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Codes correcteurs d’erreurs

Frangois Sigrist

Frangois Sigrist, né en 1940, a étudié les mathématiques a ’EPFZ, ot il a obtenu le
doctorat en 1967 sous la direction de Beno Eckmann. 1l a enseigné a 1’University
of British Columbia & Vancouver avant d’étre nommé a 1'Université de Neuchatel
en 1968. Ses domaines de recherche sont la topologie algébrique (H -espaces, K-
théorie, homotopie) et depuis quelques années les empilements de spheres et les
formes quadratiques réelles.

Viele denken beim Wort Code wohl vor allem an’ Verschliisselungen fiir Geheimbot-
schaften oder vielleicht an Passworter, welche die Zugangsberenhagmg zum Bank-
konto steuern, Die Eingeweihten wissen hingegen um die sehr viel breitere Bedeutung
des Wortes “Code”. Sie wissen, dass Codes heute in vielen Situationen des tiglichen
Lebens eine unauffillige, aber wichtige Rolle-spielen: Zum Beispiel an den modernen
Ladenkassen, welche in der Lage sind, den auf den Waren angebrachten Strichcode
fehlerfrei zu lesen; im Buchladen, wo die ISBN-»NW auf einem Code basiert, wel-
cher Ubermittlungsfehler erkennen liisst; beim Horen einer CD, wo Storungen durch
Kleine Kmex vom Gerit saﬁmﬂndig ausgeglichen. werden; am Computer, wo auf der
Feswiam die Dateien so gespeichert sind, dass Aufzamhnungs- oder Lesefehler auto-
‘matisch Korrigiért -werden, etc. Die meisten dieser Codes bendtigen fiir ihren Einsatz
nichttriviale - Mathematik, die noch bis vor. w&mgm Jahren als zu abstrakt eingestuft
‘wirrde, um in‘anderen Gebieten von Nitzen zusein! —fr einem Beitrag gibt Frangois
S%gzist eziu@ ﬁmfﬁhnmg in éms ’I’hﬁoﬁe dzew fmhtﬁrkmﬁgi&m&a Codes. Vaxa wfach«
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1 Un exemple illustratif

Les habitués du Sport-Toto connaissent généralement par coeur la fameuse liste de 9
colonnes de 4 matches garantissant 3 points:

Lo SR 2 R SR

X
1
1
1

N NN R
N = R
RN =
— R DN
—_— N RN
N R =N
R =N

Fig. 1 Sport-Toto a 4 matches.

Comment s’assurer de cette étonnante proprié€té, de préférence sans balayer les 81 résul-
tats possibles pour les 4 matches? Voici une premiere idée: la sphere d’influence d’une
des colonnes de la liste contient 9 colonnes (elle-méme, et les 8 autres colonnes réalisant
3 points). Si I’on veut couvrir les 81 possibilités, il est donc nécessaire que toutes les
spheres d’influence soient disjointes! A cet effet, il faut contrler que deux colonnes du
tableau n’ont jamais deux résultats communs, ou encore qu’elles different en au moins
trois lettres. La vérification est plus rapide, mais nous verrons plus loin qu’elle peut
méme s’effectuer instantanément en utilisant habilement la structure du tableau.

Introduisons un peu de vocabulaire: Les 9 colonnes sont les mots d’un code de longueur
4, sur un alphabet de 3 lettres x, 1, et 2. On appelle distance de deux mots le nombre de
différences. Celle-ci donne a un code une structure d’espace métrique. La distance d’ un
code est la distance minimale de deux mots distincts appartenant au code. La notation
(n, M, d) pour un code précise que sa longueur est 7, sa distance d, et qu’il contient M
mots. Notre exemple est donc un code (4,9, 3). Il nous enseigne qu’un code a distance
3 est correcteur d’erreur: si I’on modifie une lettre dans un mot, il est possible de la
corriger automatiquement en cherchant le mot du code le plus proche.

