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Codes correcteurs d'erreurs

Fran^ois Signst

Francis Signst ne en 1940 a etudie les mathematiques a 1 EPFZ ou il a obtenu le
doctorat en 1967 sous la direction de Beno Eckmann II a enseigne ä 1 University
of Bntish Columbia a Vancouver avant d etre nomme a 1 Universite de Neuchätel
en 1968 Ses domaines de recherche sont la topologie algebrique (H espaces K
theone homotopie) et depuis quelques annees les empilements de spheres et les

formes quadratiques reelles

Viele denke« beim Wort C$de woM vor allem m Ve^ctthstehmgen für öeheiimbot«
schaften oder vielleicht an Paßwörter, welche die Zttgitigstefeehtigtitig mm Bnnk-
konto stetiem Die Eingeweihten wissen Mngegen um die sehr viel breitere Bedeutung
des Wortes Xode*. Sie wissen, dass Codes heute in vielen Stoi&tfenen de, täglichen
Lehens eine wtÄÄffige, aber wichtige Rolle ipieieft* Zum Beispiel m den modernen
Laäetttesen» welche te dir Lige find, dm atif Arn Wüten «gebuchten Strichcode
ftMerfeii m lesen; im Bachiaden, wo die ISBW-Ntfflßtt «feinem Code bMiert»
welcher tJberaitttangsfetter erkennen lässt; beim Hören &tner CD» wo Störungen durch
Kktae Kavier mm Qerit sÄÄdig %m$$0Am w^rtten; am Computer, wo auf der

Fei^tatte At Dateien m gespeichert sind, dms A^mkimm$^ oder Lesefehler atito-
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Äü Beispielen ausgehend gelangt et zu zyklischen Codes, behandelt den Golay-Code
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1 Un exemple illustratif
Les habitues du Sport-Toto connaissent generalement par coeur la fameuse liste de 9

colonnes de 4 matches garantissant 3 points

(x x x 1 1 1 2 2 2\
x 1 2 x 1 2 x 1 2

x 1 2 1 2 x 2 x 1

x 1 2 2 x 1 1 2 x/

Fig 1 Sport Toto ä 4 matches

Comment s'assurer de cette etonnante propriete, de preference sans balayer les 81 resultats

possibles pour les 4 matches9 Voici une premiere idee la sphere d'influence d'une
des colonnes de la liste contient 9 colonnes (elle-meme, et les 8 autres colonnes realisant
3 points) Si Ton veut couvnr les 81 possibihtes, il est donc necessaire que toutes les

spheres d'influence soient disjointes1 A cet effet, il faut contröler que deux colonnes du
tableau n'ont jamais deux resultats communs, ou encore qu'elles different en au moins
trois lettres La venfication est plus rapide, mais nous verrons plus loin qu'elle peut
meme s'effectuer instantanement en utihsant habilement la strueture du tableau

Introduisons un peu de vocabulaire Les 9 colonnes sont les mots d'un code de longueur
4, sur un alphabet de 3 lettres x, 1, et 2 On appelle distance de deux mots le nombre de

differences Celle-ci donne ä un code une strueture d'espace metnque La distance d'un
code est la distance minimale de deux mots distincts appartenant au code La notation
(n,M, d) pour un code precise que sa longueur est n, sa distance d, et qu'il contient M
mots Notre exemple est donc un code (4,9,3) II nous enseigne qu'un code ä distance
3 est correcteur d'erreur si l'on modifie une lettre dans un mot, il est possible de la

cornger automatiquement en cherchant le mot du code le plus proche

Passons maintenant du football aux telecommunications Imagmons que nous avons 9

mots de deux lettres dans notre vocabulaire Prenons, par exemple, les deux premieres
lettres des 9 mots de notre code1)

(xx,xl,x2, lx, 11,12,2x, 21,22)

Supposons maintenant que ces 9 messages puissent etre envoyes sur une ligne de trans-

mission imparfaite, mais ä capacite double pour transmettre un mot de deux lettres, nous
avons quatre lettres ä disposition Cependant, la ligne fait une faute dans une lettre avec
la probabilite p (disons 0 Ol)

