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Dichteste Packungen von gleichen Kreisen
in einem Quadrat

Ronald Peikert

Ronald Peikert wurde 1955 geboren Er studierte Mathematik an der ETH Zürich
und promovierte 1985 bei Professor E Engeler mit einem Thema aus der
theoretischen Informatik Heute arbeitet er am Interdisziplinären Projektzentrum fur
Supercomputing der ETH Zürich, wo er sich vor allem mit wissenschaftlicher
Visualisierung beschäftigt.

1 Einleitung
Eine interessante Klasse von geometrischen Optimierungsproblemen besteht in der Suche
nach dichten Packungen resp. sparsamen Überdeckungen. Eine schöne Übersicht findet
der Leser in [1].

Wer hm flicht schon eine Anzahl j^eiclmrtigef Münzen auf einer Tmhplme hin- und
bergescfcoben und versucht, sie möglichst dicht anzuordnen? Für die ganze Ebene ist
die dichteste Rreispckung experimentell leicht m finden: Die Mittelpunkte der Kreise
bilden ein aus gleichseitigen Dreiecken bestehendes Gitter, Auch der Beweis dafür,
d&ss dann! wiiMch dte Optimum mekM wird* ist nicht alten schwierig. Um Grössen-

Ordnungen schwieriger ist das verwandte Problem, in einem vorgegebenen Teilgebiet
der Btm$» mm Beispiel in eimm Q$mdwt> n gleiche Kreise mit möglichst grmsem
Radius täkkt Üh&rtäfpemä m plmterm» Schon wenige Experimente ssetgen» dass sich
die optimalen Aaofdnungen för verschiedene n wesenöicta voneinander unterscheiden.
DU* hit nicht nw mt Folge» dass dm Problem schwierig anzugehen ist, sondern auch*
dass der leweis für die Optimalität für jedes n gesondert geführt werden mum. -
Ronald feitet betteltet te seinem Beitrag iber die töttäich efhattenen Wsungen des

IMbta* ft* die Weile n mit n < 2& Die Finge wirf dabei in geschickter Weise

ib ^ptM^^rnagspr^bl^m betaiicMt und mit tffilfe eines Giwimeafuters gel&st Be-
merkenswert ist, dass der Ansatz von Ronald Peikert auch gleich den Beweis für die
Optimalität liefert. Man wird am darauffolgenden Beitrag von Hans Melissen aber den
vittn ^$mmimkW3mtm9i ^i^Ich^Bewe^ulWiiiditÄsich hier itushde» Einsatz
eines Computers erspart hat. ust
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Bekannt und für viele Anwendungsgebiete von Interesse ist z.B das Tammes-Problem,
n möglichst grosse gleiche Kreise überlappungsfrei auf einer Kugeloberfläche zu plazieren

(siehe [6]). Eine verwandte und fast ebenso naheliegende Fragestellung ist die hier
behandelte, nämlich das Packen von gleichen Kreisen in ein Quadrat.

Seit 1965 sind die dichtesten Packungen für neun oder weniger Kreise bekannt ([9],
[10]). Der von R.L. Graham nicht explizit angegebene Beweis für den Fall von sechs

Kreisen wurde kürzlich von H. Melissen ([7]) nachgeliefert. Erstaunlich ist dabei die
übereinstimmend gemachte Feststellung, dass dieses unscheinbare Problem bereits einen
beachtlichen Aufwand erfordert.

Aus den achtziger Jahren stammen die Optimalitätsbeweise für 14,16,25 und 36 Kreise
([12], [13], [14], [5]).

Die fehlenden Beweise für bis zu zwanzig Kreise wurden 1991 gefunden ([2]) mit einer
Methode, die noch erläutert wird. Ausser in den Fällen 17 und 19 traten dabei Packungen
auf, die schon früher gefunden und als optimal vermutet wurden ([4], [11], [8]). Besonderes

Interesse verdient der Fall der zehn Kreise, weil hier zum ersten Mal eine Packung
ohne jegliche Symmetrie erscheint. K.Schlüter ([11]) entdeckte diese Packung bereits
1971, was umso beachtlicher ist, als die übrigen symmetriefreien optimalen Packungen
nur mit Computerhilfe gefunden wurden. Die Methoden reichen dabei von spezieller
Geometrie-Software ([8]) über divide-and-conquer Techniken ([2]) bis zur Simulation
physikalischer Prozesse ([3], [6]).