Passons maintenant du football aux télécommunications. Imaginons que nous avons 9
mots de deux lettres dans notre vocabulaire. Prenons, par exemple, les deux premieres
lettres des 9 mots de notre code!):

(xx,x1,x2,1x,11,12,2x,21,22)

Supposons maintenant que ces 9 messages puissent étre envoyés sur une ligne de trans-
mission imparfaite, mais a capacité double: pour transmettre un mot de deux lettres, nous
avons quatre lettres a disposition. Cependant, la ligne fait une faute dans une lettre avec
la probabilité p (disons 0.01).

Premiére méthode: Répéter le mot. A I’arrivée, si les deux moiti€s du mot recu ne coin-
cident pas, le destinataire peut employer toutes les martingales possibles et imaginables
pour reconstituer le message: elles sont toutes équivalentes au choix de la premiere moi-
tié! La probabilité de décodage correct est par conséquent (1 — p)? = 0,9801. Un mot
sur 50 sera donc mal lu.

1) En remplagant x par zéro, on constate que ce sont les entiers de 0 2 8, dans leur écriture en base 3: les
colonnes du tableau sont donc numérotées par leurs deux premieres lettres.
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Deuxieme méthode: Envoyer pour chaque mot la colonne correspondante du Sport-Toto.
A la réception, le destinataire regarde le tableau, y cherche son meilleur résultat, et en
prend les deux premieres lettres. Si la ligne a fait O ou 1 erreur, il retrouvera le mot juste!
En effet, ceci ne fait qu’exprimer le fait que le tableau garantit 3 points. La probabilité
de décodage correct devient (1 — p)* +4p(1 — p)> = 0,9994 ... Seul un mot sur 1689
sera mal lu. Comparativement, le gain en performance est spectaculaire.

Retournons maintenant a notre tableau de départ, en remplagant x par zéro. L’alphabet
devient ’ensemble {0, 1,2} des restes de division par 3. Nos mots vivent donc dans un
espace vectoriel de dimension 4 sur le corps F3. De plus, ils y forment un sous-espace
vectoriel, comme on le vérifie aisément sur le tableau. Nous avons ici, par définition,
un code linéaire. Une des premicres retombées de cette propriété est la démonstration
instantanée du fait que le code a bien la distance 3. Introduisons la notion de poids d’un
mot: c’est le nombre de lettres non-nulles; c’est aussi la distance du mot a I’origine. La
distance de deux mots est alors le poids de leur différence. Par conséquent, la distance
d’un code linéaire est €gale au poids minimal. Pour notre tableau, on constate immé-
diatement que tous les colonnes, sauf I’origine, ont le poids 3, montrant donc sans le
moindre calcul que la distance est 3.

En présence d’un code linéaire, on peut évidlemment faire appel aux techniques de
I’algebre linéaire. Voici un échantillon typique, qui sera analysé en détail plus loin:
supposons que le résultat des matches du Sport-Toto soit (en colonne) (1, 1,x,1). Com-
ment retrouver, par calcul, notre meilleur résultat? Autrement dit, le récepteur du message
recoit le mot (1,1, x, 1). Quel est le message original de deux lettres?

Tout d’abord, la linéarité montre que les colonnes ont la forme (a,b,a + b,2a + b). Par
conséquent, le résultat des matches (x, v, z, t) fournit 4 points si z = x+yet t = 2x +.
Matriciellement, ceci peut s’écrire

1 1 20
21 0 2

Si une erreur s’est introduite dans le mot, celui-ci a ét€é modifié par un multiple d’un
vecteur de base! Alors, le produit matriciel ci-dessus n’est pas nul, mais est égal a un
multiple d’une colonne de la matrice de gauche. 1l suffit donc de localiser I’erreur en
calculant

-~ N =
Il
N
o O
N—’

On obtient le double de la deuxiéme colonne de la matrice. Par conséquent, I’erreur
introduite est (0,2,0,0), et la bonne colonne se calcule en retranchant I’erreur:

0

I

1 1
1 2 2
0 0 0
1 0 1
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I1 parait évident, a ce stade, qu’un tel calcul peut étre complétement automatisé, et qu’il
fournit une méthode de décodage trés rapide.