Premiere methode Rep6ter le mot A l'arriv^e, si les deux moities du mot recM ne
coincident pas, le destmataire peut employer toutes les martingales possibles et imaginables

pour reconstituer le message elles sont toutes equivalentes au choix de la premiere moi-
ti6' La probabilite de döcodage correct est par consequent (1 — p)2 0,9801 Un mot
sur 50 sera donc mal lu

En remplasant x par z6ro, on constate que ce sont les entiers de 0 ä 8, dans leur eenture en base 3 les

colonnes du tableau sont donc numfrotees par leurs deux premieres lettres
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Deuxieme methode: Envoyer pour chaque mot la colonne correspondante du Sport-Toto.
A la reception, le destinataire regarde le tableau, y cherche son meilleur resultat, et en

prend les deux premieres lettres. Si la ligne a fait 0 ou 1 erreur, il retrouvera le mot juste!
En effet, ceci ne fait qu'exprimer le fait que le tableau garantit 3 points. La probabilite
de decodage correct devient (1 — p)4 + 4p(l - p)3 0,9994... Seul un mot sur 1689

sera mal lu. Comparativement, le gain en Performance est spectaculaire.

Retournons maintenant ä notre tableau de depart, en remplasant x par zero. L'aiphabet
devient l'ensemble {0,1,2} des restes de division par 3. Nos mots vivent donc dans un
espace vectoriel de dimension 4 sur le corps F3. De plus, ils y forment un sous-espace
vectoriel, comme on le verifie aisement sur le tableau. Nous avons ici, par definition,
un code lineaire. Une des premieres retombees de cette propriete est la demonstration
instantanee du fait que le code a bien la distance 3. Introduisons la notion de poids d'un
mot: c'est le nombre de lettres non-nulles; c'est aussi la distance du mot ä 1'origine. La
distance de deux mots est alors le poids de leur difference. Par consequent, la distance
d'un code lineaire est egale au poids minimal. Pour notre tableau, on constate
immediatement que tous les colonnes, sauf l'origine, ont le poids 3, montrant donc sans le

moindre calcul que la distance est 3.

En presence d'un code lineaire, on peut evidemment faire appel aux techniques de

l'algebre lineaire. Voici un echantillon typique, qui sera analyse en detail plus loin:
supposons que le resultat des matches du Sport-Toto soit (en colonne) (1, l,x, 1). Comment

retrouver, par calcul, notre meilleur resultat? Autrement dit, le recepteur du message
regoit le mot (1, l,x, 1). Quel est le message original de deux lettres?

Tout d'abord, la linearite montre que les colonnes ont la forme (a,b,a + b,2a + b). Par

consequent, le resultat des matches (x, y, z, t) fournit 4 points si z x + y et t 2x + y.
Matriciellement, ceci peut s'ecrire

fX\
1 1 2 0\
2 10 2J

y
z -(!

Si une erreur s'est introduite dans le mot, celui-ci a ete modifle par un multiple d'un
vecteur de base! Alors, le produit matriciel ci-dessus n'est pas nul, mais est egal ä un

multiple d'une colonne de la matrice de gauche. II suffit donc de localiser l'erreur en

calculant

1 1 2 0\ 1 (2
2 1 0 2J 0 -u

On obtient le double de la deuxieme colonne de la matrice. Par consequent, l'erreur
introduite est (0,2,0,0), et la bonne colonne se calcule en retranchant l'erreur:

1

0
Vi/

2

0w
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II parait evident, ä ce Stade, qu'un tel calcul peut etre completement automatise, et qu'il
fournit une methode de decodage tres rapide.

2 Les codes de Hamming
Les codes correcteurs d'erreurs ne sont pas seulement importants pour les transmissions,
mais aussi (et surtout) pour la protection des informations stockees sous forme statique.