2 Notation und Definitionen

Zunächst wollen wir das Problem auf eine etwas handlichere Form bringen. Anstatt n
Kreise vom Durchmesser m in ein Quadrat der Seitenlänge s zu packen, wollen wir
n (Mittel-)Punkte in einem Quadrat der Seitenlänge s — m so verteilen, dass deren

gegenseitiger Abstand mindestens m ist. Da ja nur das Verhältnis m : s interessiert,
normieren wir die Seitenlänge s — m auf 1.

Betrachten wir nun eine feste Anzahl n. Die n Mittelpunkte lassen sich durch einen
Koordinatenvektor x {x\,yx,x2, • • • ,yn} £ [0? l]2n beschreiben. Der Mindestabstand
ist dann p(x) mini<,<;<n y/(xx — Xj)2 + (yx — y^2. Gesucht ist jetzt das globale
Maximum mn von p(x) auf [0, l]2n. Dieses Maximum wird i.a. in nicht nur einem Punkt

angenommen. Wir führen daher die folgenden anschaulichen Begriffe ein: Eine Anordnung

von n Kreisen mit Durchmesser m ist ein f £ [0, l]2n mit p($) > m. Eine Packung
von n Kreisen mit Durchmesser m ist eine Zusammenhangskomponente der Menge der

Anordnungen (für n und m). Zwei Anordnungen gehören also zur selben Packung, wenn
sie sich durch "Verschieben" der Kreise ineinander überführen lassen. Schliesslich
identifizieren wir noch Packungen, die sich bloss durch eine Permutation der Indizes und/oder
eine Symmetrie-Abbildung unterscheiden.

Eine Packung gemäss dieser Definition kann durchaus so aussehen, dass jeder
Kreismittelpunkt in einer Umgebung frei bewegt werden kann. Eine solche Packung ist aber

offensichtlich nicht (lokal) optimal, das heisst, m nimmt kein (lokales) Maximum an.

Bei verwandten Packungsproblemen (z.B. drei gleiche Kreise in einen Kreis zu packen)
können sogar bei der optimalen Packung alle Mittelpunkte entlang einer Linie bewegt
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werden. Bei unserem Packungsproblem ist dies jedenfalls für die betrachteten kleinen
n nicht der Fall: Hier ist bei den optimalen Packungen die Mehrzahl der Mittelpunkte
fixiert. Diese beobachtete Tatsache ermöglicht die nachfolgend beschriebene Beweismethode

(wird aber selbstverständlich nicht als Voraussetzung verwendet). Für die betrachteten

kleinen n ist es zudem so, dass jeweils diese fixierten Mittelpunkte zur Identifikation
der Packung sowie zur exakten Bestimmung der algebraischen Zahl mn genügen. Daher
kann hier eine optimale Packung auch in eindeutiger Weise durch einen Graphen
dargestellt werden: Für jeden Mittelpunkt und für jede der vier Quadratseiten gibt es einen
Knoten, und zwischen zwei Knoten gibt es genau dann eine Kante, wenn sich die zwei
Kreise resp. der Kreis und die Quadratseite berühren.

3 Eine Methode zum Auffinden und Beweisen von optimalen Packungen
Mit der hier skizzierten Methode ist es gelungen ([2]), für n 10, ...,20 die mit
Ausnahme von n 14 und n 16 noch fehlenden Optimalitätsbeweise zu führen. Für
jedes n sind die folgenden vier Schritte durchzuführen:

1. Schritt: Finde eine gute untere Schranke m für mn. Dies kann mittels einer Monte-
Carlo Methode ([3]) geschehen.

2. Schritt: Grenze die Menge der Anordnungen von n Kreisen mit Durchmesser m
ein auf eine Menge von 2n-dimensionalen Intervallen. Dies geschieht mit
der unten beschriebenen "Eliminationsprozedur", die auf einer ausgedehnten
Fallunterscheidung basiert.

3. Schritt: Errate die optimale Packung aufgrund des erhaltenen Intervalls für die Mit¬
telpunkte. Dies erfordert die Angabe des Graphen der Packung. Dabei muss
natürlich auch geprüft werden, ob der vermutete Graph tatsächlich der Graph
einer Packung ist, d.h. ob die Koordinaten durch das dem Graphen entsprechende

Gleichungssystem weder über- noch unterbestimmt sind.

