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Dichteste Packungen von gleichen Kreisen
in einem Quadrat

Ronald Peikert

Ronald Peikert wurde 1955 geboren. Er studierte Mathematik an der ETH Ziirich
und promovierte 1985 bei Professor E. Engeler mit einem Thema aus der theo-
retischen Informatik. Heute arbeitet er am Interdisziplindren Projektzentrum fiir
Supercomputing der ETH Ziirich, wo er sich vor allem mit wissenschaftlicher Vi-
sualisierung beschiftigt.

1 Einleitung

Eine interessante Klasse von geometrischen Optimierungsproblemen besteht in der Suche
nach dichten Packungen resp. sparsamen Uberdeckungen. Eine schone Ubersicht findet
der Leser in [1].

Wer hat nicht schon eine Anzahl gleichartiger Miinzen auf einer Tischplatte hin- und
hergeschoben und versucht, sie moglichst dicht anzuordnen? Fiir die ganze Ebene ist
die dichteste Kreispackung experimentell leicht zu finden: Die Mittelpunkte der Kreise
bilden ein aus gleichseitigen Dreiecken bestehendes Gitter. Auch der Beweis dafiir,
dass damit wirklich das Optimurm erreicht wird, ist nicht allzu schwierig. Um Grossen-
ordnungen schwieriger ist das verwandte Problem, in einem vorgegebenen Teilgebiet
der Ebene, zutn Beispiel in einem Quadrat, n gleiche Kreise mit méglichst grossem
Radius nicht itberlappend zu plazieren. Schon wenige Experimente zeigen, dass sich
die optimalen Anordnungen fir verschiedene n wesentlich voneinander unterscheiden.
Dies hat nicht nur zur Folge, dass das Problem schwierig anzugehen ist, sondemn auch,
dass der Beweis flir die Optimalitit fiir jedes 7 gesondert gefiihrt werden muss. —
Ronald Peikert berichtet in scinem Beitrag tiber die kiirzlich erhaltenen Losungen des
?m&emsﬁirdw‘%mnmtn < 20. Die Frage wird dabei in geschickter Weise
als Optimienmgsproblem behandelt und mit Hilfe eines Grosscomputers gelost. Be-
mmken&wct: ist, dass det’ Ansatz von Ronald Peikert auch gleich den Beweis fiir die

ptimalitit fiefert, Man wird am darauffolgenden Beitrag von Hans Melissen iiber den
;Faim e 6mm kﬁmm, wlch@n ﬁ&weisanfwanﬁmm hier durch den Einsatz
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Bekannt und fiir viele Anwendungsgebiete von Interesse ist z.B das Tammes-Problem,
n moglichst grosse gleiche Kreise iiberlappungsfrei auf einer Kugeloberfliche zu plazie-
ren (siche [6]). Eine verwandte und fast ebenso naheliegende Fragestellung ist die hier
behandelte, ndmlich das Packen von gleichen Kreisen in ein Quadrat.

Seit 1965 sind die dichtesten Packungen fiir neun oder weniger Kreise bekannt ([9],
[10]). Der von R.L. Graham nicht explizit angegebene Beweis fiir den Fall von sechs
Kreisen wurde kiirzlich von H. Melissen ([7]) nachgeliefert. Erstaunlich ist dabei die

iibereinstimmend gemachte Feststellung, dass dieses unscheinbare Problem bereits einen
beachtlichen Aufwand erfordert.

Aus den achtziger Jahren stammen die Optimalititsbeweise fiir 14, 16,25 und 36 Kreise

(12], [13], [14], [5D.

Die fehlenden Beweise fiir bis zu zwanzig Kreise wurden 1991 gefunden ([2]) mit einer
Methode, die noch erlédutert wird. Ausser in den Fillen 17 und 19 traten dabei Packungen
auf, die schon friiher gefunden und als optimal vermutet wurden ([4], [11], [8]). Beson-
deres Interesse verdient der Fall der zehn Kreise, weil hier zum ersten Mal eine Packung
ohne jegliche Symmetrie erscheint. K.Schliiter ([11]) entdeckte diese Packung bereits
1971, was umso beachtlicher ist, als die iibrigen symmetriefreien optimalen Packungen
nur mit Computerhilfe gefunden wurden. Die Methoden reichen dabei von spezieller
Geometrie-Software ([8]) iiber divide-and-conquer Techniken ([2]) bis zur Simulation
physikalischer Prozesse ([3], [6]).