2 Les codes de Hamming

Les codes correcteurs d’erreurs ne sont pas seulement importants pour les transmissions,
mais aussi (et surtout) pour la protection des informations stockées sous forme statique.

Un ordinateur, ou méme une simple calculette, contient une quantité importante de don-
nées cablées. Celles-ci ne sont pas a I’abri de perturbations: il y a d’infimes traces
d’uranium et de thorium radioactifs dans pratiquement tous les matériaux. Ces éléments
lourds émettent des particules alpha, susceptibles de modifier le contenu des cellules
de mémoire. Expérimentalement, on considére qu’une altération se produit une fois par
cellule et par million d’années. Pour un ordinateur actuel, la période de sécurité est donc
de quelques semaines. Avec un code correcteur d’erreur, la sécurité s’étend sur plusieurs
années, car il faut seulement exclure 1’altération de deux lettres dans un méme mot. Le
calcul est bien connu sous le nom de “paradoxe des anniversaires”, et je recommande la
lecture de ’excellent article de McEliece [3] sur ce sujet. En pratique, les ordinateurs ré-
actualisent systématiquement leurs données, et sont donc virtuellement a ’abri d’erreurs
dans leur mémoire morte.

Nous sommes en 1946-47, dans les laboratoires Bell. Le mathématicien Richard Ham-
ming codtoie, et utilise “a temps perdu” ’un de ces fameux monstres mis au point pendant
la guerre, fonctionnant avec des lampes et des relais. Ces machines ne sont pas munies
de code correcteur d’erreur, mais seulement d’un code détecteur d’erreur appelé “two-
out-of-five™: les chiffres de 0 a 9 sont chargés sur des rampes de 5 lampes, dont deux
sont allumées et trois €teintes. La détection des erreurs (fréquentes) est facile, et dans ce
cas, on arréte la machine pour recharger les données. Pour sa recherche, Hamming n’a
droit a la machine que pendant le week-end, alors qu’elle est en pilotage automatique.
Si une panne se produit, il lui reste a attendre le retour des techniciens le lundi matin!
11 se fixe alors comme mission de mettre au point un systeme de correction automatique

des erreurs.

Sa démarche est analogue a celle du décodage du Sport-Toto du paragraphe précédent.
Autrement dit, il aborde le probléme par I’autre bout, en cherchant comment corriger
les messages avant de savoir comment les écrire! Le calcul (cf. paragraphe suivant) est
sans surprise: on tombe, en lieu et place de

(a,b,a+b,2a +b)
sur I’alphabet {0, 1,2}, sur un code linéaire de longueur 7 sur {0, 1}
(a,b,c,d,b+c+d,a+c+d,a+b+d)

que les fameux diagrammes de Venn-Euler ont rendu célebre il y a fort longtemps.
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Fig. 2 Le code de Hamming (7,16,3)

Il a donc fallu attendre 1947, non seulement pour découvrir les semi-conducteurs, mais
également pour avoir la possibilité de les employer a grande échelle. Nous verrons ci-

aprés comment Hamming a ainsi d’un seul coup découvert toute une famille de codes,
y compris celui du Sport-Toto!

3 Généralités sur les codes linéaires

Un code linéaire [n, k] est un sous-espace vectoriel € de dimension k de (Fq)", Fq
désignant le corps fini a g éléments. On le décrit généralement par la matrice G de
I'injection du code: un message m = (my,...,mg) est codé en mG =c = (cy,...,Cy).