4. Schritt: Beweise, dass innerhalb des Intervalls ausser der vermuteten Packung keine
weitere mit Kreisen von (mindestens) demselben Durchmesser existiert. Dies

geschieht mit der unten beschriebenen "Verifikationsprozedur".

Die Schritte 2 und 4 erfordern Computerunterstützung, da eine grosse Anzahl
Fallunterscheidungen resp. Iterationen nötig ist.

4 Die Eliminationsprozedur
Der Grundgedanke dieses Verfahrens ist die Zerlegung des Einheitsquadrates in
kongruente Rechtecke, die höchstens je einen Kreismittelpunkt enthalten können. Um die
Anzahl der Fälle klein zu halten, wählt man die Rechtecke möglichst gross und möglichst
nahe der Quadratform. Anderseits muss deren Diagonale kleiner sein als die vorliegende
untere Schranke m für mn. Für n 10,..., 20 eignen sich Zerlegungen in 16, 20, resp.
25 Rechtecke gemäss Tab. 1.

Bei einer Zerlegung in t Rechtecke können die n Mittelpunkte nun auf (£) Arten auf die
Rechtecke verteilt werden. Daraus ergibt sich die (grosse) Anzahl der zu behandelnden
Fälle. Um die Ergebnisse nachprüfbar zu machen, sei hier die Numerierung der Fälle

explizit angegeben: Vorerst numerieren wir die Rechtecke gemäss Abb. 1. Jedem der
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gesamte verbleibende
n m Anzahl feinstes Anzahl Anzahl CPU

Rechtecke Gitter Fälle Fälle Sekunden

10 .4212795 4x4 1024 x 1024 1051 1 17

11 .3982073 4x4 1024 x 1024 567 3 36
12 .3887301 4x4 1024 x 1024 267 1 13

13 .3660960 4x4 1024 x 1024 77 3 34
14 .3489152 4x5 1280 x 1280 9808 8 573
15 .3410813 4x5 1280 x 1280 3912 1 179

16 .3333333 4x5 1280 x 1280 1253 1 170
17 .3061539 5x5 1280 x 1280 136080 11 6567
18 .3004626 5x5 1280 x 1280 60645 2 8495
19 .2895419 5x5 1280 x 1280 22475 18 11551

20 .2866116 5x5 1280 x 1280 6814 2 11354

Tabelle 1 Ergebnisse des unmodifizierten Algorithmus

(£) Fälle ordnen wir nun einen Code zu, nämlich eine f-stellige Binärzahl, deren f-tes

Bit genau dann gesetzt ist, wenn das z-te Rechteck besetzt ist. Fälle, die symmetrische
Bilder von Fällen mit kleinerem Code sind, lassen wir weg. Die verbleibenden Fälle
numerieren wir nun bei 1 beginnend und nach aufsteigendem Code.

y y

t
16 17 18 19

12 13 14 15

8 9 10 11

4 5 6 7

0
,1 1

1 2 3
->

0

Abb. 1 Rechtecke (n 14)

A

>
0 1

Abb. 2 Zellen (Fall Nr. 1237)

Der Bequemlichkeit halber betrachten wir die Rechtecke als abgeschlossen. Damit nehmen

wir in Kauf, dass es Anordnungen der Kreise gibt, die mehr als einem Fall
angehören.

Jeder einzelne Fall entspricht nun einem 2n-dimensionalen Intervall. Die meisten dieser

Intervalle enthalten nun aber keine einzige gültige Anordnung der n Kreise mit
Durchmesser m. Das Ziel der nachfolgend beschriebenen Prozedur ist es, diese Fälle zu
entdecken und zu eliminieren, sowie für die verbleibenden Fälle die Intervalle soweit
als möglich zu verkleinern.
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Das Einheitsquadrat wird hierzu in quadratische und ebenfalls abgeschlossene Zellen
aufgeteilt, deren Grösse so gewählt wird, dass jede Zelle ganz in ein Rechteck zu liegen
kommt. Die Idee ist nun, alle jene Zellen zu markieren, in denen kein Kreismittelpunkt
liegen kann. Zu Beginn sind dies alle Zellen in den im jeweiligen Fall unbesetzten Rechtecken

(siehe Abb. 2). Abb. 3 zeigt, wie nun weitere Zellen markiert werden können:
Angenommen die beiden abgebildeten Rechtecke seien besetzt, dann liegt ein Kreismittelpunkt

z.B. in der schwarz ausgefüllten Zelle. Dies schliesst für das rechte Rechteck
aber die in Abb. 3 schraffierten Zellen aus, da die maximale Entfernung der zwei
Kreismittelpunkte sonst kleiner als m wäre.

