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Einfache Primtests

Burchard Kaup

Burchard Kaup wurde 1940 in Deutschland geboren, studierte bei H Behnke und
H Holmann und promovierte 1975 mit einer Arbeit in komplexer Analysis mehre

rer Veränderlicher Er ist Professeur associe an der Universität Freiburg (Schweiz)
Sem Hauptarbeitsgebiet ist die komplexe Analysis, darüber hat er zusammen mit
seinem Bruder Ludger 1983 das Lehrbuch "Holomorphic Functions" geschneben
Er interessiert sich ferner fur die Fage, wie man gewisse mathematische Probleme

computerunterstutzt losen bzw illustrieren kann

1 Einleitung
Wenn jemand abklaren soll, ob eine gegebene Zahl n prim ist oder nicht, dann erwartet
man von ihm üblicherweise eine der folgenden zwei Antworten

1 n ist keine Primzahl, denn n hat den echten Teiler nx (und hier erwartet man, daß

der Teiler nx auch wirklich angegeben wird)
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selten grdssems Jnteiesse, da sie gewöhnlich dt nntifof, ja als Spielerei angesehen
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2. n ist eine Primzahl, denn keine der Primzahlen p mit p2 <n ist ein Faktor von n.

Für "große" Zahlen ist ein solches Vorgehen unter Umständen sehr problematisch. Zwar
ist es im Fall der Antwort 1 verhältnismäßig leicht, von der angegebenen Zahl nx zu
verifizieren, daß es sich tatsächlich um einen Faktor handelt (man muß nur testen, ob
bei der Division von n durch nx ein Rest bleibt oder nicht); im Fall der Antwort 2 wird
stets ein Unbehagen bleiben, da dieses Ergebnis nur schwer zu kontrollieren ist wegen
des ungeheueren Rechenaufwandes: Da es wegen des Primzahl-Satzes (vgl. [7]) etwa
A(n) :— y/n/ln(y/n) Primzahlen p < y/n gibt, sind mindestens A(n) Probedivisionen
erforderlich, um n als Primzahl nachzuweisen, für eine zehnstellige Zahl also mindestens
_4(1010) « 8700. Wenn die Rechnungen auf einem Computer ausgeführt wurden, müßte

man sich das Programm anschauen und verifizieren, ob es fehlerfrei ist. Um dann wirklich
sicher zu sein, müßte man das Programm noch einmal laufen lassen, was viele Jahre
dauern kann: Wenn z.B. n > 1030, ist A(n) > _4(1030) « 3 • 1013; wenn Sie pro Sekunde
eine Million Primfaktoren testen, benötigen Sie immer noch etwa 1 Jahr.

Nehmen wir an, Sie hätten die zwei Zahlen

E(23):= 111111111111111111111 und E(59) := 111... 111

23 59

zu untersuchen. Hier sei bereits verraten:

• E(23) ist eine Primzahl, vgl. Abschnitt 4,

• der kleinste Teiler von E(59) ist 2559647034361, vgl. [1, Tabelle 10-].

Es ist A(E(23)) « 1010. Auf einem Macintosh Ilsi (bei Benutzung des Programmes
MATHEMATICA) kann man E(23) pro Sekunde auf einige Hundert Primfaktoren testen;
die total benötigte Zeit wäre also etwa ein Jahr, um durch Probedividieren nachzuweisen,
daß E(23) prim ist.

Den oben angegebenen Faktor von E(59) werden Sie (bei systematischem Probieren
aller Primzahlen) frühestens nach etwa 90/000'000'000 Probedivisionen finden. Konkret
heißt das: Mit der oben erwähnten Software können Sie durch Probedividieren nicht
feststellen, ob E(59) eine Primzahl ist oder nicht. Vielleicht werden Sie jedoch nach

längerer Zeit, wenn Sie immer noch keinen Faktor gefunden haben, persönlich zu der
Überzeugung "E(59) ist wahrscheinlich eine Primzahl" kommen.

Es gibt eine große Anzahl von Algorithmen zum Auffinden von Primfaktoren bzw. zum
Beweisen, daß eine gegebene Zahl prim ist (vgl. [1], [8], [13], [14]). Mit dem von
Cohen und Lenstra in [2] angegebenen Algorithmus kann angeblich in etwa 10 Minuten
entschieden werden, ob eine vorgegebene (< 200)-stellige Zahl prim ist oder nicht!