Un ordinateur, ou meme une simple calculette, contient une quantite importante de

donnees cäblees. Celles-ci ne sont pas ä l'abri de perturbations: il y a d'intimes traces
d'uranium et de thorium radioactifs dans pratiquement tous les materiaux. Ces elements
lourds emettent des particules alpha, susceptibles de modifier le contenu des cellules
de memoire. Experimentalement, on considere qu'une alteration se produit une fois par
cellule et par million d'annees. Pour un ordinateur actuel, la periode de securite est donc
de quelques semaines. Avec un code correcteur d'erreur, la securite s'etend sur plusieurs
annees, car il faut seulement exclure l'alteration de deux lettres dans un meme mot. Le
calcul est bien connu sous le nom de "paradoxe des anniversaires", et je recommande la
lecture de l'excellent article de McEliece [3] sur ce sujet. En pratique, les ordinateurs re-
actualisent systematiquement leurs donnees, et sont donc virtuellement ä l'abri d'erreurs
dans leur memoire morte.

Nous sommes en 1946-47, dans les laboratoires Bell. Le mathematicien Richard Hamming

cotoie, et utilise "ä temps perdu" l'un de ces fameux monstres mis au point pendant
la guerre, fonctionnant avec des lampes et des relais. Ces machines ne sont pas munies
de code correcteur d'erreur, mais seulement d'un code detecteur d'erreur appele "two-
out-of-five": les chiffres de 0 ä 9 sont charges sur des rampes de 5 lampes, dont deux
sont allumees et trois eteintes. La detection des erreurs (frequentes) est facile, et dans ce

cas, on arrete la machine pour recharger les donnees. Pour sa recherche, Hamming n'a
droit ä la machine que pendant le week-end, alors qu'elle est en pilotage automatique.
Si une panne se produit, il lui reste ä attendre le retour des techniciens le lundi matin!
II se fixe alors comme mission de mettre au point un syst&me de correction automatique
des erreurs.

Sa demarche est analogue ä celle du decodage du Sport-Toto du paragraphe precedent.
Autrement dit, il aborde le probleme par l'autre bout, en cherchant comment corriger
les messages avant de savoir comment les ecrire! Le calcul (cf. paragraphe suivant) est

sans surprise: on tombe, en lieu et place de

(a,b1a + b,2a + b)

sur l'alphabet {0,1,2}, sur un code lineaire de longueur 7 sur {0,1}

(a,b,c,d,b + c + d,a + c + d,a + b + d)

que les fameux diagrammes de Venn-Euler ont rendu cel&bre il y a fort longtemps.
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£ 3

1

Fig 2 Le code de Hamming (7,16,3)

II a donc fallu attendre 1947, non seulement pour decouvnr les semi-conducteurs, mais
egalement pour avoir la possibilite de les employer ä grande echelle. Nous verrons ci-
apres comment Hamming a ainsi d'un seul coup decouvert toute une famille de codes,

y compris celui du Sport-Toto!

3 Generalites sur les codes lineaires

Un code lineaire [n9k] est un sous-espace vectoriel % de dimension k de (Fq)", Fq

designant le corps fini ä q elements. On le decrit generalement par la matrice G de

l'injection du code: un message m (mXl ,wtfc) est code en raG c (cx, ,c„).
Sur nos deux exemples precedents, les matnces de codage sont

Sport-Toto: G I

n 1 1

Hamming: G

/l 0 0 0 0 1 1

0 10 0 10 1

0 0 10 110
\0 0 0 1111.

II est essentiel d'observer ici que cette descnption matncielle n'obeit pas aux regles
d'invanance usuelles. Les changements de base dans (Fq)n ne sont PAS autonses, car
ils modifient en general la distance du code! Seules les permutations des coordonnees,
evidemment inoffensives, peuvent servir de relation d'equivalence pour les codes. En

revanche, tout est permis dans (¥q)k: la donnee d'un sous-espace vectonel ne depend

pas du choix d'une base. Pratiquement, ceci signifie qu'on ne s'autorise ä modifier la

matnce G que par des Operations de lignes.
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G est une matrice (lc x n) de rang k, appelee matrice de codage. On lui associe une
matrice de contröle H: c'est une matrice ((n - k) x n) de rang (n — k) qui annule
G. En termes techniques, H decrit le code % comme noyau d'une application lineaire,
alors que G le presente comme image. Matriciellement, G et H sont liees par l'equation
HGf 0, 0 designant la matrice nulle de dimensions ((n — k) x k). Le code dual c6±

d'un code % est defini de fa^on evidente, en echangeant les röles de G et H.

