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Another Computation of e " du
0

Ronald A. Kortram

Ronald Kortram was born in 1944. He studied mathematics in Leiden and obtained
his PhD in 1971 under the direction of C. Visser. He worked at the universities
of Helsinki and Nijmegen. His main interest is in the theory of functions of one
complex variable.

There are many ways to determine the value of fooo e~ du. In this article we establish
a relation between this value and the number of lattice points in a disc.

Let x be a real number, and let 0 < x < 1. The function
bl =etf'logx ¢ [0, 00)
is decreasing, thus
o 2 0 2 0 2
/ el loex g < Zx" < 1+/ el loex gt
0 =0 0
Substitution of u = t/—logx leads to

oo o0 o0
/ e du < \/-longx”2 < v/ —logx +/ e_”zdu,
0 0

n=0

thus
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log x

From lim 2=

x—1

= 1, we conclude that

o0 oo
i 2 . 2
e “du=1lmv1-—x E X",
0 le
n=0
i.e.

0o 2 0 2 00
—du) = lim(1— ) =lim(1-x) Y byx”
(/o e u) Jgrll( x) (gx ) xl%Tll( x)jL:6 x

where b, is the number of representations of # as sum of two squares of non-negative
integers, i.e. b, is the number of lattice points with non-negative coordinates, at distance
/1 from the origin.

We base the computation of li%rll(lwx) > byx" on the following lemma.
& n=0

Lemma: Let A, be a sequence of positive numbers, such that ) A,x" converges for
x € [0,1) but diverges for x = 1. Let B, be a sequence of numbers such that

Then we have

Proof: Since |B,| is dominated by a constant multiple of A,, >_ B,x" converges for
x € [0,1). Let € > 0 be given. Choose N such that for all n > N we have

1.e.

For x € [0, 1) it follows that
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and for x sufficiently close to 1, this is smaller than ¢, and the lemma is proved. O
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We apply this lemma, with
n
A, = n+l1 and B, :Zbk,
k=0

the number of lattice points with non-negative coordinates in the closed disc with radius
v/n around the origin. To each such lattice point we associate the unit square that lies
“north east" of it. These squares cover a closed quarter-disc with radius /n and are
covered by a closed quarter-disc with radius \/ﬁ—!—\/i, hence

zll-yr(\/ﬁ)2 <B, < %w(\/ﬂx/ﬁ)z

thus
1

I = .
nocon+1 4"

It follows from the lemma that

oo o0
Z ann (1 - X) Z ann
—7 = lim = = lim =0 =
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n=0 n=0
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and this shows that
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