Ziel dieses Textes ist es nicht, die modernsten und leistungsfähigsten Algorithmen
vorzustellen; vielmehr soll der Leser an Hand einiger einfacher Algorithmen (die leicht auf
einem PC bzw. sogar auf einigen programmierbaren Taschenrechnern implementiert werden

können) in die Problematik eingeführt und zu eigenen Aktivitäten angeregt werden.
Das dadurch wahrscheinlich aufkeimende Bedürfnis nach leistungsfähigeren Algorithmen

kann in den oben erwähnten Büchern und der dort angegebenen weiterführenden
Literatur gestillt werden.
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Die hier behandelten Algorithmen sollen Ihnen Folgendes zeigen:

1. Wenn eine gegebene Zahl n nicht prim ist, dann kann man mit großer Wahrscheinlichkeit

in vernünftiger Zeit einen Beweis dafür finden, daß n nicht prim ist (ohne
daß man dafür einen Faktor von n zu kennen braucht), vgl. 2.5.

2. Der PP-Test (siehe Abschnitt 3) liefert Ihnen in kurzer Zeit für eine gegebene Zahl
n eine der beiden Antworten "n ist nicht prim" oder "sehr wahrscheinlich ist n

prim". Dabei kann es höchstens jedoch mit der Wahrscheinlichkeit 1/4S, siehe 2.6)
vorkommen, daß n nicht prim ist, obwohl die Antwort "sehr wahrscheinlich ist n
prim" lautete (probabilistischer Primtest).

3. Wenn für eine gegebene Zahl n alle Primfaktoren von n — l bekannt sind, dann kann
man mit großer Wahrscheinlichkeit in vernünftiger Zeit entscheiden, ob n prim ist
oder nicht; die Entscheidung kann mit einem leicht nachvollziehbaren Beweis belegt
werden (deterministischer Primtest, vgl. Abschnitt 4).

4. Mit einem zusätzlichen Faktorisierungsprogramm kann man rekursiv auch für gewisse
größere Primzahlen n einen leicht nachvollziehbaren Beweis liefern, daß n prim ist.

(Dieser Algorithmus ist für große Zahlen "schlecht", weil in ihm große Zahlen fakto-
risiert werden müssen; große Zahlen in Primfaktoren zu zerlegen verlangt aber nach
dem heutigen Stand des Wissens wesentlich mehr Rechenaufwand als der Nachweis,
daß eine Zahl prim ist. Ein "gutes" Programm, mit dem man beweisen will, daß eine

Zahl prim ist, muß also anders aufgebaut werden).

5. Unter Verwendung des deterministischen Primtests in Abschnitt 4 kann man effektiv
große Primzahlen konstruieren (vgl. Abschnitt 5).

Der obige Satz "mit großer Wahrscheinlichkeit in vernünftiger Zeit" soll hier nicht näher

präzisiert werden. Was eine "vernünftige Zeit" ist, hängt natürlich wesentlich ab von der
Größe der zu untersuchenden Zahl n und der Ihnen zur Verfügung stehenden Hard- und
Software.

Wenn Sie selber mit großen Zahlen experimentieren möchten, dann sollten Sie über
ein Programm verfügen, das es Ihnen gestattet, mit (beliebig) großen ganzen Zahlen zu
rechnen. Wer gerne in PASCAL programmiert, kann die in [14, Appendix 7] explizit
angegebenen Programme zum Rechnen mit großen Zahlen abschreiben und darauf eigene

Programme aufbauen. Eine andere Möglichkeit ist, daß man z.B. mit MATHEMATICA
arbeitet, das mit beliebig großen ganzen Zahlen rechnen kann, viele Funktionen (wie z.B.
die Berechnung von bk (modn), Zerlegung in Primfaktoren etc.) bereits eingebaut hat und
eine äußerst leistungsfähige Programmiersprache zur Verfügung stellt. MATHEMATICA
liefert auf Wunsch auch ein "Zertifikat", daß eine gegebene Primzahl n wirklich prim
ist (benutze ProvablePrimeQ[n,Certificate - > True]

Zum obigen Punkt 5 sei noch bemerkt, daß die Kenntnis geeigneter (vgl. [5]) großer
Primzahlen (mehr als hundert Ziffern) von entscheidender Bedeutung ist in der Kryptographie

