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Einfache Primtests

Burchard Kaup

Burchard Kaup wurde 1940 in Deutschland geboren, studierte bei H. Behnke und
H. Holmann und promovierte 1975 mit einer Arbeit in komplexer Analysis mehre-
rer Verdanderlicher. Er ist Professeur associé an der Universitdt Freiburg (Schweiz).
Sein Hauptarbeitsgebiet ist die komplexe Analysis; dariiber hat er zusammen mit
seinem Bruder Ludger 1983 das Lehrbuch “Holomorphic Functions” geschrieben.
Er interessiert sich ferner fiir die Fage, wie man gewisse mathematische Probleme
computerunterstiitzt 16sen bzw. illustrieren kann.

1 Einleitung

Wenn jemand abklédren soll, ob eine gegebene Zahl n prim ist oder nicht, dann erwartet
man von ihm iiblicherweise eine der folgenden zwei Antworten:

1. n ist keine Primzahl, denn n hat den echten Teiler #; (und hier erwartet man, da3
der Teiler n; auch wirklich angegeben wird)

Die Gegenstiinde der ‘reinen Mathematik’ finden ausserhalb der mathematischen Welt
selten grosseres Interesse, da sie gewdhnlich als nutzlos, ja als Spielerei angesehen
werden. Wie die Geschichte der Mathematik vielfach belegt, ﬁndm sich dmw Einstel-
lung jeweils pldtzlich, wenn Anwéndungen auftauchen, Zahlentheor ' i

gehbrien lange Zeit zu den “reinsten” aller mathematischen Gegeme, sexms Ver-

schliisselungssysteme gibt, die auf grossen Primzahlen Wa%iem ist das 6%1;&&;:}1@ und
staatliche Interesse an Primzahlen schlagartig gas:twgeﬁ “ ‘Will mart von éiner Zahl
entscheiden, ob sie prim ist oder nicht, wﬁa&tmﬁ%mﬁﬂmmm&
an, der Re"ihe ﬁaei: éu‘wh kiemere (P‘rim)mz& zn dividierer !
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2. n ist eine Primzahl, denn keine der Primzahlen p mit p2 < n ist ein Faktor von n.

Fiir “grofe” Zahlen ist ein solches Vorgehen unter Umstiénden sehr problematisch. Zwar
ist es im Fall der Antwort 1 verhidltnisméBig leicht, von der angegebenen Zahl n; zu
verifizieren, daBl es sich tatsdchlich um einen Faktor handelt (man muB nur testen, ob
bei der Division von n durch n; ein Rest bleibt oder nicht); im Fall der Antwort 2 wird
stets ein Unbehagen bleiben, da dieses Ergebnis nur schwer zu kontrollieren ist wegen
des ungeheueren Rechenaufwandes: Da es wegen des Primzahl-Satzes (vgl. [7]) etwa
A(n) := y/n/In(y/n) Primzahlen p < \/n gibt, sind mindestens A(n) Probedivisionen
erforderlich, um n als Primzahl nachzuweisen, fiir eine zehnstellige Zahl also mindestens
A(101%) =~ 8700. Wenn die Rechnungen auf einem Computer ausgefiihrt wurden, miiBte
man sich das Programm anschauen und verifizieren, ob es fehlerfrei ist. Um dann wirklich
sicher zu sein, miite man das Programm noch einmal laufen lassen, was viele Jahre
dauern kann: Wenn z.B. n > 10%, ist A(n) > A(10°°) ~ 3-10'3; wenn Sie pro Sekunde
eine Million Primfaktoren testen, benotigen Sie immer noch etwa 1 Jahr.

Nehmen wir an, Sie hitten die zwei Zahlen

E(23):= 111111111111111111111  und E(59) := 111...111
N~ 4 N e’
23 59

zu untersuchen. Hier sei bereits verraten:
e E(23) ist eine Primzahl, vgl. Abschnitt 4,
e der kleinste Teiler von E(59) ist 2559647034361, vgl. [1, Tabelle 10-].

Es ist A(E (23)) ~ 10'0. Auf einem Macintosh IIsi (bei Benutzung des Programmes
MATHEMATICA) kann man E (23) pro Sekunde auf einige Hundert Primfaktoren testen;
die total benotigte Zeit wire also etwa ein Jahr, um durch Probedividieren nachzuweisen,
daB E(23) prim ist.

Den oben angegebenen Faktor von E(59) werden Sie (bei systematischem Probieren
aller Primzahlen) friihestens nach etwa 90'000'000’000 Probedivisionen finden. Konkret
heifit das: Mit der oben erwihnten Software konnen Sie durch Probedividieren nicht
feststellen, ob E(59) eine Primzahl ist oder nicht. Vielleicht werden Sie jedoch nach
langerer Zeit, wenn Sie immer noch keinen Faktor gefunden haben, personlich zu der
Uberzeugung “E (59) ist wahrscheinlich eine Primzahl” kommen.