2 Notation und Definitionen

Zunichst wollen wir das Problem auf eine etwas handlichere Form bringen. Anstatt n
Kreise vom Durchmesser m in ein Quadrat der Seitenldnge s zu packen, wollen wir
n (Mittel-)Punkte in einem Quadrat der Seitenldinge s — m so verteilen, dass deren
gegenseitiger Abstand mindestens m ist. Da ja nur das Verhidltnis m : s interessiert,
normieren wir die Seitenldnge s — m auf 1.

Betrachten wir nun eine feste Anzahl n. Die n Mittelpunkte lassen sich durch einen
Koordinatenvektor ¥ = {x,y;, %2, *,¥.} € [0, 1]*" beschreiben. Der Mindestabstand
ist dann p(X) = min <icj<n /(i — %j)2 + (4 — y;)?. Gesucht ist jetzt das globale Ma-
ximum m, von pu(X) auf [0, 1]>". Dieses Maximum wird i.a. in nicht nur einem Punkt
angenommen. Wir fiihren daher die folgenden anschaulichen Begriffe ein: Eine Anord-
nung von n Kreisen mit Durchmesser m ist ein ¥ € [0, 1]?" mit u(X) > m. Eine Packung
von n Kreisen mit Durchmesser m ist eine Zusammenhangskomponente der Menge der
Anordnungen (fiir n und m). Zwei Anordnungen gehoren also zur selben Packung, wenn
sie sich durch “Verschieben” der Kreise ineinander iiberfiihren lassen. Schliesslich identi-
fizieren wir noch Packungen, die sich bloss durch eine Permutation der Indizes und/oder
eine Symmetrie-Abbildung unterscheiden.

Eine Packung gemiss dieser Definition kann durchaus so aussehen, dass jeder Kreis-
mittelpunkt in einer Umgebung frei bewegt werden kann. Eine solche Packung ist aber
offensichtlich nicht (lokal) optimal, das heisst, m nimmt kein (lokales) Maximum an.
Bei verwandten Packungsproblemen (z.B. drei gleiche Kreise in einen Kreis zu packen)
konnen sogar bei der optimalen Packung alle Mittelpunkte entlang einer Linie bewegt
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werden. Bei unserem Packungsproblem ist dies jedenfalls fiir die betrachteten kleinen
n nicht der Fall: Hier ist bei den optimalen Packungen die Mehrzahl der Mittelpunkte
fixiert. Diese beobachtete Tatsache ermoglicht die nachfolgend beschriebene Beweisme-
thode (wird aber selbstverstindlich nicht als Voraussetzung verwendet). Fiir die betrach-
teten kleinen 7 ist es zudem so, dass jeweils diese fixierten Mittelpunkte zur Identifikation
der Packung sowie zur exakten Bestimmung der algebraischen Zahl m, geniigen. Daher
kann hier eine optimale Packung auch in eindeutiger Weise durch einen Graphen dar-
gestellt werden: Fiir jeden Mittelpunkt und fiir jede der vier Quadratseiten gibt es einen
Knoten, und zwischen zwei Knoten gibt es genau dann eine Kante, wenn sich die zwei
Kreise resp. der Kreis und die Quadratseite beriihren.

3 Eine Methode zum Auffinden und Beweisen von optimalen Packungen

Mit der hier skizzierten Methode ist es gelungen ([2]), fir n = 10,...,20 die mit
Ausnahme von 7 = 14 und n = 16 noch fehlenden Optimalitdtsbeweise zu fiihren. Fiir
jedes n sind die folgenden vier Schritte durchzufiihren:

1. Schritt: Finde eine gute untere Schranke m fiir m,. Dies kann mittels einer Monte-
Carlo Methode ([3]) geschehen.

2. Schritt: Grenze die Menge der Anordnungen von n Kreisen mit Durchmesser m
ein auf eine Menge von 2n-dimensionalen Intervallen. Dies geschieht mit
der unten beschriebenen “Eliminationsprozedur”, die auf einer ausgedehnten
Fallunterscheidung basiert.

3. Schritt: Errate die optimale Packung aufgrund des erhaltenen Intervalls fiir die Mit-
telpunkte. Dies erfordert die Angabe des Graphen der Packung. Dabei muss
natiirlich auch gepriift werden, ob der vermutete Graph tatséchlich der Graph
einer Packung ist, d.h. ob die Koordinaten durch das dem Graphen entspre-
chende Gleichungssystem weder tiber- noch unterbestimmt sind.