Sur nos deux exemples précédents, les matrices de codage sont

Sport-Toto: G = (1 01 2)

01 1 1
1 000 0 1 1
. 0100 1 01
Hamming: G = 0010110
0 00 1 1 1 1

Il est essentiel d’observer ici que cette description matricielle n’obéit pas aux régles
d’invariance usuelles. Les changements de base dans (Fq)" ne sont PAS autorisés, car
ils modifient en général la distance du code! Seules les permutations des coordonnées,
évidemment inoffensives, peuvent servir de relation d’équivalence pour les codes. En
revanche, tout est permis dans (Fq)k: la donnée d’un sous-espace vectoriel ne dépend
pas du choix d’une base. Pratiquement, ceci signifie qu’on ne s’autorise a modifier la
matrice G que par des opérations de lignes.
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G est une matrice (k x n) de rang k, appelée matrice de codage. On lui associe une
matrice de contréle H: c’est une matrice ((n — k) x n) de rang (n — k) qui annule
G. En termes techniques, H décrit le code € comme noyau d’une application linéaire,
alors que G le présente comme image. Matriciellement, G et H sont li€es par 1’équation
HG' = 0, 0 désignant la matrice nulle de dimensions ((n — k) x k). Le code dual 6+
d’un code € est défini de facon évidente, en échangeant les roles de G et H.

On montre facilement qu’en permutant au besoin les coordonnées, on peut toujours don-
ner a la matrice de codage la forme G = (Ix C), permettant ainsi de donner directement
une matrice de controle H = (—C" I, _y).

La distance d’un code n’est pas visible sur la matrice G. En revanche, la matrice H
permet, en principe tout au moins, de la déterminer:

Théoréme 1 Un code linéaire a la distance > d si et seulement si (d — 1) colonnes de
la matrice de contrdle sont toujours linéairement indépendantes sur Fy.

Démonstration. Soit ¢ un mot de poids (d — 1) dans le code. Alors Hc! = 0, une
combinaisaison linéaire nulle de (d — 1) colonnes de H. Cqfd.

Le cas particulier d = 3 sur F; est le plus parlant: il faut que les colonnes de H
soient distinctes! C’est ainsi que Hamming découvrit le code [7,4]: il y a évidemment
7 colonnes de hauteur 3 distinctes sur F,, ce sont les entiers de 1 a 7 écrits en base 2.
A partir de

0 1 1 1 1
H={0 1 1 0 O 1 |, on détermine facilement
1 01 01 0 1
1 110 0 0O
1 0011 00O
&= 01 01010 ,ou(@a+b+d,a+c+d,ab+c+d,b,c,d).
1 1 01 0 01

Nul doute qu’avec ce procédé de codage, Richard Hamming passa pour un sorcier: le
contréle écrit en base deux la position de I erreur!

Sur Fq il y a g" — 1 colonnes non-nulles de hauteur m. En ne prenant qu’une colonne
parmi celles qui sont proportionnelles, on obtient donc une matrice H de taille (mx 9—q{1—1 ).

Le code de Hamming général est donc de longueur 9%_:11, et de dimension 5;_% — m.
Pour g = 3, les premiers codes de Hamming ont les longueurs 4 (c’est notre exemple

de départ), et 13 (Il existe donc un code garantissant 12 points au vrai Sport-Toto!).

Quelques mots enfin sur le décodage: a réception d’un message m, on commence par
contrdler s’il appartient au code en calculant son syndrome s = Hm'. Le syndrome d’un
mot est une information suffisante pour retrouver les erreurs que le code est apte a corriger
(c’est le théoreéme 1). Mais, sauf pour les codes de Hamming pour lesquels la distance 3
permet les sorcelleries ci-dessus, la reconstitution de 1’erreur est un probléme complexe
qui n’a pu étre résolu de fagon satisfaisante que pour des codes ayant des propriétés
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mathématiques supplémentaires. La méme remarque s’applique a la détermination de la
distance d’un code: I'information est complétement contenue dans la matrice H, mais
son extraction est d’une complexité encore plus grande!

-~

Pour les codes a utiliser dans les sondes spatiales, de bonnes propriétés de distance
sont plus importantes qu’un décodage rapide. Les codes cycliques, qui feront 1’objet du
prochain chapitre, répondent particuli¢rement bien a ces exigences, avec en outre un
codage rapide, simple et robuste. De plus, leur structure mathématique est fascinante et

riche d’enseignements, ce qui en fait 1’'un des chapitres fétiches de la théorie des codes.