Es gibt eine groBe Anzahl von Algorithmen zum Auffinden von Primfaktoren bzw. zum
Beweisen, daBl eine gegebene Zahl prim ist (vgl. [1], [8], [13], [14]). Mit dem von
Cohen und Lenstra in [2] angegebenen Algorithmus kann angeblich in etwa 10 Minuten
entschieden werden, ob eine vorgegebene (< 200)-stellige Zahl prim ist oder nicht!

Ziel dieses Textes ist es nicht, die modernsten und leistungsfdhigsten Algorithmen vor-
zustellen; vielmehr soll der Leser an Hand einiger einfacher Algorithmen (die leicht auf
einem PC bzw. sogar auf einigen programmierbaren Taschenrechnern implementiert wer-
den konnen) in die Problematik eingefiihrt und zu eigenen Aktivititen angeregt werden.
Das dadurch wahrscheinlich aufkeimende Bediirfnis nach leistungsfihigeren Algorith-
men kann in den oben erwiihnten Biichern und der dort angegebenen weiterfilhrenden
Literatur gestillt werden.
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Die hier behandelten Algorithmen sollen Thnen Folgendes zeigen:

1. Wenn eine gegebene Zahl n nicht prim ist, dann kann man mit groBer Wahrschein-
lichkeit in verniinftiger Zeit einen Beweis dafiir finden, da} n nicht prim ist (ohne
daB man dafiir einen Faktor von n zu kennen braucht), vgl. 2.5.

2. Der PP-Test (siche Abschnitt 3) liefert Thnen in kurzer Zeit fiir eine gegebene Zahl
n eine der beiden Antworten “n ist nicht prim” oder “sehr wahrscheinlich ist n
prim”. Dabei kann es ( hochstens jedoch mit der Wahrscheinlichkeit 1/4°, siehe 2.6)
vorkommen, da3 # nicht prim ist, obwohl die Antwort “sehr wahrscheinlich ist n
prim” lautete (probabilistischer Primtest).

3. Wenn fiir eine gegebene Zahl n alle Primfaktoren von n — 1 bekannt sind, dann kann
man mit groer Wahrscheinlichkeit in verniinftiger Zeit entscheiden, ob n prim ist
oder nicht; die Entscheidung kann mit einem leicht nachvollziehbaren Beweis belegt
werden (deterministischer Primtest, vgl. Abschnitt 4).

4. Mit einem zusitzlichen Faktorisierungsprogramm kann man rekursiv auch fiir gewisse
groBere Primzahlen # einen leicht nachvollziehbaren Beweis liefern, dal n prim ist.
(Dieser Algorithmus ist fiir groBe Zahlen “schlecht”, weil in ihm groBe Zahlen fakto-
risiert werden miissen; grofle Zahlen in Primfaktoren zu zerlegen verlangt aber nach
dem heutigen Stand des Wissens wesentlich mehr Rechenaufwand als der Nachweis,
daB eine Zahl prim ist. Ein “gutes” Programm, mit dem man beweisen will, daf} eine
Zahl prim ist, muB} also anders aufgebaut werden).

5. Unter Verwendung des deterministischen Primtests in Abschnitt 4 kann man effektiv
grole Primzahlen konstruieren (vgl. Abschnitt 5).

Der obige Satz “mit groer Wahrscheinlichkeit in verniinftiger Zeit” soll hier nicht niher
prézisiert werden. Was eine “verniinftige Zeit” ist, hangt natiirlich wesentlich ab von der
GroBe der zu untersuchenden Zahl n und der Ihnen zur Verfiigung stehenden Hard- und
Software.

Wenn Sie selber mit groen Zahlen experimentieren mochten, dann sollten Sie iiber
ein Programm verfiigen, das es Ihnen gestattet, mit (beliebig) groBen ganzen Zahlen zu
rechnen. Wer gerne in PASCAL programmiert, kann die in [14, Appendix 7] explizit
angegebenen Programme zum Rechnen mit gro3en Zahlen abschreiben und darauf eigene
Programme aufbauen. Eine andere Moglichkeit ist, da man z.B. mit MATHEMATICA
arbeitet, das mit beliebig groen ganzen Zahlen rechnen kann, viele Funktionen (wie z.B.
die Berechnung von b* (mod ), Zerlegung in Primfaktoren etc.) bereits eingebaut hat und
eine duflerst leistungsfihige Programmiersprache zur Verfiigung stellt. MATHEMATICA
liefert auf Wunsch auch ein “Zertifikat”, daB eine gegebene Primzahl n wirklich prim
ist (benutze ProvablePrimeQ[n,Certificate — > True] ).