On montre facilement qu'en permutant au besoin les coordonnees, on peut toujours donner

ä la matrice de codage la forme G (Ik C), permettant ainsi de donner directement
une matrice de contröle H (—C* I„-k).
La distance d'un code n'est pas visible sur la matrice G. En revanche, la matrice H
permet, en principe tout au moins, de la determiner:

Theoreme 1 Un code lineaire a la distance > d si et seulement si (d — 1) colonnes de

la matrice de contröle sont toujours lineairement independantes sur Fq.

Demonstration. Soit c un mot de poids (d — 1) dans le code. Alors Hcf 0, une
combinaisaison lineaire nulle de (d — 1) colonnes de H. Cqfd.
Le cas particulier d 3 sur F2 est le plus parlant: il faut que les colonnes de H
soient distinctes! C'est ainsi que Hamming decouvrit le code [7,4]: il y a evidemment
7 colonnes de hauteur 3 distinctes sur F2, ce sont les entiers de 1 ä 7 ecrits en base 2.

A partir de

'0001111
H 0 1 100 1 l),on determine facilement

10 10 10 1

(\ 1 1 0 0 0 0^

10 0 110 0
0 10 10 10\l 1 0 1 0 0 1.

ou (a + b + d,a + c + d,a,b + c + d,b,c,d).

Nul doute qu'avec ce proced6 de codage, Richard Hamming passa pour un sorcier: le

contröle ecrit en base deux la position de l'erreur!
Sur Fq il y a qm — 1 colonnes non-nulles de hauteur m. En ne prenant qu'une colonne

parmi celles qui sont proportionnelles, on obtient donc une matrice H de taille (m x ^rfr-).
Le code de Hamming general est donc de longueur ^rfr, et de dimension ^-~- — tn.

t/ 1 Cj 1

Pour q 3, les premiers codes de Hamming ont les longueurs 4 (c'est notre exemple
de depart), et 13 (II existe donc un code garantissant 12 points au vrai Sport-Toto!).

Quelques mots enfin sur le decodage: ä röception d'un message m, on commence par
contröler s'il appartient au code en calculant son Syndrome s Um*. Le Syndrome d'un
mot est une Information süffisante pour retrouver les erreurs que le code est apte ä corriger
(c'est le thöor&me 1). Mais, sauf pour les codes de Hamming pour lesquels la distance 3

permet les sorcelleries ci-dessus, la reconstitution de l'erreur est un probleme complexe
qui n'a pu etre resolu de fagon satisfaisante que pour des codes ayant des proprietes



El. Math. 48 (1993) 163

mathematiques supplementaires. La meme remarque s'applique ä la determination de la
distance d'un code: l'information est completement contenue dans la matrice H, mais

son extraction est d'une complexite encore plus grande!

Pour les codes ä utiliser dans les sondes spatiales, de bonnes proprietes de distance
sont plus importantes qu'un decodage rapide. Les codes cycliques, qui feront l'objet du

prochain chapitre, repondent particuherement bien ä ces exigences, avec en outre un
codage rapide, simple et robuste. De plus, leur strueture mathematique est fascinante et
riche d'enseignements, ce qui en fait l'un des chapitres fetiches de la theorie des codes.