4 Codes cycliques

4.1 Définitions et propriétés algébriques

Un code est dit cyclique si toute permutation circulaire d’un mot du code appartient aussi
au code. Dans le cas d’un code linéaire cyclique de longueur n sur Fq, une judicieuse
interprétation consiste 2 identifier (Fq)" aux polyndmes de degré < n, en transcrivant?)
f = (fo,f1,--., fa—1) en un polyndme f(x) = fo + fix + ... + fu—1x" 1. Ceci permet
d’utiliser la structure multiplicative de 1’anneau des polyndmes: la permutation circulaire
des coefficients d’un polynéme f(x) consiste a prendre le reste de la division de xf(x) par
(x" —1). En d’autres termes, un code cyclique est un IDEAL de ’anneau Fy[x]/(x" — 1).
Bien que cet anneau ne soit pas inteégre, on a cependant une classification de ses idéaux:

Théoréme 2 Tout idéal ‘€ de I'anneau Fq|x)/(x" — 1) est principal: il existe un unique
polyndéme g(x) de degré < n satisfaisant

1. g(x) est de coefficient dominant 1.

2. 6= (3(x)).
3. g(x) divise (x" —1).

Démonstration. On prend pour g(x) le polyndme de plus petit degré a coefficient do-
minant 1 contenu dans €. Par linéarité, g(x) est unique. De plus, comme € est un idéal,
2(0) # 0! Soit alors ¢(x) C €. La division euclidienne montre que le reste de division
de c(x) par g(x) est nul, et ceci démontre 2. De méme, le reste de division de (x" — 1)
par g(x) est nul, démontrant 3. Cqfd.

I1 y a donc correspondance entre les codes cycliques de longueur 7 sur Fg et les diviseurs
de (x" — 1). Si I’on suppose que le polyndme générateur g(x) est de degré (n — k), il
est facile de voir que le code est de dimension k. Pour s’en convaincre, le plus simple
consiste a exhiber directement les matrices de codage et de contrOle:

Théoréme 3 Soit g(x), de degré (n — k), le générateur d’un code cyclique, et soit h(x)
le polynéme défini par (x" — 1) = g(x)h(x). Alors des matrices de codage et de contréle

2) Observer le décalage des indices.
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sont données par

g & - - &x O 0 0
G = 0 % &1 - . -k 0 O of
0 0 0 g.() él gn;k
0O 0 0 hr . . hi ho
H= 0 0 hy . . h hy O
he . . b oh 0 0 0

Démonstration. G est une matrice (k x n) de rang k, H une matrice ((n — k) x n) de
rang (n — k). 11 suffit alors de remarquer que les lignes de G sont divisibles par g(x),
et que GH' = 0. Cette derniére propriété exprime simplement que g(x)h(x) = (x" — 1).
Cqfd.

Le code dual d’un code cyclique est cyclique, comme on le constate immédiatement sur
les matrices G et H. Le générateur du code dual est x*h(1).

Exemple: Si g(x) = 1+x+x, on trouve h(x) = 1+x+x? +x*. Ceci fournit la matrice
de contrdle

0 01 01 11
H=|101 01110
1 011100

dont les colonnes sont bien distinctes. Il s’agit donc d’une présentation du code de
Hamming comme code cyclique.

Pour simplifier les considérations algébriques, on suppose toujours, dans la théorie des
codes cycliques, que n est premier a q. L’explication de la pertinence de cette hypothese
est fournie par le fait que dans cette situation, les racines du polyndme sont toujours
simples. En conséquence, les polyndmes g(x) et h(x) sont premiers entre eux, une situa-
tion qui facilite grandement la description des codes.