Zum obigen Punkt 5 sei noch bemerkt, daB} die Kenntnis geeigneter (vgl. [5]) groBer
Primzahlen (mehr als hundert Ziffern) von entscheidender Bedeutung ist in der Krypto-
graphie (Verschliisseln von Texten mit offentlich bekanntem Code, vgl. [15], [14], [6]);
dadurch wurde dieser Zweig der Zahlentheorie und insbesondere die Frage, wie man eine
Zahl faktorisieren kann, die nur groBe Primfaktoren hat, plétzlich auch fiir militérische
Kreise duBerst wichtig.
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2 Zerlegbarkeits-Beweise
Wir benutzen die folgenden Notation:

a = b ist eine Abkiirzung fir 2 = b (modn).
n

Definition 2.1 Es sei n > 5 ungerade und 2 < b < n — 2. Wir sagen:

b ist ein F-Zeuge fiir (die Zerlegbarkeit von) n : <= b"~! # 1.
n

Der Buchstabe F in obiger Definition soll an Fermat erinnern. Die Bedeutung dieser
Sprechweise wird deutlich aus dem folgenden

Satz 2.2 Eine Zahl n > 3 ist genau dann eine Primzahl, wenn es keinen F-Zeugen fiir
sie gibt.

Zum Beweis vgl. Abschnitt 6. Jede Zahl n > 3, die einen F-Zeugen besitzt, ist also
zerlegbar.

Fiir praktische Rechnungen ist es wichtig, daB man b”~!(modn) auch wirklich in ver-
niinftiger Zeit berechnen kann.

Insbesondere kann man also durch Angabe eines F-Zeugen fiir 7 einen leicht verifizier-

baren Beweis liefern, dal n nicht prim ist, ohne dal man einen konkreten Faktor von n

zu kennen braucht!

Beispiel: E(59) ist nicht prim, weil 2 ein F-Zeuge fiir E(59) ist (d.h. 2EC9)—-1 % 1),
E(59)

Fiir die meisten Zahlen, die keine Primzahlen sind, ist schon 2 ein F-Zeuge:

2=1 2"=l(modn)
8 0
16 1
32 2
64 1
128 0
4

2

1

256
512
1024

e~ =T IR e WV IR N

Fiir viele zerlegbare Zahlen n sind die meisten b mit 2 < b < n — 2 F-Zeugen. Es
gibt jedoch zerlegbare Zahlen, die nur verhiltnisméBig wenig F-Zeugen besitzen. Da
jedes b mit ggT(b,n) > 1 ein F-Zeuge fiir n ist, konnen hochstens diejenigen b keine F-
Zeugen sein, die zu 7 teilerfremd sind. Es gibt nun Nicht-Primzahlen #n mit der folgenden
Eigenschaft:

b1 =1 <= ggl(b,n) =1.

Diese Zahlen heien Carmichael-Zahlen (vgl. [6]; erst kiirzlich gelang der Nachweis,
dass es unendlich viele Carmichael-Zahlen gibt, vgl. [3]), fiir sie gibt es nur verhéltnis-



El. Math. 48 (1993) 147

miBig wenig F-Zeugen. In der Liste am Ende dieses Abschnittes sind einige Carmichael-
Zahlen n aufgefiihrt mit den Verhiltnissen Zp(n)/n und Zyr(n)/n, wobei Zg(n) und
Zmr(n) die Anzahl der F-Zeugen bzw. der MR-Zeugen (vgl. 2.3) fiir n sind.

Wenn man trotz vieler Versuche keinen F-Zeugen fiir eine gegebene Zahl n findet, kann
das sowohl daran liegen, dal n prim ist (und deshalb iiberhaupt keinen F-Zeugen besitzt)
oder daB3 n zwar zusammengesetzt ist, aber nur wenig F-Zeugen hat.

Eine Losung dieses Problems liefert die folgende Verfeinerung des Begriffes eines F-
Zeugen:

Definition 2.3 Es sei n > 3 ungerade und n — 1 = 29m mit ungeradem m, ferner sei b
eine Zahl mit 2 < b <n—2. Es sei

C 1= bzk"’(modn) fir 0<k<g

(es ist also co = b™(modn), cx = c_ (modn)fiir 1 <k < gqundc, =b""'(modn)).
Wir sagen: b ist ein MR-Zeuge fiir (die Zerlegbarkeit von) n , wenn co # *1 ist
n
und wenn cx #£ —1 gilt fiir 1 < k <q.
n

Die Buchstaben MR in obiger Definition sollen an Miller und Rabin erinnern.
An zwei Beispielen soll der Begriff des MR-Zeugen erldutert werden:
Firn=13istn — 1 =22.3, also g = 2 und m = 3. Fiir b = 2 ist also

co = b(mod13) = 8

ci = c3(mod13) = 64(mod13) = 12 ~1,

|

also ist 2 kein MR-Zeuge fiir 13.
Fiir n = 561 ist ¢ = 4 und m = 35. Fiir b = 2 ist also

co = 2¥(mod561) = 263
g = ci(mod561) = 166
c; = c}(mod561) = 67
c3 = c3(mod561) = 1
ca = c3(mod561) = 1

also ist 2 ein MR-Zeuge fiir 561, aber kein F-Zeuge (denn ¢4 = 23%(mod 561) = 1);
vgl. auch die Tabelle nach Theorem 2.6.

Analog zu 2.2 gilt nun:

Satz 2.4
1. Jeder F-Zeuge fiir n ist auch ein MR-Zeuge fiir n.
2. n > 3 ist genau dann eine Primzahl, wenn n keine MR-Zeugen besitzt.