(Verschlüsseln von Texten mit öffentlich bekanntem Code, vgl. [15], [14], [6]);
dadurch wurde dieser Zweig der Zahlentheorie und insbesondere die Frage, wie man eine
Zahl faktorisieren kann, die nur große Primfaktoren hat, plötzlich auch für militärische
Kreise äußerst wichtig.
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2 Zerlegbarkeits-Beweise
Wir benutzen die folgenden Notation:

a b ist eine Abkürzung für a b (modn).
n

Definition 2.1 Es sei n > 5 ungerade und 2 < b < n — 2. Wir sagen:

b ist ein F-Zeuge für (die Zerlegbarkeit von) n : <=> bn~l ^ 1.
n

Der Buchstabe F in obiger Definition soll an Fermat erinnern. Die Bedeutung dieser

Sprechweise wird deutlich aus dem folgenden

Satz 2.2 Eine Zahl n > 3 ist genau dann eine Primzahl, wenn es keinen F-Zeugen für
sie gibt.

Zum Beweis vgl. Abschnitt 6. Jede Zahl n > 3, die einen F-Zeugen besitzt, ist also

zerlegbar.

Für praktische Rechnungen ist es wichtig, daß man fr"_1 (modn) auch wirklich in
vernünftiger Zeit berechnen kann.

Insbesondere kann man also durch Angabe eines F-Zeugen für n einen leicht verifizierbaren

Beweis liefern, daß n nicht prim ist, ohne daß man einen konkreten Faktor von n

zu kennen braucht!

Beispiel: E(59) ist nicht prim, weil 2 ein F-Zeuge für E(59) ist (d.h. 2E(59)~1 ^ 1).
E(59)

Für die meisten Zahlen, die keine Primzahlen sind, ist schon 2 ein F-Zeuge:

m-i (modn)
4 8 0
5 16 1

6 32 2

7 64 1

8 128 0
9 256 4
10 512 2
11 1024 1

Für viele zerlegbare Zahlen n sind die meisten b mit 2 < b < n — 2 F-Zeugen. Es

gibt jedoch zerlegbare Zahlen, die nur verhältnismäßig wenig F-Zeugen besitzen. Da

jedes b mit ggT(fr, n) > 1 ein F-Zeuge für n ist, können höchstens diejenigen b keine F-

Zeugen sein, die zu n teilerfremd sind. Es gibt nun Nicht-Primzahlen n mit der folgenden
Eigenschaft:

bn~x 1 ^=* ggT(M) l.

Diese Zahlen heißen Carmichael-Zahlen (vgl. [6]; erst kürzlich gelang der Nachweis,
dass es unendlich viele Carmichael-Zahlen gibt, vgl. [3]), für sie gibt es nur Verhältnis-
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mäßig wenig F-Zeugen. In der Liste am Ende dieses Abschnittes sind einige Carmichael-
Zahlen n aufgeführt mit den Verhältnissen Zf(n)/n und Zmr(w)/h, wobei Zp(n) und

Zmr(h) die Anzahl der F-Zeugen bzw. der MR-Zeugen (vgl. 2.3) für n sind.

Wenn man trotz vieler Versuche keinen F-Zeugen für eine gegebene Zahl n findet, kann
das sowohl daran liegen, daß n prim ist (und deshalb überhaupt keinen F-Zeugen besitzt)
oder daß n zwar zusammengesetzt ist, aber nur wenig F-Zeugen hat.

Eine Lösung dieses Problems liefert die folgende Verfeinerung des Begriffes eines F-

Zeugen:

Definition 2.3 Es sei n > 3 ungerade und n — 1 2^m mit ungeradem m, ferner sei b

eine Zahl mit 2 < b < n — 2. Es sei

ck := b2km(modn) für 0 < k < q

(es ist also Co fcm(modn), Ck c\_x(modn) für 1 < k < qundcq fr"-1 (modn)).
Wir sagen: b ist ein MR-Zeuge für (die Zerlegbarkeit von) n wenn Co ^ ±1 ist

n
und wenn Ck ^ — 1 gilt für 1 < k < q.

n

Die Buchstaben MR in obiger Definition sollen an Miller und Rabin erinnern.