4. Schritt: Beweise, dass innerhalb des Intervalls ausser der vermuteten Packung keine
weitere mit Kreisen von (mindestens) demselben Durchmesser existiert. Dies
geschieht mit der unten beschriebenen ‘“Verifikationsprozedur”.

Die Schritte 2 und 4 erfordern Computerunterstiitzung, da eine grosse Anzahl Fallunter-
scheidungen resp. Iterationen nétig ist.

4 Die Eliminationsprozedur

Der Grundgedanke dieses Verfahrens ist die Zerlegung des Einheitsquadrates in kon-
gruente Rechtecke, die hochstens je einen Kreismittelpunkt enthalten konnen. Um die
Anzahl der Fille klein zu halten, wihlt man die Rechtecke moglichst gross und méglichst
nahe der Quadratform. Anderseits muss deren Diagonale kleiner sein als die vorliegende
untere Schranke m fiir m,. Fiir n = 10,...,20 eignen sich Zerlegungen in 16, 20, resp.
25 Rechtecke gemass Tab. 1.

Bei einer Zerlegung in f Rechtecke konnen die n Mittelpunkte nun auf (}) Arten auf die
Rechtecke verteilt werden. Daraus ergibt sich die (grosse) Anzahl der zu behandelnden
Fdlle. Um die Ergebnisse nachpriifbar zu machen, sei hier die Numerierung der Fille
explizit angegeben: Vorerst numerieren wir die Rechtecke gemiss Abb. 1. Jedem der
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gesamte | verbleibende
n m Anzahl feinstes Anzahl Anzahl CPU
Rechtecke Gitter Fille Fille Sekunden
10 | .4212795 4 x4 1024 x 1024 1051 1 17
11 | .3982073 4 x4 1024 x 1024 567 3 36
12 | .3887301 4 x4 1024 x 1024 267 1 13
13 | .3660960 4 x4 1024 x 1024 17 3 34
14 | .3489152 4x5 1280 x 1280 9808 8 573
15 | .3410813 4x5 1280 x 1280 3912 1 179
16 | .3333333 4x5 1280 x 1280 1253 1 170
17 | .3061539 S5x5 1280 x 1280 | 136080 11 6567
18 | .3004626 S5 1280 x 1280 60645 2 8495
19 | .2895419 S5x5 1280 x 1280 22475 18 11551
20 | .2866116 S5x5 1280 x 1280 6814 2 11354
Tabelle 1 Ergebnisse des unmodifizierten Algorithmus

(;) Fille ordnen wir nun einen Code zu, ndmlich eine ¢-stellige Binédrzahl, deren i-tes
Bit genau dann gesetzt ist, wenn das i-te Rechteck besetzt ist. Fille, die symmetrische
Bilder von Fillen mit kleinerem Code sind, lassen wir weg. Die verbleibenden Fille
numerieren wir nun bei 1 beginnend und nach aufsteigendem Code.

y y

A A
W16 1711819 :
121314115
8 10111
4 7
o|11]2]3 |
0 > x (e
0 1
Abb. 1 Rechtecke (n = 14) Abb. 2 Zellen (Fall Nr. 1237)

Der Bequemlichkeit halber betrachten wir die Rechtecke als abgeschlossen. Damit neh-

men wir in Kauf, dass es Anordnungen der Kreise gibt, die mehr als einem Fall an-
gehoren.

Jeder einzelne Fall entspricht nun einem 2n-dimensionalen Intervall. Die meisten die-
ser Intervalle enthalten nun aber keine einzige giiltige Anordnung der n Kreise mit
Durchmesser m. Das Ziel der nachfolgend beschriebenen Prozedur ist es, diese Fille zu
entdecken und zu eliminieren, sowie fiir die verbleibenden Fille die Intervalle soweit
als moglich zu verkleinern.
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Das Einheitsquadrat wird hierzu in quadratische und ebenfalls abgeschlossene Zellen
aufgeteilt, deren Grosse so gewihlt wird, dass jede Zelle ganz in ein Rechteck zu liegen
kommt. Die Idee ist nun, alle jene Zellen zu markieren, in denen kein Kreismittelpunkt
liegen kann. Zu Beginn sind dies alle Zellen in den im jeweiligen Fall unbesetzten Recht-
ecken (siche Abb. 2). Abb. 3 zeigt, wie nun weitere Zellen markiert werden kdnnen:
Angenommen die beiden abgebildeten Rechtecke seien besetzt, dann liegt ein Kreismit-
telpunkt z.B. in der schwarz ausgefiillten Zelle. Dies schliesst fiir das rechte Rechteck
aber die in Abb. 3 schraffierten Zellen aus, da die maximale Entfernung der zwei Kreis-
mittelpunkte sonst kleiner als m wire.