Den Beweis findet man in Abschnitt 6. Es gibt also mehr MR-Zeugen als F-Zeugen.
Genauer gilt:
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Theorem 2.5 (Rabin) Jede ungerade zerlegbare Zahl n besitzt wenigstens 3(n— 1) MR-
Zeugen. Mit anderen Worten: bei zufilliger Auswahl eines b mit 2 < b < n — 2 ist die
Wahrscheinlichkeit, einen MR-Zeugen zu treffen, mindestens gleich 3 /4.

Zum Beweis vgl. [12], [10], [6, V.1.7]. In Abschnitt 6 finden Sie eine Beweisskizze.

Fassen wir zusammen:

Theorem 2.6 Es sei n > 3 eine ungerade Zahl. Es seien by, . . . ,bs zufillig ausgewdhlte
Zahlen mit 2 < b, <n - 2.

1. Wenn n prim ist, dann gilt fiir alle o: b"~! = 1, b, ist kein MR-Zeuge fiir n.

2. Wenn n nicht prim ist, dann ist die Wahrscheinlichkeit dafiir, daf3 wenigstens eines
der ausgewdhlten b, ein MR-Zeuge fiir n ist (damit ist dann n als zerlegbar erkannt),
mindestens gleich 1 — (1/4)°.

In der folgenden Tabelle ist n jeweils eine Carmichael Zahl, Zr(n) die Anzahl der

F-Zeugen fiir n und Zyr(n) die Anzahl der MR-Zeugen fiir n:

n Zp(n)/n  Zpr(n)/n
561 0.43 0.98
1105 0.30 0.97
1729 0.25 0.91
2821 0.23 0.90
6601 0.20 0.95
29341 0.12 0.86
9624742921 0.0016 ?

Die Zahl m = 9624742921 ist also keine Primzahl; die Wahrscheinlichkeit, da3 ein
zufillig gewihltes b ein F-Zeuge fiir m ist, ist nur 0.0016. Fiir die Mengen

M, : ={b;1 <b < 50000, b ist ein F-Zeuge fiir m}
= {1171,2341,2342,3511,3513,...},
M, : = {b;1 < b < 50000, b ist ein MR-Zeuge fiir m}
= {2,3,4,5,6,7,8,10,11,13,.. .}
gilt: M; hat 77 Elemente, M, hat 43588 Elemente. Beachte, dal3
9624742921 = 1171 - 2341 - 3511 .

3 Ein probabilistischer Primtest und seine Zuverlissigkeit
Aus 2.6 ergibt sich:

Probabilistischer Prim-Test (PP-Test)

Zu einer gegebenen ungeraden Zahl n wihle zuféllig Zahlen by, ..., b; mit 2 < b, <
n — 2. Wenn auch nur eines der b, ein MR-Zeuge fiir » ist, dann erklire » als nicht
prim. Andernfalls erkldre n als prim.

Wie zuverlissig ist dieser Test? Wenn n prim ist, wird der PP-Test mit Sicherheit die
Antwort “n ist prim” liefern. Wenn dagegen n zusammengesetzt ist, kann es vorkommen,
daB der PP-Test eine Fehldiagnose stellt.
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Satz 3.1 Die Wahrscheinlichkeit, daf3 bei N Durchfiihrungen des PP-Tests mit jeweils
dem gleichen s wenigstens einmal eine Fehldiagnose gestellt wird, ist kleiner als N/4°.
Beweis. Wenn n zusammengesetzt ist, dann liefert der PP-Test eine richtige Antwort,
wenn wenigstens eines der ausgewihlten b, ein MR-Zeuge ist. Die Wahrscheinlichkeit
dafiir ist groBer als 1 —1/4°. Also ist die Wahrscheinlichkeit, bei N-maliger Anwendung
des PP-Tests stets die richtige Antwort zu erhalten, groBer als (1 — 1/4°)N, da in den
Féllen, wo n prim ist, sicherlich die richtige Antwort gegeben wird. Also ist die Wahr-
scheinlichkeit, bei N-maliger Anwendung des PP-Test wenigstens einmal eine falsche
Antwort zu erhalten, kleiner als 1 — (1 — 1/4%)N < 1 — (1 — N/4%) = N/4°.

Das folgende Beispiel soll erldutern, wie ungeheuer groB die Zuverlassigkeit des PP-Tests
ist:

Wenn seit 10 Milliarden Jahren (das heifit etwa seit dem Urknall) 10 Milliarden Mathe-
matiker jede Sekunde 10 Milliarden mal den PP-Test anwenden mit s = 100, dann ist die
Wahrscheinlichkeit, daB dabei wenigstens einmal eine zerlegbare Zahl filschlicherweise
als prim erklirt wird, kleiner als 10~2, also praktisch gleich Null.

Fiir “kleine” n wird der probabilistische Primtest zu einem deterministischen Primtest:

Satz 3.2 Es sei n eine ungerade Zahl.