4.2 Racines des codes cycliques
Si g(x) est le générateur d’un code cyclique, toutes ses racines, dans une extension
convenable de Fg, sont des puissances d’une racine primitive o de 1’unité. En d’autres

termes:
(x"-1)=@x-1Dx-a)(x—-a?)...(x —a" 1),

g(x) = (x - o) (x — a?)... (x — o)

A chaque polyndme g(x) est donc attachée une liste d’indices I = {iy,...,i,—}. Cette
liste dépend du choix de «, mais sa propriété fondamentale n’en dépend pas. Elle fait
I’objet du

Théoréme 4 L' ensemble I = {iy,...,i,—x} est invariant par multiplication par q (mo-
dulo n).
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Démonstration. La preuve utilise I’identité remarquable des corps finis:

8(x7) = (g(x))? dans Fy[x]

Celle-ci montre que g(c’) =0 & g(af) = 0. Cqfd.

Exemple. Prenons le code cyclique de longueur 7 sur Ky, de générateur (1 +x +x3). La
factorisation de (x” — 1) sur F, est

K-D=@@-1DE+x+1)(xP+22+1).

La décomposition de ’ensemble {0, 1,2,3,4,5,6} en parties invariantes par multiplica-
tion par 2 (modulo 7) est {0}U{1,2,4}U{3,5,6}. Selon le choix d’une racine primitive
7-i¢me de I'unité sur Fy, I = {1,2,4} ou I = {3, 5, 6}.

L’ensemble I attaché a un code cyclique permet de donner une estimation de la distance
du code. C’est le

Théoreme 5 Soit ‘€ un code cyclique de longueur n sur ¥;, de générateur g(x), tel

que I = {iy,...,iy—x}. Si I contient (d — 1) entiers consécutifs, la distance de € est
supérieure ou égale a d.

Démonstration. Soit c(x) un mot de poids < d dans 6, et soient donc {c;,,...,cj, ,}
les coefficients potentiellement non-nuls de c(x). Désignons par (s+1,s+2,...,s+d—1)
les entiers consécutifs contenus dans I. ¢(x) doit s’annuler sur les racines de g(x), et
ceci fournit un systéme homogene de (d — 1) équations linéaires a (d — 1) inconnues
{cj,}. Le déterminant de ce systeme est

a(s+Dji otV st
a(s+2)j1 a(s+2)]'2 L a(5+2)id—1
a(S+d—1)jl a(s+d—1)j2 . a(s+d*l)jd-l
ajl ajz . . . ajd—-]
2j 2j 2iao
— oSUr it +ji-1) a o .o ¥
a(d—l)jl od-vr a(d—l)fd—u

Il s’agit d’un déterminant de Vandermonde, et comme les o/- sont distincts (o est une
racine primitive de 1’unité), il est non-nul. Par conséquent, c(x) = 0. Cqfd.

Exemples. Si ’on prend sur F, le polyndme minimal d’une racine primitive n-ieme de
I’unité comme générateur, le code a au moins la distance 3, car ’ensemble I, qui est
invariant par multiplication par 2, contient toujours au moins les entiers 1 et 2. Les
codes de Hamming sur F, s’obtiennent de cette maniére, ils sont donc cycliques. Mais
la distance peut étre plus grande que la valeur fournie par le théoréme, comme le montre
le cas du code de Golay que nous étudierons ci-apres.



166 El. Math. 48 (1993)

4.3 Le code de Golay

L’ingénieur neuchitelois Marcel Golay fit en 1949, alors qu’il travaillait aux Etats-Unis
comme spécialiste du radar, la découverte de deux codes exceptionnels [2]. Tous deux
sont des codes parfaits: ils garantissent (n — e) points au “Sport-Toto sur Fy” avec le
minimum absolu du nombre de colonnes nécessaire. Le premier est un code [23, 12, 7]
sur F, (e = 3), le deuxieme un code [11, 6, 5] sur F3 (e = 2). Rappelons ici que les codes
de Hamming sont parfaits avec (¢ = 1). Ce n’est qu’en 1971 que les mathématiciens
ont pu démontrer qu’un code parfait non-trivial avec (e > 1) est nécessairement un code
[23, 12, 7] sur F; ou [11, 6, 5] sur F5!