A

>
25

Abb. 3 Rechtecke 0 und 1

$ "* **

.25 .75

Abb. 4 Rechtecke 0, 1 und 2

Wiederholt man dies für alle Zellen des linken Rechtecks, so stellt man fest, dass einige
Zellen im rechten Rechteck jedesmal ausscheiden und daher markiert werden können.
Diese Zellen sind in Abb. 4 schraffiert dargestellt, wo zudem gezeigt wird, wie in einem
weiteren Rechteck als Folge der schon markierten Zellen eine noch grössere Anzahl
Zellen markiert werden kann.

Me in diesem Beispiel verfährt man nun systematisch in allen vier Richtungen bis

keine weiteren Zellen mehr markiert werden können. Wenn in einem besetzten Rechteck
alle Zellen markiert sind, bedeutet dies, dass der vorliegende Fall unmöglich ist und

abgebrochen werden kann. Andernfalls wird das Gitter jetzt verfeinert, indem jede Zelle
in vier kleinere Zellen aufgeteilt wird, wobei die Markierung vererbt wird.

Dieses Verfahren wird teils durch die Rechenzeit, teils durch den Speicherplatz limitiert.

Es ist zu beachten, dass man eine dünn besetzte Matrix erhält, wenn man nur die

Übergänge zwischen markiert und unmarkiert abspeichert. Tab. 1 zeigt das erstaunliche
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Ergebnis dieser einfachen Prozedur: Auch wenn man das Gitter nur in bescheidenem
Mass verfeinert, genügt das, um die Anzahl der Fälle auf ganz wenige zu reduzieren.

In einigen dieser verbleibenden Fälle ist neben einer Verfeinerung auf bis zu 655360
mal 655360 Zellen eine Modifikation des Verfahrens notwendig, damit das Verfahren
abbricht resp. damit genügend Zellen markiert werden können.

Diese Modifikation besteht zum einen darin, dass innerhalb bestimmter Rechtecke auf
das Verfeinem verzichtet wird. Dies geschieht deshalb, weil man dort einen beweglichen
Kreis vermutet, welcher natürlich zu einer grossen Anzahl unmarkierter Zellen führt.
Man beachte, dass der Rechenaufwand pro Iteration im wesentlichen eine Funktion der
Anzahl unmarkierter Zellen ist.

Die zweite zu beseitigende Schwierigkeit besteht darin, dass zu demselben Fall zwei
verschiedene optimale oder nahezu optimale Packungen gehören können. Hier kann dem
Verfahren so nachgeholfen werden, dass man eines der Rechtecke in zwei geeignete
(durchaus auch inkongruente) Rechtecke zerteilt und dadurch den einen Fall durch zwei
Unterfälle ersetzt, die leichter zu behandeln sind. In Tab. 2 sind die Fälle aufgelistet,
die auf diese Weise eliminiert werden müssen, sowie diejenigen, die zu den optimalen
Packungen führen.

n optimaler übrige Fehlerradius
Fall Fälle erhalten erlaubt

10 951 — .0011 .005
11 553 241,275 .00005 .01

12 165 — .00005 .01

13 55 54,58 .0057 .01

14 1237 2050,2054,2510,2528,2951,3223,3605 .00004 .05

15 1367 — .00004 .05

16 255 — .00001 .1

17 406821) 40681,42736,46128,46828,55148,
114965,114966,114967,115025,115985,

.00009

.00032
.01

18 26230 56183 .00014 .01

19 12817 9721,9799,9800,9801,9802,9803,9804,
9805,11210,11273,11274,12885,
12992,13002,13007,14540,21793,

.0014 .0025

20 4942 4247 .00005 .02

Tabelle 2 Optimale und schwierig ehminierbare Falle

5 Die Verifikationsprozedur
Diese von Schaers Beweis ([9]) inspirierte Prozedur ist der Eliminationsprozedur ähnlich
in der Hinsicht, dass auf iterative Weise gewisse Gebiete verkleinert werden, die für
die Kreismittelpunkte zulässig sind. Die Gebiete bestehen diesmal aber nicht aus den

1) Dieser Fall enthalt beide optimalen Packungen
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Zellen eines Gitters, sondern sind zu Beginn kreisförmig, wobei die Mittelpunkte die

Kreismittelpunkte der vermuteten optimalen Packung sind.