1. Wenn n < 1373653 ist, dann ist n genau dann prim, wenn 2 und 3 keine MR-Zeugen
fiir n sind.

2. Wenn n < 25-10°, dann ist n genau dann prim, wenn 2,3,5,7 und 11 keine MR-
Zeugen fiir n sind. (Die einzige zusammengesetzte Zahl n < 25 - 10°, fiir die keine
der Zahlen 2,3,5 und 7 eine MR-Zeuge ist, ist n = 3215031751 = 151-751-28351).

Zum Beweis vgl. [11].

Es wire schon, wenn man entsprechend fiir beliebige n eine explizite sehr kleine
Schranke S(n) hitte mit folgender Eigenschaft:

Kein b < S(n) ist MR-Zeuge fiir n = n ist prim .

Wenn die sog. “Verallgemeinerte Riemannsche Vermutung” richtig ist, so gibt es in der
Tat eine solche Schranke (man kann dann S(n) = 2 - (Inn)? wihlen, vgl. [9], [17]),
und man hat dann einen deterministischen Primtest, dessen Rechenaufwand polynomial
(vom Grad 5, vgl. [8]) ist in Abhingigkeit von der Anzahl Ziffern der zu behandelnden
Zahl. Da bei allen bekannten korrekten deterministischen Primtests der Rechenaufwand
schneller wichst als polynomial, ist dieser Algorithmus (zumindest fiir geniigend grosse
Zahlen) schneller als alle bisher bekannten Algorithmen. Leider ist nicht bekannt, ob er
immer das richtige Resultat liefert.

Es sei noch angefiigt, daB die oben erwihnte Schranke S(n) = 2(Inn)? zumindest fiir
kleine 7 viel zu groB ist, kann man doch S(n) = 11 wihlen fiir n < 25 - 10°.

4 FEin deterministischer Primtest mit Zertifikat

Nach “menschlichem Ermessen” wird, wie wir oben gesehen haben, der probabilistische
Primtest nie zu einem Fehlentscheid fiihren, wenn man z.B. s = 100 wihlt. Der Ma-
thematiker méchte aber absolute Sicherheit haben: Er erkennt n erst dann als Primzahl
an, wenn ein Beweis vorliegt, daB n prim ist. In vielen Fillen kann man einen solchen
Beweis fiihren mit
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Theorem 4.1 Eine ungerade Zahl n > 3 ist genau dann prim, wenn es zu jedem Prim-
teiler p von n — 1 eine Zahl b, < n gibt mit

b, ist kein MR-Zeuge fiir n, bé”_l)/p % L. (%)

Zum Beweis vgl. Abschnitt 6.

Damit ergibt sich nun leicht ein Algorithmus, der entscheidet, ob die gegebene ungerade
Zahl n prim ist oder nicht (wenn sie prim ist, wird ein leicht nachvollziehbarer Prim-
Beweis mitgeliefert); dazu miissen wir allerdings annehmen, da3 wir alle Primteiler von
n — 1 kennen:

Deterministischer Primtest

Fiir jeden Primfaktor p von n — 1 suche durch Ausprobieren Zahlen b, < n mit der
Eigenschaft (). Sobald man bei diesem Suchen ein b findet, welches ein MR-Zeuge
fiir n ist, ist man sicher, daB n nicht prim ist. Wenn man zu jedem p ein b, mit der
Eigenschaft (%) gefunden hat, ist man wegen 4.1 sicher, da8 n prim ist.

Wenn dieser Algorithmus zu einer Entscheidung gekommen ist, dann liefert er einen
Beweis (Zertifikat) fiir die Richtigkeit seiner Entscheidung: Wenn 7 nicht prim ist, dann
ist der MR-Zeuge b ein Beweis fiir die Zerlegbarkeit von n. Wurde dagegen n als prim
erkannt, dann ist die Liste aller Paare (p,b,) wegen 4.1 ein Beweis dafiir, daB n prim
ist.

Wenn nicht klar ist, daB die angegebenen Faktoren p, von n—1 wirklich Primzahlen sind,
mufBl man natiirlich Primbeweise fiir die p, hinzufiigen. Dadurch wird ein Primbeweis
ein baumartiges Gebilde, das an zwei Beispielen erldutert werden soll:

1234567891

(2,2) (33 (52 (3607, 2) (3803, 2)

(2,3) (3,5) (601,2) /

(2,2) (1901,2)

/mw

Die zweite Zeile dieses Primbeweises besagt, dal 1234567890 die Primfaktoren 2, 3,
5, 3607 und 3803 besitzt und daB (*) gilt fiir die Paare (p,b,) = (2,2), (3,3), (5,2),

Fig. 1
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(3607,2) und (3803,2). Die folgenden Zeilen beweisen, da 3607 und 3803 prim sind.
Es sei speziell darauf verwiesen, daB stets bp < 3 gewihlt werden kann.

