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Another Computation of / e u du

Ronald A Kortram

Ronald Kortram was born in 1944 He studied mathematics in Leiden and obtained
his PhD in 1971 under the direction of C Visser He worked at the universities
of Helsinki and Nijmegen His main mterest is in the theory of functions of one

complex vanable

There are many ways to determine the value of f£° e~u du In this article we establish

a relation between this value and the number of lattice points in a disc

Let x be a real number, and let 0 < x < 1 The function

t->x* =e*'l0*x f€[0,oo)

is decreasing, thus

/ /log*df <y/<l+/ e'2[°zxdt
Jo

„=0
Jo

Substitution of u t^J— logx leads to

/•OO °° />OG

/ e~u2du < vZ-logxVV2 < yj- logx 4- / e'^du,
Jo „_n Jo

n=0

thus

hmm J- logxS^xn / e~u du
T1 t'o Jo

¦ Die tomtAümg &$ 'Ümmmfem Älitertft^pite jfä£ e** im ist fbüclierweiie einer
dm. Höhepunkte in der einführenden Vorlesung über Differenüai- wd Integralrechnung,

MlWtri&<•* Wmf^ßm mi«ritti||m *te total* MeAoie, Sdbst npcm*
f tm* j^ggttt» «mi Stfa» jfer X_8iNlidhA tg js» Am* SÄ feti» Sdtodttit! <—

; rechnung dieses Integrals, bei dem Ah überraschende Beziehungen zum bekannten

zahlentheoretischen Problem über die Darstellung von ganzen Zahlen als Summe von
- zwei Quadraten zeigen, ust
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From lim log*
x-l 1, we conclude that

/»OO °°
/ e~u2du lim Vi - x V^,

JO n=0

i.e.

(«oo
\ 2 / oo \ 2 oo

/ e-^du) lim(l-x) K>"2 _=Bm(l-*)_»>x»
J0 J \n=0 / n=0

where bn is the number of representations of n as sum of two Squares of non-negative
integers, i.e. bn is the number of lattice points with non-negative coordinates, at distance

y/n from the origin.
oo

We base the computation of lim(l—x) E bnxn on the following lemma.
*T1 n=0

Lemma: Let An be a sequence of positive numbers, such that E Anxn converges for
x £ [0,1) but diverges for x 1. Let Bn be a sequence of numbers such that

Bn

Then we have

lim — A.
n^oo An

E Bnx
n=0 xlim — A.

x|i ZAnX»
n=0

Proof: Since \Bn\ is dominated by a constant multiple of An, J2Bnxn converges for
x £ [0,1). Let e > 0 be given. Choose N such that for all n > N we have

Bn 1

- X < ~£,
An 2 '

i.e.

\Bn-XAn\ < -eAn.

For x £ [0,1) it follows that

E^*n
n=0 -X

J2(Bn-XAn)xn\ E|ßn-A_4n|4|e £ Anxn
n=0

E|ßn"AAn|

oo

£ Anxn
M=0

< n=0 n=N+l

w=0

< n=0

ZAnX"
n=0

2£'

and for x sufficiently close to 1, this is smaller than e, and the lemma is proved. D
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We apply this lemma, with

n

An=n+l and Bn ]P bk,
k=0

the number of lattice points with non-negative coordinates in the closed disc with radius
y/n around the origin. To each such lattice point we associate the unit square that lies
"north east" of it. These Squares cover a closed quarter-disc with radius y/n and are
covered by a closed quarter-disc with radius y/n+V2, hence

\A^f < Bn < l-n(Vh~+V2)2

thus

r Bn 1

lim -tt.
n-+oo n+l 4

It follows from the lemma that

oo oo

£B„x" (l-x)5_B„x"
1 r n=0 r n=0-tt lim — lim —

*T1 £(" + !)** *T1 (i-*)£(* + i)*n
n=0 n=0
oo

/ _
VnX oo

lim^—=Hm(l-x)X:^n,
*T1 £x» "=°

and this shows that
/»OO 1
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