Abb. 3  Rechtecke O und 1

Abb. 4  Rechtecke 0, 1 und 2

Wiederholt man dies fiir alle Zellen des linken Rechtecks, so stellt man fest, dass einige
Zellen im rechten Rechteck jedesmal ausscheiden und daher markiert werden kénnen.
Diese Zellen sind in Abb. 4 schraffiert dargestellt, wo zudem gezeigt wird, wie in einem
weiteren Rechteck als Folge der schon markierten Zellen eine noch grossere Anzahl
Zellen markiert werden kann.

Wie in diesem Beispiel verfihrt man nun systematisch in allen vier Richtungen bis
keine weiteren Zellen mehr markiert werden kénnen. Wenn in einem besetzten Rechteck
alle Zellen markiert sind, bedeutet dies, dass der vorliegende Fall unmdéglich ist und
abgebrochen werden kann. Andernfalls wird das Gitter jetzt verfeinert, indem jede Zelle
in vier kleinere Zellen aufgeteilt wird, wobei die Markierung vererbt wird.

Dieses Verfahren wird teils durch die Rechenzeit, teils durch den Speicherplatz limi-
tiert. Es ist zu beachten, dass man eine diinn besetzte Matrix erhilt, wenn man nur die
Ubergiinge zwischen markiert und unmarkiert abspeichert. Tab. 1 zeigt das erstaunliche
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Ergebnis dieser einfachen Prozedur: Auch wenn man das Gitter nur in bescheidenem
Mass verfeinert, geniigt das, um die Anzahl der Fille auf ganz wenige zu reduzieren.

In einigen dieser verbleibenden Fille ist neben einer Verfeinerung auf bis zu 655360
mal 655360 Zellen eine Modifikation des Verfahrens notwendig, damit das Verfahren
abbricht resp. damit geniigend Zellen markiert werden konnen.

Diese Modifikation besteht zum einen darin, dass innerhalb bestimmter Rechtecke auf
das Verfeinern verzichtet wird. Dies geschieht deshalb, weil man dort einen beweglichen
Kreis vermutet, welcher natiirlich zu einer grossen Anzahl unmarkierter Zellen fiihrt.
Man beachte, dass der Rechenaufwand pro Iteration im wesentlichen eine Funktion der
Anzahl unmarkierter Zellen ist.

Die zweite zu beseitigende Schwierigkeit besteht darin, dass zu demselben Fall zwei
verschiedene optimale oder nahezu optimale Packungen gehoren konnen. Hier kann dem
Verfahren so nachgeholfen werden, dass man eines der Rechtecke in zwei geeignete
(durchaus auch inkongruente) Rechtecke zerteilt und dadurch den einen Fall durch zwei
Unterfille ersetzt, die leichter zu behandeln sind. In Tab. 2 sind die Fille aufgelistet,
die auf diese Weise eliminiert werden miissen, sowie diejenigen, die zu den optimalen
Packungen fiihren. '

n | optimaler librige Fehlerradius
Fall Fille erhalten | erlaubt
10 951 - .0011 .005
11 553 241,275 .00005 01
12 165 — .00005 01
13 55 54,58 .0057 01
14 1237 2050, 2054, 2510, 2528, 2951, 3223, 3605 .00004 .05
15 1367 — .00004 .05
16 255 — .00001 1
17 40682') | 40681,42736,46128,46828,55148, .00009 .01
114965, 114966, 114967, 115025, 115985, | .00032
18 26230 56183 .00014 .01
19 12817 9721,9799, 9800, 9801, 9802, 9803,9804, | .0014 .0025
9805, 11210, 11273, 11274, 12885,
12992, 13002, 13007, 14540, 21793,
20 4942 4247 .00005 .02

Tabelle 2 Optimale und schwierig eliminierbare Fille

S Die Verifikationsprozedur

Diese von Schaers Beweis ([9]) inspirierte Prozedur ist der Eliminationsprozedur dhnlich
in der Hinsicht, dass auf iterative Weise gewisse Gebiete verkleinert werden, die fiir
die Kreismittelpunkte zuldssig sind. Die Gebiete bestehen diesmal aber nicht aus den

1) Dieser Fall enthilt beide optimalen Packungen
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Zellen eines Gitters, sondern sind zu Beginn kreisformig, wobei die Mittelpunkte die
Kreismittelpunkte der vermuteten optimalen Packung sind.

