresymbol ist. Aufgrund der Gleichheit
der beiden Spuren erfolgt schliesslich der Beweis der Heckeschen Vermutung.

C. Kohomologie. Nach der erfolgreichen Losung des Basisproblems fiir das Gewicht
k = 2 und Primzahlstufe g ging Eichler nun daran, den Fall geraden Gewichts k > 2 und
quadratfreier Stufe g zu untersuchen. Dazu wurden Thetareihen zu quaterniren quadrati-
schen Formen der Diskriminante g und Kugelfunktionen vom Grad k —2 herangezogen;
sie sind Elemente von S (I'g(q)). Dies fiihrte zu den verallgemeinerten Brandtschen Ma-
trizen, deren Spuren in [39] (s. auch [64]) bestimmt wurden; als Vorbereitung dazu diente
die Arbeit [37]. Thetareihen zu definiten quadratischen Formen in 2k Variablen konnten
nicht verwendet werden, da die Spuren der entsprechenden Anzahlmatrizen (s. Abschnitt
2) nicht berechnet werden konnten. Die Spuren der Darstellung px andererseits konnten
im wesentlichen unter Verwendung der Arbeit [104] von A. Selberg bestimmt werden.
Eine neue, algebraische Berechnungsart dieser Spuren gab Eichler in der Arbeit [41] (s.
auch [42]) durch Heranziehen kohomologischer Methoden: Einer nicht notwendigerweise
holomorphen Modulform f vom Gewicht k zu I'g(q) wird das unbestimmte Integral

FO) = gy || AOG = 0

zugeordnet. Unterwirft man F einer gebrochen linearen Substitution

v = ((Z Z) € To(q),

so erhilt man die Gleichung

F (Z j; Z) (cr+d) "2 =F(7) + Q,(f)

mit einem von f abhingigen Polynom (k — 2)-ten Grades §2,(f) in 7. Die Zuordnung
vy — Q,(f) definiert einen Kozyklus der Gruppe ['y(q) mit Werten im C-Vektorraum

Vékhz) der Polynome vom Grad k — 2. Eichler beweist, dass die Abbildung f — €2,(f)
den Isomorphismus

Sk(To(q)) ® Sk(To(q)) = Hp (Fo(q), vék“Z))
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zwischen holomorphen und antiholomorphen Spitzenformen und der ersten parabolischen

Kohomologie von g(q) mit Werten in V.~ (Definition s. [108]) liefert. Diese koho-
mologische Interpretation der Spitzenformen erlaubte nun einen algebraischen Zugang zu
den Spuren der Darstellung px. Wiederum verallgemeinerte G. Shimura diesen Gedanken
in kurz darauffolgenden Arbeiten (als erstes s. [107]).

Weitere Beitrige zum besprochenen Themenkreis der Modulformen finden sich in den
Arbeiten [54], [63], [65] und [68]-[77]; auf sie soll nicht ndher eingegangen werden.
Bemerkenswert ist noch die Note [53], in der die Periodenlinge des Kettenbruchs einer
quadratischen Irrationalitdt abgeschitzt wird.

2.4 Der Satz von Riemann-Roch

In [45] (s. auch [44]) stellte Eichler dem klassischen Minkowskischen Linearformensatz
folgendes funktionentheoretische Analogon an die Seite: Sei k ein algebraisch abge-
schlossener K(t’)rper und koo (x) der Korper der Laurentreihen in x~! mit Koeffizienten
in k. Ist (M;x),<; (<, €ine n-reihige Matrix mit Koeffizienten in koo (x) und nicht-
verschwindender ﬁetermmante und sind nx (k = 1,...,n) positive natiirliche Zahlen,
so ist die Anzahl linear unabhéngiger Losungen der Ungleichungen

n
deg Zp,'-m]-,k <ng—1 (k=1,...,n)
=1

in Polynomen p; = p;(x) mindestens gleich

n
an — deg (det (mfsk)lgj,kgn) )

k=1

Mit Hilfe dieses Linearformensatzes fiir Polynombereiche gelang Eichler ein Beweis des
klassischen Riemann-Rochschen Satzes fiir (lineare) Divisoren in algebraischen Funk-
tionenkorpern einer Variablen oder — geometrisch gesprochen — fiir Linienbiindel iiber
projektiv algebraischen, glatten Kurven iiber k. Dieses Ergebnis zeigt — in Analogie
zu frilheren Untersuchungen von E. Artin und A. Weil —, wie sich bei Gegeniiber-
stellung der Theorien der Zahlkorper und Funktionenkorper die Sdtze von Minkowski
und Riemann-Roch entsprechen, ein Leitgedanke, der erst vor kurzem seinen Abschluss
durch den Beweis eines arithmetischen Riemann-Rochschen Satzes gefunden hat (s. [94],
[95D.