Le code de Golay prolongé [24, 12, 8] sur F, est le plus spectaculaire, car il corrige
3 erreurs et en détecte 4. Si on le compare a 3 copies du code de Hamming prolongé
[8, 4, 4], le nombre de mots est le méme, mais la capacité de correction des erreurs est
bien meilleure (3 erreurs dans un mot de 24 lettres vs. 1 erreur dans chaque groupe de
8 lettres). 1l s’agit donc d’un objet combinatoire exceptionnel, dont on a d’ailleurs pu
démontrer [’ unicité.

Les résultats précédents permettent de donner une description du code de Golay [23, 12,
7] sur F, comme code cyclique.’) On prend le polyndme minimal d’une racine 23-iéme
de I’unité sur F,. La décomposition de I’ensemble {0, ...,22} en parties invariantes par
multiplication par 2 (modulo 23) est

{0} U {1,2,3,4,6,8,9,12,13, 16,18} U {5,7, 10, 11, 14, 15,17, 19, 20, 21, 22}.

Le polyndme g(x) est donc de degré 11, fournissant un code [23, 12]. La distance est au
moins 5, car les deux ensembles d’indices possibles contiennent 4 entiers consécutifs.
Un choix possible est donné par*)

gx)=1+x+x"+20 +x7 +2° 4+

En ajoutant un contrdle de parité, on obtient un code [24, 12] dont il est facile de
montrer qu’il est auto-dual. Les poids sont donc tous divisibles par 4 (Exercice facile).
La distance du code prolongé est donc égale a 8, et le code de départ a donc bien la
distance 7, puisque g(x) a le poids 7.

En outre, le code de Golay, 3-correcteur d’erreurs grace a sa distance 7, est parfait. En

23 23 23 23\ .1
(5)+(¥)+(3)+(3)-2
(Ce calcul est analogue a celui des spheres d’influence pour le Sport-Toto).

Ce code a été utilisé par les sondes Voyager pour transmettre les fabuleuses photos de la
planete Jupiter et de ses satellites. Une éruption volcanique sur Io a méme été transmise
en direct.

3) Ce n’est pas la démarche de Golay. Pour connaitre ’histoire du code de Golay, avec toutes ses retombées
en géométrie et en théorie des groupes, il vaut la peine de se référer a ’excellent livre de Thompson [4].

4) 11 existe une justification mathématique intéressante permettant de privilégier ce choix, basée sur les
idempotents des codes cycliques. Une bonne référence est [5].
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4.4 Codes de Reed-Solomon

Si I’on prend sur Fg un code de longueur n = g — 1, le polyndme (x" — 1) a pour racines
tous les éléments non-nuls de Fq. En prenant dans Fq un générateur multiplicatif «, on
définit le code de Reed-Solomon a distance d sur Fq par le polyndme

gx)=@x—a)(x—a?)...(x —a*).

Il est clair que la distance de ce code est bien d, car [ = {1,2,...,d — 1} est formé de
(d — 1) entiers consécutifs, et g(x) a au plus d coefficients non-nuls!

Exemple. Pour le code de Reed-Solomon 2 distance 3 sur Fy, g(x) = (x —3")(x —3?%) =
6 +2x +x% et h(x) = 1 + 2x + 5x2 + 5x3 + x*.

La dimension du code de Reed-Solomon est (1 —d + 1), c’est la plus grande dimension
possible pour un code de longueur n a distance d. En effet: Pour tout code linéaire
n, k,d], k <(n-—d+ 1) (Exercice facile).

Définition: Un code linéaire [n, k| est dit MDS (maximum distance separable) si d =
(n—k+1).

Théoréme 6 Les propriétés suivantes d un code linéaire [n, k| sont équivalentes:
1. Le code est MDS.

2. Le code dual est MDS.

3. Tous les (k x k) mineurs d’ une matrice de codage sont inversibles.

4. Tout k-tuple de lettres d’'un mot du code permet de le reconstituer.

Démonstration. Si ’on supprime (d — 1) coordonnées, la distance du code reste > 1.
Le mineur restant de la matrice de codage est donc inversible. Ceci démontre 1) = 3).
Pour que le code dual soit MDS, sa distance doit &tre (k + 1). Ab absurdo, un mot de
poids < k sera annulé par le mineur correspondant de la matrice de codage, démontrant
3) = 2). Les arguments restants sont (presque) évidents.