An zwei Beispielen soll der Begriff des MR-Zeugen erläutert werden:

Für n 13 ist n - 1 22 • 3, also q 2 und m 3. Für b 2 ist also

c0 - fr3 (mod 13) 8

ci cg(modl3) 64(modl3) 12 -1,
13

also ist 2 kein MR-Zeuge für 13.

Für n 561 ist q 4 und m — 35. Für b 2 ist also

co 235(mod561) 263

cx Cq (mod 561) 166

C2 c\ (mod 561) 67

c3 c^(mod561) 1

Ca c^(mod561) 1

also ist 2 ein MR-Zeuge für 561, aber kein F-Zeuge (denn c4 2560(mod 561) 1);

vgl. auch die Tabelle nach Theorem 2.6.

Analog zu 2.2 gilt nun:

Satz 2.4

1. Jeder F-Zeuge für n ist auch ein MR-Zeuge für n.

2. n > 3 ist genau dann eine Primzahl, wenn n keine MR-Zeugen besitzt.

Den Beweis findet man in Abschnitt 6. Es gibt also mehr MR-Zeugen als F-Zeugen.
Genauer gilt:
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Theorem 2.5 (Rabin) Jede ungerade zerlegbare Zahl n besitzt wenigstens |(n — 1) MR-
Zeugen. Mit anderen Worten: bei zufälliger Auswahl eines b mit 2 < b < n — 2 ist die
Wahrscheinlichkeit, einen MR-Zeugen zu treffen, mindestens gleich 3/4.
Zum Beweis vgl. [12], [10], [6, V.l.7]. In Abschnitt 6 finden Sie eine Beweisskizze.

Fassen wir zusammen:

Theorem 2.6 Es sei n>3 eine ungerade Zahl. Es seien bx,..., bs zufällig ausgewählte
Zahlen mit 2 < ba < n — 2.

1. Wenn n prim ist, dann gilt für alle o: bna~x 1, ba ist kein MR-Zeuge für n.

2. Wenn n nicht prim ist, dann ist die Wahrscheinlichkeit dafür, daß wenigstens eines

der ausgewählten ba ein MR-Zeuge für n ist (damit ist dann n als zerlegbar erkannt),
mindestens gleich 1 — (l/4)s.

In der folgenden Tabelle ist n jeweils eine Carmichael Zahl, Zp(n) die Anzahl der

F-Zeugen für n und Zmr(k) die Anzahl der MR-Zeugen für n:

n ZF(n)/n ZMR(n)/n
561 0.43 0.98
1105 0.30 0.97
1729 0.25 0.91
2821 0.23 0.90
6601 0.20 0.95
29341 0.12 0.86

9624742921 0.0016

Die Zahl m 9624742921 ist also keine Primzahl; die Wahrscheinlichkeit, daß ein

zufällig gewähltes b ein F-Zeuge für m ist, ist nur 0.0016. Für die Mengen

Mi : {b; 1 < b < 50000, b ist ein F-Zeuge für m}

{1171,2341,2342,3511,3513,...}

M2: {b;l <b< 50000, b ist ein MR-Zeuge für m}

{2,3,4,5,6,7,8,10,11,13,...}
gilt: Mi hat 77 Elemente, M2 hat 43588 Elemente. Beachte, daß

9624742921 1171 • 2341 • 3511

3 Ein probabilistischer Primtest und seine Zuverlässigkeit
Aus 2.6 ergibt sich:

Probabilistischer Prim-Test (PP-Test)
Zu einer gegebenen ungeraden Zahl n wähle zufällig Zahlen b\,..., bs mit 2 < ba <
n — 2. Wenn auch nur eines der ba ein MR-Zeuge für n ist, dann erkläre n als nicht

prim. Andernfalls erkläre n als prim.

Wie zuverlässig ist dieser Test? Wenn n prim ist, wird der PP-Test mit Sicherheit die

Antwort "n ist prim" liefern. Wenn dagegen n zusammengesetzt ist, kann es vorkommen,
daß der PP-Test eine Fehldiagnose stellt.
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Satz 3.1 Die Wahrscheinlichkeit, daß bei N Durchführungen des PP-Tests mit jeweils
dem gleichen s wenigstens einmal eine Fehldiagnose gestellt wird, ist kleiner als N/4S.
Beweis. Wenn n zusammengesetzt ist, dann liefert der PP-Test eine richtige Antwort,
wenn wenigstens eines der ausgewählten ba ein MR-Zeuge ist. Die Wahrscheinlichkeit
dafür ist größer als 1 — 1/4S. Also ist die Wahrscheinlichkeit, bei N-maliger Anwendung
des PP-Tests stets die richtige Antwort zu erhalten, größer als (1 — 1/4S)N, da in den