In den Arbeiten [49]-[51], [S5]-[57], im wesentlichen zusammengefasst im Lecture
Notes Band [62], formulierte und bewies Eichler einen Riemann-Rochschen Satz fiir
algebraische Funktionenkorper in mehreren Verdnderlichen. Dabei fand er einen neuen
Beweis des Serreschen Dualititssatzes (s. [105]). Eichlers Ansatz war allerdings nicht
intrinsisch, da sein Beweis auf einer Induktion beziiglich der Anzahl der Variablen be-
ruhte. Deshalb gelang es auch nicht, Eichlers Satz dem von F. Hirzebruch in [96] und von
A. Grothendieck in [90] gegebenen allgemeinen Riemann-Rochschen Satz fiir kohdrente
Garben iiber Schemata gegeniiberzustellen.
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2.5 Jacobiformen

In der Arbeit [67] fand Eichler eine obere Schranke fiir die Dimension des Vektorraums
Siegelscher Modulformen vom Grad ¢ und geniigend grossem Gewicht k zur vollen
Siegelschen Modulgruppe. Dabei beniitzte er wesentlich die bereits von 1. Pyatetskii-
Shapiro in [103] eingefiihrte Fourier-Jacobi-Entwicklung einer Siegelschen Modulform
in Jacobische Modulformen, oder kurz, in Jacobiformen. Daraus entstand das Bediirfnis,
diese Funktionen — zunichst fir ¢ = 1 — fiir sich systematisch zu studieren. Diese
Untersuchungen fanden ihren Niederschlag in der zusammen mit D. Zagier verfassten
Monographie [80]. Dort wird eine Jacobiform vom Gewicht k, Index m zur Modul-
gruppe SL,(Z) definiert als eine holomorphe Funktion f : § x C — C, welche fiir alle

{(? Z) v(/\aﬂ)] € SLy(Z)xZ?* der Funktionalgleichung

ar+b z4+ AT+ p _ . c(z+ AT+ p)?
f(CT+d’ crid )(CT+d) k-exp(Zvrzm()\27+2)\z— ( c¢+du) )):f(»;-’z)

geniigt und eine Fourierentwicklung der Form

f(T z Z Cy re27n(nr+rz)

4mn — r2 >0

besitzt. Die wesentlichen Resultate des Buchs [80] bestehen in der Entwicklung einer
Hecke-Theorie fiir Jacobiformen und der Bestimmung der Dimension des Vektorraums
Jk m(SL2(Z)) der Jacobiformen vom Gewicht k, Index m beziiglich SL,(Z) zu

m
dim Ji w(SLa2(Z)) = Y _ (dim Mi12,(SLa(2)) — [v?/4m])
v=0

wobei [x] die kleinste ganze Zahl grosser oder gleich x bedeutet. Die so entwickelte
Theorie fiihrte auch zu einem Beweis der Vermutung von Saito-Kurokawa, welche in der
Angabe eines Hecke-dquivarianten Isomorphismus zwischen der Maass’schen Spezial-
schar, einem arithmetisch definierten Unterraum der Schar der Siegelschen Modulformen
vom Grad g = 2, und My_,(SL»(Z)) bestand.

In der Zwischenzeit hat sich die Theorie der Jacobiformen stark entwickelt: Zagier
und Skoruppa gelang in [109] die Bestimmung der Spuren der Jacobischen Hecke-
Operatoren; in diesen Zusammenhang gehort auch die Arbeit [79]. In [100] wurde,
basierend auf der in [93] gegebenen arithmetischen Kompaktifizierung des Modulraums
prinzipal polarisierter abelscher Varietiten, eine arithmetische Begriindung der Theorie
der Jacobiformen beliebigen Grades gegeben.

Als interessantes Nebenprodukt zu diesem Themenkreis sei noch die Arbeit [78] erwihnt,
in der die Nullstellen zo(7) der Weierstrass’schen g -Funktion (7,z) modulo dem
Gitter Z @ Z7 angegeben werden zu

log(5 + 2V/6) A( )
" ( S+ 144mf/ " E a7 dt)
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wobei
A(r)=x [ =2, resp. Es(r)=1-5043 | S | 2" (x =)
n=1 n=1 din

die normalisierte Spitzenform vom Gewicht 12, resp. die normalisierte Eisensteinreihe
vom Gewicht 6 zu SL,(Z) bedeuten.

In [81] und [86] fiihrte Eichler schliesslich eine weitere Verallgemeinerung des Begriffs
der Modulformen ein. Damit verbunden war die Hoffnung, Eigenformen eines Gewichts
k, auf Eigenformen eines hoheren Gewichts k, abzubilden. Dies gelang leider nicht.
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