Das zum Kreismittelpunkt Px gehörende Gebiet Gx ist also ein Kreis mit Mittelpunkt
Px und Radius rt derart, dass darin das von der Eliminationsprozedur gelieferte Gebiet

vollständig enthalten ist. Wenn ein Kreis der Packung beweglich ist, wird diesem kein
Gebiet zugeordnet.

Liegt nun ein Px auf einer Seite oder Ecke des Einheitsquadrats, so kann Gx sofort auf
einen Halb- resp. Viertelkreis reduziert werden, da die Kreismittelpunkte ja innerhalb
des Einheitsquadrates liegen müssen.

Für jedes Paar von sich berührenden Kreisen der vermuteten optimalen Packung verfährt
man nun wie folgt: Man entfernt vom ersten Gebiet Punkte, deren Abstand zu allen
Punkten des zweiten Gebietes kleiner als das vermutete mn ist. Der Einfachheit halber
beschränkt man sich dabei auf geradlinige Schnitte. Die Bestimmung der Schnittlinie
ist ein einfaches elementargeometrisches Problem. Allerdings muss zur Vermeidung von
Rundungsfehlem mit rationaler Arithmetik gearbeitet werden.

Das Verfahren wird nun solange iteriert, bis alle Gebiete zu Polygonen geworden sind,
die im Innern der ursprünglichen Gebiete liegen. Abb. 5 illustriert diesen Prozess am

Beispiel n 14, rn ••• ri3 .05, wobei der Sichtbarkeit wegen die Gx sowie die

abgeschnittenen Teilgebiete vergrössert dargestellt sind.

11 12 13

10

_,

Abb. 5 Die Verifikationsprozedur für n — 14
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Damit ist es möglich geworden, die Gebiete durch kleinere Kreise, konzentrisch zu den

ursprünglichen, zu ersetzen. Man kann voraussetzen, dass alle Kreise im selben Verhältnis
0 < q < 1 verkleinert werden.

Mit den verkleinerten Gx kann nun exakt dieselbe Folge von Schnitten erneut durchgeführt

werden, wobei die neuen Schnittlinien parallel zu den alten und im q-fach verkleinerten

Abstand vom entsprechenden Mittelpunkt Px gezogen werden. Dass diese Schnitte
ebenfalls zulässig sind, muss noch gezeigt werden. Vorerst stellen wir aber fest, dass

durch die (gedachte) weitere Iteration die Gebiete Gx gegen die einelementigen Mengen
{Px} konvergieren. Damit ist die vermutete Packung als optimal bestätigt.

Natürlich terminiert das Verfahren nicht notwendigerweise, d.h. es kann Gebiete geben,
die sich nie auf Polygone reduzieren. Dies passiert insbesondere dann, wenn mit einer

nicht-optimalen Packung gearbeitet wird, aber auch dann, wenn die anfänglichen Radien
rx nicht genügend klein sind. In Tab. 2 sind die Werte für die rx aufgelistet, und zwar
sowohl die von der Eliminationsprozedur gelieferten als auch diejenigen, die sich im
Versuch als noch genügend klein erwiesen haben. Für die zwölf optimalen Packungen
von 10 bis 20 Kreisen hat das Verfahren nach höchstens 141 Schnitten (im Fall n 13)
terminiert.

Es bleibt also noch zu beweisen, dass die Reduktion der Radien rx um einen Faktor q
die Ausführung von weiteren Schnitten erlaubt, welche aus den vorhergegangenen durch
zentrische Verkleinerung um den Faktor q erhalten werden. Abb. 6 veranschaulicht die
Situation: Px und Pj seien zwei der Kreismittelpunkte, A und ß zwei beliebige Punkte
innerhalb des Gebiets Gx resp. G; deren Abstand gerade gleich mn ist. Werden nun
die Gebiete mitsamt den Schnittlinien um einen gemeinsamen Faktor (insbesondere q, q2

etc.) zentrisch verkleinert, so werden A und ß auf zwei Punkte Ar resp. B' abgebildet,
deren Distanz maximal mn ist, wie leicht zu beweisen ist:

Abb. 6 Reduktion des Fehlerradius

O.B.d.A. seien die Koordinaten von Px,Pj,A und ß: (0,0), (1,0), (xa^a) und (*b,i/b).
Die Distanz zwischen A und ß muss 1 sein, es ist also:

(xB ~ xa)2 + (Vb - Va)2 1.