4 Codes cycliques

4.1 Definitions et proprietes algebriques
Un code est dit cyclique si toute permutation circulaire d'un mot du code appartient aussi

au code. Dans le cas d'un code lineaire cyclique de longueur n sur Fq, une judicieuse
interpretation consiste ä identifier (Fq)n aux polynömes de degre < n, en transcrivant2)

/ (/o,/i, • • • >/n-i) en un polynöme f(x) fo + fxx + + fn-ixn~~l. Ceci permet
d'utiliser la strueture multiplicative de l'anneau des polynömes: la permutation circulaire
des coefficients d'un polynöme f(x) consiste ä prendre le reste de la division de xf(x) par
(xn — 1). En d'autres termes, un code cyclique est un IDEAL de l'anneau Fq[x]/(xn — 1).

Bien que cet anneau ne soit pas integre, on a cependant une Classification de ses ideaux:

Theoreme 2 Tout ideal % de l'anneau Fq[x]/(xn — 1) est principal: il existe un unique
polynöme g(x) de degre < n satisfaisant

1. g(x) est de coefficient dominant 1.

2. <€ (g(x)).

3. g(x) divise (xn — 1).

Demonstration. On prend pour g(x) le polynöme de plus petit degre ä coefficient
dominant 1 contenu dans %. Par linearis, g(x) est unique. De plus, comme % est un ideal,
g(0) ^ 0! Soit alors c(x) C <€. La division euchdienne montre que le reste de division
de c(x) par g(x) est nul, et ceci demontre 2. De meme, le reste de division de (xn — 1)

par g(x) est nul, demontrant 3. Cqfd.

II y a donc correspondance entre les codes cycliques de longueur n sur Fq et les diviseurs
de (xn - 1). Si l'on suppose que le polynöme generateur g(x) est de degre (n - k), il
est facile de voir que le code est de dimension k. Pour s'en convaincre, le plus simple
consiste ä exhiber directement les matrices de codage et de contröle:

Theoreme 3 Soit g(x), de degre (n— Je), le generateur d'un code cyclique, et soit h(x)
le polynöme defini par (xn — l) g(x)h(x). Alors des matrices de codage et de contröle

2) Observer le döcalage des indices.
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sont donnees par

G

(go
0

8i
go gl

gn-k 0

gn-k

0 0 \
0 0

Vo 0 0 go gl • gn-k 1

H
0

0
0

0

h
h hi

¦ h h0 0

\h hi h0 0 0 J

et

Demonstration. G est une matrice (Je x n) de rang Je, H une matrice ((n — k) x n) de

rang (n — Je). II suffit alors de remarquer que les lignes de G sont divisibles par g(x),
et que GHf 0. Cette derniere propriete exprime simplement que g(x)h(x) (xn - 1).

Cqfd.

Le code dual d'un code cyclique est cyclique, comme on le constate immediatement sur
les matrices G et H. Le generateur du code dual est xkh(~).

Exemple: Si g(x) 1 -fx + x3, on trouve h(x) — l+x + x2 +x4. Ceci fournit la matrice
de contröle

'0 0 1 0 1 1 r
H=|0 1 0 1 1 1 0

1 0 1 1 1 0 0,

dont les colonnes sont bien distinctes. II s'agit donc d'une presentation du code de

Hamming comme code cyclique.

Pour simplifier les considerations algebriques, on suppose toujours, dans la theorie des

codes cycliques, que n est premier ä q. L'explication de la pertinence de cette hypothese
est fournie par le fait que dans cette Situation, les racines du polynöme sont toujours
simples. En consequence, les polynömes g(x) et h(x) sont premiers entre eux, une Situation

qui facilite grandement la description des codes.

4.2 Racines des codes cycliques
Si g(x) est le generateur d'un code cyclique, toutes ses racines, dans une extension
convenable de Fq, sont des puissances d'une racine primitive a de l'unite. En d'autres
termes:

(xn -l) (x- l)(x - a)(x -a2)...(x- an~l),

g(x) (x- all)(x - a12)... (x - atn~k)

A chaque polynöme g(x) est donc attach^e une liste d'indices I {i\9..., in-~k}> Cette

liste dopend du choix de a9 mais sa propri£t£ fundamentale n'en dopend pas. Elle fait
l'objet du

Th£orfcme 4 L'ensemble I {ii,..., in-k) est invariant par multiplication par q
(modulo n).
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Demonstration. La preuve utilise l'identite remarquable des corps finis:

g(*q) (g(*))q dans F,[x]

Celle-ci montre que g(al) 0 «=> g(ofll) 0. Cqfd.