Das zum Kreismittelpunkt P; gehorende Gebiet G; ist also ein Kreis mit Mittelpunkt
P; und Radius r; derart, dass darin das von der Eliminationsprozedur gelieferte Gebiet
vollstandig enthalten ist. Wenn ein Kreis der Packung beweglich ist, wird diesem kein
Gebiet zugeordnet.

Liegt nun ein P; auf einer Seite oder Ecke des Einheitsquadrats, so kann G; sofort auf
einen Halb- resp. Viertelkreis reduziert werden, da die Kreismittelpunkte ja innerhalb
des Einheitsquadrates liegen miissen.

Fiir jedes Paar von sich beriihrenden Kreisen der vermuteten optimalen Packung verfahrt
man nun wie folgt: Man entfernt vom ersten Gebiet Punkte, deren Abstand zu allen
Punkten des zweiten Gebietes kleiner als das vermutete m,, ist. Der Einfachheit halber
beschrankt man sich dabei auf geradlinige Schnitte. Die Bestimmung der Schnittlinie
ist ein einfaches elementargeometrisches Problem. Allerdings muss zur Vermeidung von
Rundungsfehlern mit rationaler Arithmetik gearbeitet werden.

Das Verfahren wird nun solange iteriert, bis alle Gebiete zu Polygonen geworden sind,
die im Innern der urspriinglichen Gebiete liegen. Abb. 5 illustriert diesen Prozess am
Beispiel n = 14, ryp = - - - = rj3 = .05, wobei der Sichtbarkeit wegen die G; sowie die
abgeschnittenen Teilgebiete vergrossert dargestellt sind.

Abb. 5  Die Verifikationsprozedur fiir n = 14
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Damit ist es moglich geworden, die Gebiete durch kleinere Kreise, konzentrisch zu den
urspriinglichen, zu ersetzen. Man kann voraussetzen, dass alle Kreise im selben Verhéltnis
0 < g < 1 verkleinert werden.

Mit den verkleinerten G; kann nun exakt dieselbe Folge von Schnitten erneut durchge-
fiihrt werden, wobei die neuen Schnittlinien parallel zu den alten und im g-fach verklei-
nerten Abstand vom entsprechenden Mittelpunkt P; gezogen werden. Dass diese Schnitte
ebenfalls zuldssig sind, muss noch gezeigt werden. Vorerst stellen wir aber fest, dass
durch die (gedachte) weitere Iteration die Gebiete G; gegen die einelementigen Mengen
{P;} konvergieren. Damit ist die vermutete Packung als optimal bestitigt.

Natiirlich terminiert das Verfahren nicht notwendigerweise, d.h. es kann Gebiete geben,
die sich nie auf Polygone reduzieren. Dies passiert insbesondere dann, wenn mit einer
nicht-optimalen Packung gearbeitet wird, aber auch dann, wenn die anfinglichen Radien
r; nicht geniigend klein sind. In Tab. 2 sind die Werte fiir die r; aufgelistet, und zwar
sowohl die von der Eliminationsprozedur gelieferten als auch diejenigen, die sich im
Versuch als noch geniigend klein erwiesen haben. Fiir die zwolf optimalen Packungen
von 10 bis 20 Kreisen hat das Verfahren nach hochstens 141 Schnitten (im Fall n = 13)
terminiert.