Fällen, wo n prim ist, sicherlich die richtige Antwort gegeben wird. Also ist die
Wahrscheinlichkeit, bei N-maliger Anwendung des PP-Test wenigstens einmal eine falsche
Antwort zu erhalten, kleiner als 1 - (1 - 1/4S)N < 1 - (1 - N/4S) N/4S.
Das folgende Beispiel soll erläutern, wie ungeheuer groß die Zuverlässigkeit des PP-Tests

ist:

Wenn seit 10 Milliarden Jahren (das heißt etwa seit dem Urknall) 10 Milliarden
Mathematiker jede Sekunde 10 Milliarden mal den PP-Test anwenden mit s 100, dann ist die

Wahrscheinlichkeit, daß dabei wenigstens einmal eine zerlegbare Zahl fälschlicherweise
als prim erklärt wird, kleiner als IO-20, also praktisch gleich Null.
Für "kleine" n wird der probabilistische Primtest zu einem deterministischen Primtest:

Satz 3.2 Es sei n eine ungerade Zahl.
1. Wenn n < 1373653 ist, dann ist n genau dann prim, wenn 2 und 3 keine MR-Zeugen

für n sind.

2. Wenn n < 25 • IO9, dann ist n genau dann prim, wenn 2,3,5,7 und 11 keine MR-
Zeugen für n sind. (Die einzige zusammengesetzte Zahl n < 25 • IO9, für die keine
der Zahlen 2,3,5 und 1 eine MR-Zeuge ist, ist n 3215031751 151 -751 -28351).

Zum Beweis vgl. [11].
Es wäre schön, wenn man entsprechend für beliebige n eine explizite sehr kleine
Schranke S(n) hätte mit folgender Eigenschaft:

Kein b < S(n) ist MR-Zeuge für n => n ist prim

Wenn die sog. "Verallgemeinerte Riemannsche Vermutung" richtig ist, so gibt es in der
Tat eine solche Schranke (man kann dann S(n) 2 • (lnn)2 wählen, vgl. [9], [17]),
und man hat dann einen deterministischen Primtest, dessen Rechenaufwand polynomial
(vom Grad 5, vgl. [8]) ist in Abhängigkeit von der Anzahl Ziffern der zu behandelnden
Zahl. Da bei allen bekannten korrekten deterministischen Primtests der Rechenaufwand
schneller wächst als polynomial, ist dieser Algorithmus (zumindest für genügend grosse
Zahlen) schneller als alle bisher bekannten Algorithmen. Leider ist nicht bekannt, ob er
immer das richtige Resultat liefert.
Es sei noch angefügt, daß die oben erwähnte Schranke S(n) 2(lnn)2 zumindest für
kleine n viel zu groß ist, kann man doch S(n) 11 wählen für n < 25 • IO9.

4 Ein deterministischer Primtest mit Zertifikat
Nach "menschlichem Ermessen" wird, wie wir oben gesehen haben, der probabilistische
Primtest nie zu einem Fehlentscheid führen, wenn man z.B. s 100 wählt. Der
Mathematiker möchte aber absolute Sicherheit haben: Er erkennt n erst dann als Primzahl

an, wenn ein Beweis vorliegt, daß n prim ist. In vielen Fällen kann man einen solchen
Beweis führen mit
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Theorem 4.1 Eine ungerade Zahl n > 3 ist genau dann prim, wenn es zu jedem Primteiler

p von n—l eine Zahl bp < n gibt mit

bp ist kein MR-Zeuge für n, b^~l)/p ^ 1. (*)

Zum Beweis vgl. Abschnitt 6.

Damit ergibt sich nun leicht ein Algorithmus, der entscheidet, ob die gegebene ungerade
Zahl n prim ist oder nicht (wenn sie prim ist, wird ein leicht nachvollziehbarer Prim-
Beweis mitgeliefert); dazu müssen wir allerdings annehmen, daß wir alle Primteiler von
n—l kennen:

Deterministischer Primtest
Für jeden Primfaktor p von n—l suche durch Ausprobieren Zahlen bp < n mit der

Eigenschaft (*). Sobald man bei diesem Suchen ein b findet, welches ein MR-Zeuge
für n ist, ist man sicher, daß n nicht prim ist. Wenn man zu jedem p ein bp mit der

Eigenschaft (*) gefunden hat, ist man wegen 4.1 sicher, daß n prim ist.