Exemple. Prenons le code cyclique de longueur 7 sur F2, de generateur (1 + x + x3). La
factorisation de (x7 — 1) sur F2 est

(x7 - 1) (x - 1) (x3 + x + 1) (x3 + x2 4-1)

La decomposition de l'ensemble {0,1,2,3,4,5,6} en parties invariantes par multiplication

par 2 (modulo 7) est {0} U {1,2,4} U {3,5,6}. Selon le choix d'une racine primitive
7-ieme de l'unite sur F2,1 {1,2,4} ou I {3,5,6}.
L'ensemble I attache ä un code cyclique permet de donner une estimation de la distance
du code. C'est le

Theoreme 5 Soit % un code cyclique de longueur n sur F^, de generateur g(x), tel

que I {/1,... ,/n_jt}. Si I contient (d—1) entiers consecutifs, la distance de % est

superieure ou egale ä d.

Demonstration. Soit c(x) un mot de poids < d dans %, et soient donc {cJv... ,cld_x}
les coefficients potentiellement non-nuls de c(x). Designons par (s+\9s+2,... ,s-fd —1)
les entiers consecutifs contenus dans J. c(x) doit s'annuler sur les racines de g(x)9 et
ceci fournit un Systeme homogene de (d — 1) Equations lineaires ä (d — 1) inconnues

{c]r}. Le determinant de ce Systeme est

a(s+i);i a(8+l)j2 a(s+l)]d-i
a(s+2);_ a(s+2)]2 a(s+2);d_!

Y(s+d-l))i a(s+d-l)j2 a{s+d-l)jd-

a1{ a12

as< /1+/2+ +;_-i)
a2» a2»

a(ä-l)ji a(d-l))2 a

ajd-i
a2)d-i

(d-l)id-

II s'agit d'un determinant de Vandermonde, et comme les a)r sont distincts (a est une
racine primitive de l'unite), il est non-nul. Par consequent, c(x) 0. Cqfd.

Exemples. Si l'on prend sur F2 le polynöme minimal d'une racine primitive n-ieme de

l'unite comme generateur, le code a au moins la distance 3, car l'ensemble I, qui est
invariant par multiplication par 2, contient toujours au moins les entiers 1 et 2. Les
codes de Hamming sur F2 s'obtiennent de cette mani&re, ils sont donc cycliques. Mais
la distance peut etre plus grande que la valeur fournie par le theor&me, comme le montre
le cas du code de Golay que nous 6tudierons ci-apr&s.
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4.3 Le code de Golay
L'ingenieur neuchätelois Marcel Golay fit en 1949, alors qu'il travaillait aux Etats-Unis
comme specialiste du radar, la decouverte de deux codes exceptionnels [2]. Tous deux
sont des codes parfaits: ils garantissent (n — e) points au "Sport-Toto sur Fq" avec le
minimum absolu du nombre de colonnes necessaire. Le premier est un code [23, 12, 7]
sur F2 (e 3), le deuxieme un code [11, 6, 5] sur F3 (e 2). Rappelons ici que les codes
de Hamming sont parfaits avec (e 1). Ce n'est qu'en 1971 que les mathematiciens
ont pu demontrer qu'un code parfait non-trivial avec (e > 1) est necessairement un code

[23, 12, 7] sur F2 ou [11, 6, 5] sur F3!

Le code de Golay prolonge [24, 12, 8] sur F2 est le plus spectaculaire, car il corrige
3 erreurs et en detecte 4. Si on le compare ä 3 copies du code de Hamming prolonge
[8, 4, 4], le nombre de mots est le meme, mais la capacite de correction des erreurs est
bien meilleure (3 erreurs dans un mot de 24 lettres vs. 1 erreur dans chaque groupe de
8 lettres). II s'agit donc d'un objet combinatoire exceptionnel, dont on a d'ailleurs pu
demontrer Vunicite.