Es bleibt also noch zu beweisen, dass die Reduktion der Radien 7; um einen Faktor g4
die Ausfithrung von weiteren Schnitten erlaubt, welche aus den vorhergegangenen durch
zentrische Verkleinerung um den Faktor g erhalten werden. Abb. 6 veranschaulicht die
Situation: P; und P; seien zwei der Kreismittelpunkte, A und B zwei beliebige Punkte
innerhalb des Gebiets G; resp. G; deren Abstand gerade gleich m, ist. Werden nun
die Gebiete mitsamt den Schnittlinien um einen gemeinsamen Faktor (insbesondere g, 4°
etc.) zentrisch verkleinert, so werden A und B auf zwei Punkte A’ resp. B’ abgebildet,
deren Distanz maximal m,, ist, wie leicht zu beweisen ist:

Abb. 6 Reduktion des Fehlerradius

O.B.d.A. seien die Koordinaten von P;, P;, A und B: (0,0), (1,0), (xa,ya) und (x5,¥s).
Die Distanz zwischen A und B muss 1 sein, es ist also:

(xg — xa)* + (y8 —ya)* = L.

Die Koordinaten von A’ und B’ sind: (tx4,tys) und (1 + t(1 — xp),tyg) fiir ein
0 <t < 1. Das Abstandsquadrat der beiden Punkte ist somit:

(1 +txg —t-—txA)2+(tyB — tyA)z.
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Daraus wird unter Verwendung der vorausgehenden Gleichung:
(1 —1)%42t(1 — t)(xp — x4) + t2.
Ersetzen von xp — x4 durch die nicht-kleinere Zahl 1 ergibt schliesslich:

112 4+2t(1 =) +t* =1, ged.
q

6 Die optimalen Packungen fiir 1 bis 20 Kreise

Fiir 17 Kreise gibt es genau zwei optimale Packungen, fiir alle anderen n < 20 genau
eine. Abb. 7 zeigt alle diese Packungen. Gar keine Symmetricachse haben nur vier
Packungen, namlich jene fiir 10, 13 und 19 Kreise, sowie eine der beiden fiir 17 Kreise.
Letztere wird achsensymmetrisch, wenn man drei Kreise entfernt. Diejenige fiir 19 Kreise
ist nahezu achsensymmetrisch, sie wird punktsymmetrisch, wenn man die sechs oberen
Kreise entfernt. Jene fiir 13 Kreise ist nahezu achsensymmetrisch.

YN

L/ i I \ N 1A

Abb. 7  Optimale Packungen fiir 1,...,20 Kreise

Erwihnenswert ist noch der Fall der Quadratzahlen, wo fiir n < 36 und vermutlich
auch fiir n = 49 das Quadratgitter optimal ist, wéahrend fiir n > 64 eine auf regulidren
Dreiecken basierende Packung in jedem Fall dichter ist.
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Schliesslich interessieren natiirlich die Kreisdurchmesser m,, selber. Diese sind, zusam-
men mit den Mittelpunktskoordinaten, durch algebraische Gleichungssysteme gegeben.
Die m, sind daher algebraische Zahlen. Ausdriicke mit Quadratwurzeln sind folgende

bekannt: m; = /2, m3 = V6 — /2, my = 1, ms = /2/2, mg = \/13/6, m7 = 4—2+/3,

hig

= m3 /2, mg = 1/2, myy = /34/15, mys = (8 —2v/3)/13, m;s = 2/(2+ V6 +V2),

Mg = 1/3, mig = m6/2, My = (6 - \/i)/16

Fiir die iibrigen m, konnten mit Hilfe von MAPLE, einer Software fiir symbolisches
Rechnen, die Minimalpolynome gefunden werden:

11

80129 m1% — 11436428 m!] + 98015844 miS — 462103584 m!3 + 1145811528 mi3—
1398966480 m 3 + 227573920 m|3 + 1526909568 m1j — 1038261808 m|)—
2960321792 m}, + 7803109440 m3, — 9722063488 m], + 7918461504 mS,—

4564076288 1, + 1899131648 m, — 563649536 m3, + 114038784 mi,—
14172160 m o + 819200

mb, +8ml, —22m8, +20m;, + 18m}, — 24m3, —24m3 +32m;; — 8

53

22808420171924937409 m) + 586773959338049886173232m33 + - - - —
174103532094609162240 11,3 -+ 4756927106410086400

m$; — 4mi; + 6mS, — 14mj; + 22my; — 20my; + 36 mi; — 26m7 + 5

242ml5 — 1430m3y — 8109 mSy + 58704 m|y — 78452 mSy — 2918 m3y + 43315 m}y+

39812 mly — 53516 mig + 20592 m g — 2704

Die auf zehn Dezimalstellen gerundeten Werte sind:
myo =~ 4212795440, m;; ~ .3982073102, m3 ~ .3660960077,
my7 =~ 3061539853, m,9 ~ .2895419920.
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