Wenn dieser Algorithmus zu einer Entscheidung gekommen ist, dann liefert er einen
Beweis (Zertifikat) für die Richtigkeit seiner Entscheidung: Wenn n nicht prim ist, dann

ist der MR-Zeuge b ein Beweis für die Zerlegbarkeit von n. Wurde dagegen n als prim
erkannt, dann ist die Liste aller Paare (p, bp) wegen 4.1 ein Beweis dafür, daß n prim
ist.

Wenn nicht klar ist, daß die angegebenen Faktoren pa von n — l wirklich Primzahlen sind,
muß man natürlich Primbeweise für die pG hinzufügen. Dadurch wird ein Primbeweis
ein baumartiges Gebilde, das an zwei Beispielen erläutert werden soll:

1234567891

(2,2) (3,3) (5,2) (3607,2)

(2,3) (3,5) (601,2)

(3803,2)

Fig. 1

(2,2) (1901,2)

(2,2) (5,2) (19,*)

Die zweite Zeile dieses Primbeweises besagt, daß 1234567890 die Primfaktoren 2, 3,

5, 3607 und 3803 besitzt und daß (*) gilt für die Paare (p,bp) (2,2), (3,3), (5,2),
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(3607,2) und (3803,2). Die folgenden Zeilen beweisen, daß 3607 und 3803 prim sind.
Es sei speziell darauf verwiesen, daß stets bp < 3 gewählt werden kann.

Der folgende Baum beweist, daß E(23) prim ist (dabei kann stets bp < 11 gewählt
werden):

11111111111111111111111

(2,7) (5,2) (11,2) (23,2) (4093,2) (8779,2) (21649,2) (513239,2)

(2,7) (3,2) (11,2) (41,2)

(2,11) (11,2) (41,2) (569,2)

Fig. 2

Der gleiche Primbeweis kann auch in Form einer Liste dargestellt werden (eine solche

Ausgabe wird man etwa von einem rekursiven Programm erhalten, welches mit dem oben

angegebenen deterministischen Primtest arbeitet; für Primzahlen unter 10000 wurde kein
Primbeweis geführt):

{11111111111111111111111, {2,7}, {5,2}, {11,2}, {23,2}, {4093,2}, {8779,2},

{21649, {21649, {2,7},{3,2}, {11,2}, {41,2}},2},
{513239,{513239,{2,11},{11,2},{41,2},{569,2}},2}}

Wie lange muß man suchen, um mit dem deterministischen Primtest auch wirklich zu
einer Entscheidung zu kommen (wir setzen voraus, daß alle Primfaktoren von n-1
bekannt sind)? Wenn n nicht prim ist, dann ist ein zufällig gewähltes b wenigstens mit
der Wahrscheinlichkeit 3/4 ein MR-Zeuge (vgl. 2.6). Wenn n prim ist, dann müssen

wir zu jedem p ein bp mit der Eigenschaft (*) finden. Wieviele solche bp gibt es? Eine
erfreuliche Antwort liefert

Satz 4.2 Wenn n < 10100 (bzw. n < IO600) eine Primzahl ist, dann gibt es wenigstens
(n - 1)/10 (bzw. (n - 1)/13) Zahlen b mit 2 <b <n -2 und

Ltt-l _ 1,
n

bk ?_ 1 für 1 < k < n - 2.

Alle diese b können in (*) für jedes p gewählt werden.

Zum Beweis siehe Abschnitt 6. Damit erhalten wir die sehr grobe Abschätzung
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Korollar 4.3 Wenn n < IO100 prim ist und p ein Primfaktor von n — l, dann ist die
Wahrscheinlichkeit, daß unter s zufällig ausgewählten Zahlen b\9... ,frs mit 2 < ba <
n — 2 wenigstens eine ist mit bn~x lundbo ^ l, mindestens gleich l —(9/I0)s.

n n

Die Erfahrung zeigt, daß man ruhig einfach die Werte b 2,3,5,... ausprobieren kann
(nur sehr selten wird man b > 50 wählen müssen).