La propriété MDS est, comme le montre le résultat ci-dessus, extrémement utile pour
les télécommunications a grande distance, car elle permet de reconstituer des messages
tronqués ou parasités. Il n’est donc pas étonnant que la NASA vy ait eu recours, comme
nous verrons ci-apres.

S Les codes des sondes spatiales

Les télécommunications modernes doivent beaucoup aux pionniers du radar. Une de leurs
ruses classiques pour se protéger contre les tronquages des messages consiste a écrire
n messages codés de longueur 7 en ligne, puis a transmettre les colonnes de la matrice
ainsi obtenue. De la sorte, un tronquage ou un effacement se ventile sur plusieurs mots,
et peut étre a l’arrivée réparé par un code correcteur d’erreurs.

Jusqu’a Jupiter, les images des sondes Voyager ont été transmises a 1’aide du code de
Golay. Mais pour son périple en direction des planétes lointaines Saturne, Uranus, et
Neptune, la sonde Voyager II a été reprogrammée a 1’aide d’un code de Reed-Solomon,
pour des raisons de faiblesse du signal. Il fallait augmenter la capacité de correction,
et a défaut de codes parfaits, ce sont les codes MDS qui offrent les avantages les plus
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décisifs. Pour la sonde, la NASA a opté pour un code de Reed-Solomon a distance 15
sur sz.

C’est ici qu’intervient une autre astuce: F3; est un espace vectoriel de dimension 5 sur
F,. Les lettres du code sont donc transmises comme mots de longueur 5. Un message
du code est donc transmis avec 1’alphabet F,, mais avec la longueur 155. Comme le
code de Reed-Solomon est 7-correcteur, on constate par exemple que 1’effacement de 30
lettres consécutives dans un mot de 155 lettres peut €tre reconstitué.

Une derniére ruse, encore plus diabolique, pour les codes de Reed-Solomon est de nature
mathématique. Elle fournit un codage rapide et performant dans la sonde spatiale elle-
méme. De plus, elle permet de moduler la distance du code sans modifier le cablage!

Théoréme 7 Soit a(x) un polyndéme de degré < (q—1—d) sur Fq. Soit o un générateur
multiplicatif de Fq. On code a(x) en un mot de longueur q — 1

c(x) = (a(1),a(a),a(e?),...,a(a’?)) .
Alors le code ainsi obtenu est le code de Reed-Solomon a distance d sur Fy.

Démonstration. On pose n = g — 1 pour simplifier les notations. Le code obtenu est
clairement linéaire. De plus, il est cyclique, car le codage du polyndme a(ax) est

(a(a),a(?),a(a?),. .. ,a(1)).

Reste a montrer que le code a les racines voulues par le code de Reed-Solomon. Un mot

du code peut s’écrire
n—1ln—d

c(x) =YY ajalix .

i=0 j=0

Il faut démontrer que (0 < m < d) = c(a™) = 0. Dans c(a™), le coefficient de a;

est Z?;()la(j+m)i; il est donc nul si (0 < j 4+ m < n). En effet, toute racine n-itme de
’unité # 1 est une racine de (1 +x +x? + ... +x""1). Mais si (0 < j < n —d), alors
(0 < j+m < n). Cqfd.

La méthode choisie pour le codage consiste a évaluer des polynomes. Ce sont justement
des opérations tres faciles a implanter et 2 miniaturiser (schéma de Horner). D’autre
part, en modifiant le degré (9 — 1 — d) des messages a coder, on modifie en méme
temps la distance du code. Mais le schéma de Horner est inchangé! Par ailleurs, on
peut directement construire une matrice de contrdle “flexible”. Signalons cependant que
le décodage est particulierement difficile pour les codes a distance > 3, et qu’il faut
avoir recours 4 un arsenal mathématique extrémement sophistiqué. Mais ceci se passe
sur Terre, et non dans la sonde spatiale. C’est donc une autre histoire.
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