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Densest Packing of Six Equal Circles in a Square

Hans Melissen

Hans Melissen completed his studies at Utrecht University in 1982 with a masters
degree thesis on partial differential equations. Since 1986 he is employed at Philips
Electronics, where he is currently working at the Eindhoven Research Laborato-
ries. His research interests include analysis and numerical treatment of Maxwell’s
equations, and computational geometry.

The problem of finding densest packings of n congruent circles inside a compact convex
plane region has been investigated thoroughly during the past decades. In particular, a
lot of work has been carried out on the determination of optimal circle packings in a
circle, a square and an equilateral triangle for small values of n (cf. [2, 3, 16]).

In 1967, circle packings inside a circular disc were given for n = 2,...,16 by S. Kravitz
([91). The optimality of these configurations for n < 7 was proved by R.L. Graham
([1]), and U. Pirl ([19]) gave proofs for n < 10. Pirl also made some conjectures for
11 < n < 19. Subsequent improvements were obtained for n = 14,16,17 and 20 ([4])

and again for n = 17 ([20]). The optimality for n = 11 was proved recently by the
author ([11]).

Densest packings of n circles in an equilateral triangle are known for the triangular

numbers n = k(k + 1)/2 (see [17]) and for n < 12 ([10, 13]). Further conjectures are
given in [11, 12].

The problem of optimally packing circles into a square was raised for n = 8 by L. Moser
([15]). The optimality of the conjectured packing was proved by J. Schaer and A. Meir
(I123]). Schaer ([22]) also solved the problem for n = 9 and gave configurations for
n < 7. He remarked that the cases n = 2,3,4 and 5 ‘are solved easily’, and that n = 6

Hans Melissen nimmt hier das Problem des vorhergehenden Bemages noch einmal auf; |
Es sollen 6 gleiche Kreise mit mbglichst grossem Radius in einem Quadrat plaziert
werden. An mehreren Stellen in der Literatur wird die optirale Anarﬁnng fiir 6 Kreise
 ohine Beweis und ohne Hinweis #of eine Quelle beschriebenn,
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had been proved by R.L. Graham. A geometric outline of a proof for n = 7 exists only in
the form of an unpublished manuscript ([21]). Later, G. Wengerodt ([27, 28, 29]) proved
the cases n = 14, 16, 25, and n = 36 was solved by K. Kirchner and G. Wengerodt ([8]).
Recently, computer assisted proofs for 10 < n < 20 have been described by Peikert et
al. ([7, 18]). For other values of n < 27 candidates for optimal packings have been given
in ([5, 14, 24, 25]).

a)

Fig. | a) Closest packing of six equal circles in a square.
b) Maximum least distance arrangement for six points in a square. The solid line segments between
the points are of equal length.

A useful, often employed fact is that finding a densest packing of 7 equal circles in a
circle, a square or a triangle is equivalent to positioning #n points inside that set such
that the minimum distance between the points is maximal (see for instance Figure 1a).
We shall use this last formulation.

The optimal configuration for six points in a square (up to rotations) is shown in Figure
1b. The minimum distance between the points is dg¢ = /13/6. The proof of this case
was attributed to Graham by Schaer ([22]). It was probably given in a private letter, but,
unfortunately, it has never been published, and no further notes exist ([6]). In [2] the
desirability of a proof for n = 6 was also mentioned. In this paper we will provide such
a proof.

The proof is based on the partition of the unit square [0, 1] into nine smaller regions as
indicated in Figure 2. The partition is completely determined by the distances |pspio| =
Ipiop11] = 1/3, |psps| = de and the obvious symmetries in the diagonals. The diameter
of each of the subregions does not exceed d¢. Suppose that we have a configuration
N = {x1,x3,...,X¢} of six points in the square for which the minimum distance between
the points is equal to d > d¢. Then each subregion can contain at most one point of
this configuration. This is a result of the particular way in which the boundaries are
distributed over the subregions, as is indicated by the dashed/solid lines in Figure 2.

First, we note that if there is a point of N in a B-region as well as points in both of
its neighbouring A-regions (N will then be said to have the ‘ABA-property’), then d is
equal to de¢. This can be seen, for instance for A, B; and A,, by subdividing the union
of these three regions into two regions of diameter d¢ with a cut along p;ps and applying
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Dirichlet’s pigeon-hole principle (p; bisects the lower edge of the square): two of the
points must be in the same region, so d < dg. It is clear that the points from N can only
be p;, p2 and ps.

We will now consider the two situations
in which there is either a point of the
configuration in the region C, or NNC
is empty.

1. First, suppose that N N C is empty.
If there are three or four A-regions con-
taining points from N, then N has the
ABA-property. The remaining alterna-
tive is that only two of the A; each
contain a point of the configuration. All
four B-regions must then also contain
a point. The only situation that is not
ABA is where the two A-regions are
opposite with respect to C. If, for in-
stance, there is both a point in A; and
Ajs, then the point in A3 is restricted to
a small neighbourhood of pg, due to the
presence of points in B, and Bs. This in
turn restricts the position of the point in B,. A similar restriction holds for the point in
B,. It is easy to verify that these two points then lie too close together, so this situation
cannot occur.

P4

4

D1

Fig. 2 Partition of the square. The dashed/solid lines
indicate to which region each edge is assigned.

2. Secondly, suppose that there is a solution point in region C. It is not possible that
two opposite B-regions, like for instance B, and Bs, both contain a point of N. This
is seen by dividing the union of B, C and B3 with a cut along psps into two regions
of diameter dg. It means that at most two B-regions can contain a point of N, so there
must be at least three A-regions which contain a point of the configuration. Therefore
we either have an ABA-situation, or a situation of the form where there is a point of
N in each of A,, A3, A4, B, and B,. The latter situation is impossible as we will now
show.

The three points in the regions As, By, B4 restrict the point in C to the small region
bounded by three circle segments of radius d around p,,po,p12 (see Figure 2). By
symmetry, it is sufficient to consider only those positions above the diagonal through py.
Let (x;,y;) (j = 1,2,3,4) denote the coordinates of the points from N in the regions
C, B4, By and A, respectively. The mutual geometric restrictions on the position of these
points and the point in A3 then result in the following inequalities
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The inequalities in (1), for instance, result from the fact that the distances of (x;,y;) to
p> and pg should at least be dg. Initially we have
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Now if we write x; = 1/2+¢, this last inequality leads to 0 < ¢ < (6 —/26)/12. Some
elementary estimates show that inequalities (1) ... (4) imply that
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If d > dg, then all the above inequalities are strict. From (5) we see that

1 1 5 25 1
— — <1- T2 _
2+5 x; < \/4 9¢ " 36° <2+5,

if € > 0. This shows that the only possible situation occurs for d = dg and £ = 0. In this
case the coordinates of the point in B, would be (0,1/3). By the choice of boundary,
however, this point is not in B4, which shows that this situation is impossible.

We have shown that dg is optimal. From the proof it follows that we always end up with
an ABA-situation. Suppose for instance that there are three points of N in A;, B; and
A,. These points can only be p;, p2, p3. There can be no points in B, or By, so there
must be a point in C, because three points in A3, B3, A4 would not be compatible with
p2 and ps. The only feasible point in C is p;, so the remaining two points must be ps,
po. This results in the solution depicted in Figure 1b. (]

Note: After completion of the article it was found that an optimality proof for the packing
of six circles in a square has been given previously by Schwartz ([26]). His proof uses
similar techniques for a different partition.
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