Der folgende Baum beweist, daB E(23) prim ist (dabei kann stets b, < 11 gewihlt
werden):

11111111111111111111111

AN SN

(2,7) (5,2) (11,2) (23,2) (4093,2) (8779,2) (21649,2) (513239,2)

(2,7) (3,2) (11,2) (41,2)

(2,11)  (11,2)  (41,2)  (569,2)

Fig. 2

Der gleiche Primbeweis kann auch in Form einer Liste dargestellt werden (eine solche
Ausgabe wird man etwa von einem rekursiven Programm erhalten, welches mit dem oben
angegebenen deterministischen Primtest arbeitet; fiir Primzahlen unter 10000 wurde kein
Primbeweis gefiihrt):

{11111t 11t1111111, {2, 7}, {5, 2}, {11, 2}, {23,2}, {4093,2}, {8779, 2},

{21649, {21649, {2,7},{3,2},{11,2}, {41,2}},2},

{513239,{513239, {2, 11},{11,2},{41,2},{569,2}},2}}
Wie lange mu3 man suchen, um mit dem deterministischen Primtest auch wirklich zu
einer Entscheidung zu kommen (wir setzen voraus, daf alle Primfaktoren von n — 1
bekannt sind)? Wenn 7 nicht prim ist, dann ist ein zuféllig gewihltes b wenigstens mit
der Wahrscheinlichkeit 3/4 ein MR-Zeuge (vgl. 2.6). Wenn n prim ist, dann miissen

wir zu jedem p ein b, mit der Eigenschaft () finden. Wieviele solche b, gibt es? Eine
erfreuliche Antwort liefert

Satz 4.2 Wenn n < 10'% (bzw. n < 105%) eine Primzahl ist, dann gibt es wenigstens
(n—1)/10 (bzw. (n — 1)/13) Zahlen b mit 2 < b < n —2 und

'l =1, b #£1 fir 1<k<n-2.
n n

Alle diese b konnen in () fiir jedes p gewdhlt werden.
Zum Beweis siche Abschnitt 6. Damit erhalten wir die sehr grobe Abschétzung
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Korollar 4.3 Wenn n < 10'® prim ist und p ein Primfaktor von n — 1, dann ist die
Wahrscheinlichkeit, daf3 unter s zufillig ausgewdhiten Zahlen b,, ... ,bs mit 2 < b, <

n—2 wenigstens eine ist mit b"~' = 1 und b "V7 % 1, mindestens gleich 1 —(9/10)°.
n n

Die Erfahrung zeigt, daB man ruhig einfach die Werte b = 2,3, 5, ... ausprobieren kann
(nur sehr selten wird man b > 50 wihlen miissen).

Insgesamt ergibt sich also, daB man mit einer groBen Wahrscheinlichkeit erwarten darf,
daB der Algorithmus wirklich in verniinftiger Zeit eine Entscheidung liefert, ob die zu
untersuchende Zahl prim ist oder nicht.

Wie bereits mehrfach erwihnt, haben wir vorausgesetzt, daf wir alle Primfaktoren von
n — 1 kennen. Wenn das nicht der Fall ist, dann tauchen die folgenden zwei Probleme
auf:

1. Wir miissen Faktoren von n — 1 finden und

2. wir miissen beweisen konnen, dal die gefundenen Faktoren wirklich prim sind (sonst
miissen wir noch weiter zerlegen).

Das zweite Problem 148t sich leicht 16sen, indem man ein rekursives Programm schreibt
(mit 3.2 sind wir sowieso in der Lage, fiir p < 10° ohne 4.1 zu entscheiden, ob n
prim ist). Fiir das erste Problem gibt es viele Algorithmen, auf die hier jedoch nicht
eingegangen werden soll. Fiir nicht zu groBe 7 (etwa n < 10%°) findet man Zerlegungen
von n — 1 z.B. mit der “Pollard’schen p-Methode” (vgl. [14]; dort wird ein konkreter
Algorithmus in PASCAL angegeben). Mit dieser Methode kann man mit etwas Gliick
auch Zerlegungen einiger sehr viel groBerer Zahlen bekommen. Es sei nochmals darauf
hingewiesen (siehe Einleitung), dafl ein Primbeweis, welcher groe Zahlen faktorisieren
muB, fiir beliebig groBe Zahlen unbrauchbar ist.

Wir beschlieBen diesen Abschnitt mit einem Kommentar zu 4.2. Die in 4.2 beschriebenen
b sind genau die primitiven Elemente des Kérpers Z, := Z/(nZ), d.h. die Elemente,
deren Ordnung in der Einheitengruppe Z;; gerade n — 1 ist. Wegen [16, Theorem 2 in
§1.1] gibt es stets solche Elemente. Wenn b die Ordnung n — 1 hat, dann hat b* genau
dann ebenfalls die Ordnung n — 1, wenn k und n — 1 teilerfremd sind. Folglich gibt es
genau p(n — 1) Elemente der Ordnung n — 1 (dabei ist ¢ die Euler’sche Funktion). Ein
zufillig gewihltes b € Z;; hat also mit der Wahrscheinlichkeit p(n — 1)/(n — 1) die in
4.2 geforderten Eigenschaften.