Les resultats precedents permettent de donner une description du code de Golay [23, 12,

7] sur F2 comme code cyclique.3) On prend le polynöme minimal d'une racine 23-ieme
de l'unite sur F2. La decomposition de l'ensemble {0,..., 22} en parties invariantes par
multiplication par 2 (modulo 23) est

{0} U {1,2,3,4,6,8,9,12,13,16,18} U {5,7,10,11,14,15,17,19,20,21,22}.

Le polynöme g(x) est donc de degre 11, fournissant un code [23, 12]. La distance est au
moins 5, car les deux ensembles d'indices possibles contiennent 4 entiers consecutifs.
Un choix possible est donne par4)

g(x) 1 + x + x5 4- x6 4- x7 + x9 + x11

En ajoutant un contröle de parite, on obtient un code [24, 12] dont il est facile de

montrer qu'il est auto-dual. Les poids sont donc tous divisibles par 4 (Exercice facile).
La distance du code prolonge est donc egale ä 8, et le code de depart a donc bien la
distance 7, puisque g(x) a le poids 7.

En outre, le code de Golay, 3-correcteur d'erreurs gräce ä sa distance 7, est parfait. En
effet:

'.) + + (_) + (.)-'"
(Ce calcul est analogue ä celui des spheres d'influence pour le Sport-Toto).

Ce code a et6 utilise par les sondes Voyager pour transmettre les fabuleuses photos de la
plannte Jupiter et de ses satellites. Une eruption volcanique sur Io a meme ete transmise

en direct.

3) Ce n'est pas la d£marche de Golay. Pour connaitre l'histoire du code de Golay, avec toutes ses retomb^es

en g6om£trie et en thdorie des groupes, il vaut la peine de se r6f£rer ä l'excellent livre de Thompson [4].

4) II existe une justification mathdmatique interessante permettant de privitegier ce choix, bas£e sur les

idempotents des codes cycliques. Une bonne reference est [5].
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4.4 Codes de Reed-Solomon
Si l'on prend sur Fq un code de longueur n q — 1, le polynöme (xn — 1) a pour racines

tous les elements non-nuls de Fq. En prenant dans Fq un generateur multiplicatif a, on
definit le code de Reed-Solomon ä distance d sur Fq par le polynöme

g(x) {x-a)(x-a2)...(x-ad-1).

II est clair que la distance de ce code est bien d, car I {1,2,..., d — 1} est forme de

(d — 1) entiers consecutifs, et g(x) a au plus d coefficients non-nuls!

Exemple. Pour le code de Reed-Solomon ä distance 3 sur F7, g(x) (x — 3l)(x — 32)

6 4 2x 4 x2 et h(x) 1 4 2x 4 5x2 4 5x3 4- x4.

La dimension du code de Reed-Solomon est (n — d + l), c'est la plus grande dimension
possible pour un code de longueur n ä distance d. En effet: Pour tout code lineaire
[n, Je,d], Je < (n — d + 1) (Exercice facile).

Definition: Un code lineaire [n, Je] est dit MDS (maximum distance separable) si d

(n-k 4-1).

Theoreme 6 Les proprietes suivantes d'un code lineaire [n, Je] sont equivalentes:

1. Le code est MDS.

2. Le code dual est MDS.

3. Tous les (k x Je) mineurs d'une matrice de codage sont inversibles.

4. Tout k-tuple de lettres d'un mot du code permet de le reconstituer.

Demonstration. Si l'on supprime (d — 1) coordonnees, la distance du code reste > 1.

Le mineur restant de la matrice de codage est donc inversible. Ceci demontre 1) => 3).
Pour que le code dual soit MDS, sa distance doit etre (Je 4- 1). Ab absurdo, un mot de

poids < Je sera annule par le mineur correspondant de la matrice de codage, demontrant
3) =^2). Les arguments restants sont (presque) evidents.