Insgesamt ergibt sich also, daß man mit einer großen Wahrscheinlichkeit erwarten darf,
daß der Algorithmus wirklich in vernünftiger Zeit eine Entscheidung liefert, ob die zu
untersuchende Zahl prim ist oder nicht.

Wie bereits mehrfach erwähnt, haben wir vorausgesetzt, daß wir alle Primfaktoren von
n — l kennen. Wenn das nicht der Fall ist, dann tauchen die folgenden zwei Probleme
auf:

1. Wir müssen Faktoren von n—l finden und

2. wir müssen beweisen können, daß die gefundenen Faktoren wirklich prim sind (sonst
müssen wir noch weiter zerlegen).

Das zweite Problem läßt sich leicht lösen, indem man ein rekursives Programm schreibt

(mit 3.2 sind wir sowieso in der Lage, für p < IO9 ohne 4.1 zu entscheiden, ob n

prim ist). Für das erste Problem gibt es viele Algorithmen, auf die hier jedoch nicht
eingegangen werden soll. Für nicht zu große n (etwa n < 1020) findet man Zerlegungen
von n—l z.B. mit der "Pollard'sehen p-Methode" (vgl. [14]; dort wird ein konkreter
Algorithmus in PASCAL angegeben). Mit dieser Methode kann man mit etwas Glück
auch Zerlegungen einiger sehr viel größerer Zahlen bekommen. Es sei nochmals darauf

hingewiesen (siehe Einleitung), daß ein Primbeweis, welcher große Zahlen faktorisieren
muß, für beliebig große Zahlen unbrauchbar ist.

Wir beschließen diesen Abschnitt mit einem Kommentar zu 4.2. Die in 4.2 beschriebenen
b sind genau die primitiven Elemente des Körpers Z„ := Z/(nZ), d.h. die Elemente,
deren Ordnung in der Einheitengruppe Z* gerade n — l ist. Wegen [16, Theorem 2 in
§1.1] gibt es stets solche Elemente. Wenn b die Ordnung n — l hat, dann hat bk genau
dann ebenfalls die Ordnung n-1, wenn k und n—l teilerfremd sind. Folglich gibt es

genau (p(n — 1) Elemente der Ordnung n—l (dabei ist ip die Euler'sche Funktion). Ein
zufällig gewähltes b € Z* hat also mit der Wahrscheinlichkeit (p(n — l)/(n — 1) die in
4.2 geforderten Eigenschaften.

Keineswegs trivial ist nun die Tatsache, daß der Ausdruck (p(n — l)/(n — 1) beliebig
klein werden kann:

Satz 4.4 Zu jeder positiven Zahl e > 0 gibt es eine Primzahl n mit <p(n — l)/(n — l)<e.
Einen Beweis findet man in Abschnitt 6. Weitere Resultate zu diesem Thema findet man
in [13, Seiten 16f_].
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5 Konstruktion großer Primzahlen

Mit dem folgenden Verfahren können Sie "neue" Primzahlen konstruieren:

Wählen Sie Primzahlen pi,.. pr und positive Exponenten ex

N:=tf.....p*

er so, daß die Zahl

etwa so viele Stellen hat wie die zu bestimmende Primzahl. Suchen Sie jetzt (durch
Ausprobieren) einen kleinen Faktor /, für den

n := fN + 1

prim ist.

Da Sie (solange / nicht zu groß gewählt ist) alle Primfaktoren von n — 1 fN kennen,
können Sie mit den oben angegebenen Verfahren entscheiden, ob fN + 1 prim ist oder
nicht. Achten Sie darauf, daß das Produkt fN stets gerade ist (wenn 2 nicht unter den

pp ist, dann müßen Sie stets gerade Faktoren / nehmen), weil sonst sicherlich fN + 1

keine Primzahl ist.