Die Koordinaten von A! und B' sind: (txA,tyA) und (1 + f(l - xB)1tyB) für ein
0 < t < 1. Das Abstandsquadrat der beiden Punkte ist somit:

(l + txB-t-txA)2 + (tyB-tyA)2.
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Daraus wird unter Verwendung der vorausgehenden Gleichung.

(l-t)2 + 2t(l-t)(xB-xA) + t2

Ersetzen von xB — Xa durch die nicht-kleinere Zahl 1 ergibt schliesslich:

(1 -£)2 + 2£(l -t) + t2= 1, qed

6 Die optimalen Packungen fur 1 bis 20 Kreise
Fur 17 Kreise gibt es genau zwei optimale Packungen, fur alle anderen n < 20 genau
eine. Abb. 7 zeigt alle diese Packungen. Gar keine Symmetneachse haben nur vier
Packungen, namhch jene fur 10, 13 und 19 Kreise, sowie eine der beiden fur 17 Kreise.
Letztere wird achsensymmetrisch, wenn man drei Kreise entfernt. Diejenige fur 19 Kreise
ist nahezu achsensymmetrisch, sie wird punktsymmetrisch, wenn man die sechs oberen
Kreise entfernt. Jene fur 13 Kreise ist nahezu achsensymmetnsch.

^\

i/\n

___

^ ^ 's r»

__j A k_J i___ __j __j L__

nq un s\ vTH rs y

L___
__ LA __J LALA __ A __J

Abb 7 Optimale Packungen fur 1, 20 Kreise

Erwähnenswert ist noch der Fall der Quadratzahlen, wo fur n < 36 und vermutlich
auch fur n 49 das Quadratgitter optimal ist, wahrend fur n > 64 eine auf regulären
Dreiecken basierende Packung in jedem Fall dichter ist.
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Schliesslich interessieren natürlich die Kreisdurchmesser mn selber. Diese sind, zusammen

mit den Mittelpunktskoordinaten, durch algebraische Gleichungssysteme gegeben.
Die mn sind daher algebraische Zahlen. Ausdrücke mit Quadratwurzeln sind folgende
bekannt: m2 \/2, m3 >/6 - y/2, m4 1, m5 \[2j2, m6 VT3/6, m7 4 - 2\/3,
m8 m3/2,m9 1/2, m12 x/34/15, m14 (8-2>/3)/13, mi5 2/(2 +v^6 + \/2),
m16 1/3, mi8 m6/2, m20 (6 - \/2)/16.
Für die übrigen mn konnten mit Hilfe von MAPLE, einer Software für symbolisches
Rechnen, die Minimalpolynome gefunden werden:

1180129 m\s0 - 11436428 m\70 + 98015844 m\60 - 462103584 m\50 + 1145811528 mß-
1398966480m\l + 227573920m\l + 1526909568 m\l - 1038261808 m\%-

2960321792 m?0 + 7803109440m®0 - 9722063488m]0 + 7918461504m%-

4564076288 m5w + 1899131648m?0 - 563649536 m]0 + 114038784 m2{Q-

14172160m10 +819200

m?« +8ml, -22mf, +20m?i + 18mf, -24m?, -24m?, +32mn -8

5322808420171924937409 mf3 + 586773959338049886173232 m]93 + • • •

174103532094609162240m13 + 4756927106410086400

m\n -4m\1 + 6m\1 - I4m5xl + 22m\1 -20m]1 + 36m27 -26mxl + 5

242m\°Q - 1430m?9 - 8109m^9 + 58704m]Q - 78452mfQ - 2918m\Q +43315m\q+

i\9-51516 m]9 + 20592 m,9

Die auf zehn Dezimalstellen gerundeten Werte sind:

m10 « .4212795440, mn « .3982073102, m13 « .3660960077,
m17 w .3061539853, m19 « .2895419920.
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