La propriete MDS est, comme le montre le resultat ci-dessus, extremement utile pour
les telecommunications ä grande distance, car eile permet de reconstituer des messages

tronques ou parasites. II n'est donc pas etonnant que la NASA y ait eu recours, comme
nous verrons ci-apres.

5 Les codes des sondes spatiales
Les telecommunications modernes doivent beaueoup aux pionniers du radar. Une de leurs

ruses classiques pour se proteger contre les tronquages des messages consiste ä ecrire

n messages codes de longueur n en ligne, puis ä transmettre les colonnes de la matrice
ainsi obtenue. De la sorte, un tronquage ou un effacement se ventile sur plusieurs mots,
et peut etre ä l'arrivee repare par un code correcteur d'erreurs.

Jusqu'ä Jupiter, les images des sondes Voyager ont ete transmises ä l'aide du code de

Golay. Mais pour son p&iple en direction des planetes lointaines Saturne, Uranus, et

Neptune, la sonde Voyager II a ete reprogrammee ä l'aide d'un code de Reed-Solomon,

pour des raisons de faiblesse du signal. II fallait augmenter la capacit£ de correction,
et ä defaut de codes parfaits, ce sont les codes MDS qui offrent les avantages les plus
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d^cisifs. Pour la sonde, la NASA a opte pour un code de Reed-Solomon ä distance 15

sur F32.

C'est ici qu'intervient une autre astuce: F32 est un espace vectoriel de dimension 5 sur
F2. Les lettres du code sont donc transmises comme mots de longueur 5. Un message
du code est donc transmis avec l'alphabet F2, mais avec la longueur 155. Comme le
code de Reed-Solomon est 7-correcteur, on constate par exemple que l'effacement de 30
lettres consecutives dans un mot de 155 lettres peut etre reconstitue.

Une derniere ruse, encore plus diabolique, pour les codes de Reed-Solomon est de nature
mathematique. Elle fournit un codage rapide et performant dans la sonde spatiale elle-
meme. De plus, eile permet de moduler la distance du code sans modifier le cäblage!

Theoreme 7 Soit a(x) un polynöme de degre < (q—l—d) sur Fq. Soit a un generateur
multiplicatif de Fq. On code a(x) en un mot de longueur q—l

c(x) (a(l),a(a),a(a2),...,a(a«-2)).

Alors le code ainsi obtenu est le code de Reed-Solomon ä distance d sur Fq.

Demonstration. On pose n q — 1 pour simplifier les notations. Le code obtenu est
clairement lineaire. De plus, il est cyclique, car le codage du polynöme a(ax) est

(a(a)ya(a2),a(a3),...,a(l)).

Reste ä montrer que le code a les racines voulues par le code de Reed-Solomon. Un mot
du code peut s'ecrire

n—In—d

1=0 ;=0

II faut demontrer que (0 < m < d) =» c(am) 0. Dans c(am), le coefficient de a]

est YTiZoOL^+m"IU'> ü est donc nul si (0 < ; 4- tn < n). En effet, toute racine n-ieme de

l'unite =^ 1 est une racine de (l+x + x2 + ...+ xn~l). Mais si (0 < j <n — d), alors

(0< j + m< n). Cqfd.

La methode choisie pour le codage consiste ä 6valuer des polynömes. Ce sont justement
des Operations tres faciles ä implanter et ä miniaturiser (schema de Horner). D'autre

part, en modifiant le degr€ (q — 1 — d) des messages ä coder, on modifie en meme

temps la distance du code. Mais le sch&na de Horner est inchange! Par ailleurs, on

peut directement construire une matrice de contröle "flexible". Signaions cependant que
le decodage est particuli&rement difficile pour les codes ä distance > 3, et qu'il faut
avoir recours ä un arsenal mathdmatique extremement sophistique. Mais ceci se passe
sur Terre, et non dans la sonde spatiale. C'est donc une autre histoire.
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