Keineswegs trivial ist nun die Tatsache, daB der Ausdruck ¢(n — 1)/(n — 1) beliebig
klein werden kann:

Satz 4.4 Zu jeder positiven Zahl € > 0 gibt es eine Primzahl n mit p(n—1)/(n—1) < e.

Einen Beweis findet man in Abschnitt 6. Weitere Resultate zu diesem Thema findet man
in [13, Seiten 16ff].
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5 Konstruktion grofler Primzahlen

Mit dem folgenden Verfahren konnen Sie “neue” Primzahlen konstruieren:

Wihlen Sie Primzahlen py, ..., p, und positive Exponenten ey, .. ., e, so, daB} die Zahl
N:=pi'-....py

etwa so viele Stellen hat wie die zu bestimmende Primzahl. Suchen Sie jetzt (durch
Ausprobieren) einen kleinen Faktor f, fiir den

n:=fN+1

prim ist.

Da Sie (solange f nicht zu grof gewihlt ist) alle Primfaktoren von n — 1 = fN kennen,
konnen Sie mit den oben angegebenen Verfahren entscheiden, ob fN + 1 prim ist oder
nicht. Achten Sie darauf, dal das Produkt fN stets gerade ist (wenn 2 nicht unter den
p, ist, dann miien Sie stets gerade Faktoren f nehmen), weil sonst sicherlich fN + 1
keine Primzahl ist.

Die folgende Liste gibt einige Beispiele fiir das oben genannte Verfahren (wir haben
stets p; = 2, p» = 5 und e; = e, =: k gewihlt; angegeben wird stets das kleinste f, fiir
das 7 := f - 10¥ + 1 prim ist)

k f Primbeweis fir n = f- 10k + 1
10 3 {2,7},{3,2},{5,5}

20 6 {2,7},{3.2},{5,2}

30 63 {2,17},{3,2},{5,2},{7.3}
40 24 {277}’{372}a{5’2}

50 85 {2,3},{5,2},{17,2}

60 19 {2,3},{5,2},{19,2}

70 114 {2,13},{3,2},{5,5},{19,2}
80 12 {2,11},{3,2},{5,2}

90 126 {2,11},{3,2},{5,2},{7,3}
100 111 {2,11},{3,2},{5,2},{37,2} |,
200 90 {2,7},{3,13},{5,2} :
300 231 {2,13},{3,2},{5,2},{7,2},{11,2}

In den obigen Primbeweisen sind jeweils Paare {p,b,} angegeben, fiir die p ein Prim-
faktor von n — 1 ist und fiir die (%) von 4.1 gilt.

Wenn Sie Primzahlen zum Verschliisseln von Texten mit Offentlich bekanntem Code
konstruieren wollen, dann sollten Sie (damit Ihr Code nicht einfach zu knacken ist)
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gemiB [5, 3.2] die Primzahl #n in der folgenden Form wihlen:

n=fp+1, wobei p=gq+1, pundgqg groBe
Primzahlen, f und g kleine Faktoren.

Konstruieren Sie also zunichst ein g wie oben angegeben, daraus dann p und damit das
endgiiltige n.

6 Beweise

Es sei N die Menge der natiirlichen und Z die Menge der ganzen Zahlen, Z,, := Z/nZ
und Z} die multiplikative Gruppe der Einheiten von Z,,.

Zunichst einige Vorbemerkungen zu den folgenden Beweisen.
Satz 6.1 Fiir 2 < n € N wird die Ordnung der Gruppe Z;, gegeben durch
¢(n) := Anzahl derjenigen b mit 1 < b < n, die zu n teilerfremd sind .

Die Funktion ¢ : Np>» — N wird auch Eulersche Funktion genannt. Sie hat
folgende Eigenschaft:

Es seien p, paarweise verschiedene Primzahlen, o, > 1. Dann ist
S S
@ (H p?") =TIre"p. - 1.
o=1 o=1

— Po

p(m)  Lpo—1

Insbesondere hingt m/p(m) nur ab von den Primfaktoren von m, nicht von ihrem
Exponenten in m. Ferner gilt m/p(m) < n/p(n), wenn m ein Teiler von n ist.

S
Korollar 6.2 Fiir m = [] p2 ist
o=1

Satz 6.3 Es sei n > 3 eine Primzahl. Dann ist Z,, ein Korper, und die multiplikative
Gruppe Z, ist zyklisch von der Ordnung p(n — 1) =n — 1.

Zum Beweis vgl. [16, Ch. I, Theorem 2].

Beweis von 2.2 n ist genau dann prim, wenn Z;, ein Korper ist, d.h. wenn Z} aus n — 1
Elementen besteht. Wenn # prim ist, gilt also b"~! = 1 fiir jedes b € Z};, da die Ordnung
n
eines Elementes stets die Gruppenordnung teilt. Umgekehrt folgt aus b"~! = 1, daB b
n
eine Einheit ist, also hat Z; genau n — 1 Elemente.

Beweis von 2.4 Ad 1. Da b"~!(mod 1) = c, sich aus den c durch wiederholtes Quadrie-
ren modulo 7 ergibt und da (—1)? = 1, ist b kein F-Zeuge fiir n, wenn b kein MR-Zeuge
fiir n ist.

Ad 2. Es geniigt zu zeigen: Wenn n prim ist, dann hat n keine MR-Zeugen. Es sei also
nprim, 2<b<n-2undcy,...,¢; = b"~!(modn) wie in 2.3. Da Z,, ein Korper ist,
hat die Gleichung x> = 1 in Z, hochstens die Losungen 1 und n — 1; da (in Z,) fiir
1 <k <gqgil c%_l = cx und ¢; = 1, ist entweder cx = 1 fiir 0 < k < g oder es gibt
ein k < g mit ¢y = n — 1; in jedem Fall ist b kein MR-Zeuge.
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Beweisskizze von 2.5 Da ein vollstindiger Beweis zwar elementar, aber doch etwas
ldnger ist, beschrianken wir uns hier auf die Beweisskizze eines Spezialfalles: Wir setzen
voraus, dass n = pzm, wobei p > 3 eine Primzahl ist. In diesem Fall hat n nicht nur
wenig MR-Zeugen, sondern auch nur wenig F-Zeugen: Wir zeigen, dass

#HbeZy; V" =1} <(p-1)m. (%)
Da (wie man leicht nachrechnet) fiir p > 3 und m > 1 stets gilt

m<p2m—1_n—1
- 4 - 4 ?

-1

folgt aus (*) also unsere Behauptung.

Beweisskizze von (*): die Einheitengruppe Z3, ist zyklisch von der Ordnung pp—1);
also hat die Menge

{Bezy: g~ =1}

genau d := ggT (p(p — 1),n — 1) Elemente. Da p ein Teiler von n ist, ist d ein Teiler
von p — 1, also d < p — 1. Es sei 7 die kanonische Projektion von Z, auf Z,.; fiir jedes
B € Z, hat 7~!(3) genau m Elemente; folglich hat {b € Z,; b""' = 1} hoéchstens
dm < (p — 1)m Elemente.

Auch fiir beliebiges ungerades zerlegbares n kann man die Anzahl der MR-Zeugen fiir
n explizit angeben und damit 2.5 beweisen (vgl. Theorem 5 und Proposition 1 in [10]).

Beweis von 4.1 Wenn # prim ist, dann gibt es wegen 6.3 im Korper Z, ein Element b
der Ordnung n — 1. Dieses b kann man fiir alle p nehmen. Zum Beweis der Umkehrung
geniigt es zu zeigen, daB n — 1 ein Teiler von ord(Z}) ist. Dazu sei p ein Primfaktor
von n — 1 und « der Exponent von p in n — 1. Nach Voraussetzung gibt es ein b mit

"~ = 1 % b"~V/P, Dann ist die Ordnung e von b in Z? ein Teiler von n — 1, nicht
L n

aber von (n — 1) /p; also ist p® ein Teiler von e und damit auch ein Teiler von ord(Z},),
da e die Ordnung von Z}, teilt.

Beweis von 4.2 Die Gruppe Z; hat genau ¢(n — 1) Elemente der Ordnung n — 1 (vgl.
6.3). Wir miissen also zeigen, daB (n — 1)/p(n — 1) < 10 gilt, wenn n < 10'% eine
Primzahl ist (der Beweis fiir n < 10%% verlduft analog).

Dazu seien zunidchst p; = 2, p; = 3,...,pss = 251 die ersten 54 Primzahlen. Es gilt
(Beweis durch brutales Nachrechnen)

54
P 5
©(R) iPo—1

54
<10 fir R:=[[po~6-10'" (%)
o=1

Es sei jetzt n < 10'% eine Primzahl, es seien g; < gz < ... < g, die Primfaktoren von
n — 1. Wegen (xx) ist s < 54. Da px < g fiir 1 < k <s, folgt also mit 6.2

S

1 s 54
n— _ 9o < Po < Po
pln—1) o 1o 1 o1 P =1 g1 P~ 1

< 10.
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Beweis von 4.4 Es sei p; = 2, p, = 3,... die Folge aller Primzahlen. Wegen (zum
Beweis dieser Aussage vgl. [16, Ch. VI, § 3, Lemma 5])

S
gibtesein S € Nmit P := [] p,/(p-—1) > N.Es bleibt zu zeigen, daB es eine Primzahl
o=1

n gibt mit (n—1)/p(n—1) > P: dazu seia := Hi;l px. Wegen 6.4 gibt es ein v € N fiir
welches n := va+ 1 prim ist. Aus 6.2 ergibt sich jetzt (n — 1)/p(n—1) > a/p(a) = P.

Theorem 6.4 (Dirichlet) Es seien a,b teilerfremde natiirliche Zahlen. Dann enthdlt die
arithmetische Progression {va+ b; v € N} unendlich viele Primzahlen.

Zum Beweis vgl. [16, Ch. VI].
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