Die folgende Liste gibt einige Beispiele für das oben genannte Verfahren (wir haben

stets pi 2, p2 5 und e\ e2 =: k gewählt; angegeben wird stets das kleinste /, für
das n := / • 10fc -f 1 prim ist)

k / Primbeweis für n f ¦ 10fc + 1

10 3 {2,7},{3,2},{5,5}
20 6 {2,7}, {3.2}, {5,2}
30 63 {2,17}, {3,2}, {5,2}, {7.3}
40 24 {2,7},{3,2},{5,2}
50 85 {2,3}, {5,2}, {17,2}
60 19 {2,3}, {5,2}, {19,2}
70 114 {2,13},{3,2},{5,5},{19,2}
80 12 {2,11}, {3,2}, {5,2}
90 126 {2,11},{3,2},{5,2},{7,3}

100 111 {2,11},{3,2},{5,2},{37,2}
200 90 {2,7}, {3,13}, {5,2}
300 231 {2,13},{3,2},{5,2},{7,2},{11,2}

In den obigen Primbeweisen sind jeweils Paare {p,bp} angegeben, für die p ein
Primfaktor von n - 1 ist und für die (*) von 4.1 gilt.

Wenn Sie Primzahlen zum Verschlüsseln von Texten mit öffentlich bekanntem Code
konstruieren wollen, dann sollten Sie (damit Ihr Code nicht einfach zu knacken ist)
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gemäß [5, 3.2] die Primzahl n in der folgenden Form wählen:

n fp+l, wobei p gq + l, p und q große

Primzahlen, / und g kleine Faktoren.

Konstruieren Sie also zunächst ein q wie oben angegeben, daraus dann p und damit das

endgültige n.

6 Beweise
Es sei N die Menge der natürlichen und Z die Menge der ganzen Zahlen, Zn := Z/nZ
und Z* die multiphkative Gruppe der Einheiten von Zn.

Zunächst einige Vorbemerkungen zu den folgenden Beweisen.

Satz 6.1 Für 2 < n E N wird die Ordnung der Gruppe Z* gegeben durch

(p(n) := Anzahl derjenigen b mit 1 < b < n, die zu n teilerfremd sind

Die Funktion (p : Nn>2 —? N wird auch Eulersche Funktion genannt. Sie hat
folgende Eigenschaft:
Es seien pa paarweise verschiedene Primzahlen, aa > 1. Dann ist

v(iivaA=iiv"°-i{p*-i)-

s

Korollar 6.2 Für m f\ p"° ist -^— TT Pa

^ira tp(m) ^JiPa-l
Insbesondere hängt m/ip(m) nur ab von den Primfaktoren von m, nicht von ihrem
Exponenten in m. Ferner gilt m/<p(m) < n/(p(n)r wenn m ein Teiler von n ist.

\a=l / a=l

s

Satz 6.3 Es sei n > 3 eine Primzahl. Dann ist Zn ein Körper, und die multiplikative
Gruppe Z* ist zyklisch von der Ordnung (p(n — 1) n — 1.

Zum Beweis vgl. [16, Ch. I, Theorem 2].

Beweis von 2.2 n ist genau dann prim, wenn Z* ein Körper ist, d.h. wenn Z* aus n — 1

Elementen besteht. Wenn n prim ist, gilt also bn~l 1 für jedes b e Z*, da die Ordnung

eines Elementes stets die Gruppenordnung teilt. Umgekehrt folgt aus bn~l 1, daß b
n

eine Einheit ist, also hat Z* genau n-1 Elemente.

Beweis von 2.4 Ad 1. Da bn~l(modn) cq sich aus den Ck durch wiederholtes Quadrieren

modulo n ergibt und da (-1)2 1, ist fc kein F-Zeuge für n, wenn b kein MR-Zeuge
für n ist.

Ad 2. Es genügt zu zeigen: Wenn n prim ist, dann hat n keine MR-Zeugen. Es sei also

n prim, 2 < b < n — 2 und Co,... 9cq fc"_1(modn) wie in 2.3. Da Zn ein Körper ist,
hat die Gleichung x2 1 in Zn höchstens die Lösungen 1 und n — 1; da (in Zn) für
1 < k < q gilt c\__x Ck und cq 1, ist entweder c* 1 für 0 < k < q oder es gibt
ein k < q mit Ck n — 1; in jedem Fall ist b kein MR-Zeuge.
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Beweisskizze von 2.5 Da ein vollständiger Beweis zwar elementar, aber doch etwas
länger ist, beschränken wir uns hier auf die Beweisskizze eines Spezialfalles: Wir setzen

voraus, dass n p2m, wobei p > 3 eine Primzahl ist. In diesem Fall hat n nicht nur
wenig MR-Zeugen, sondern auch nur wenig F-Zeugen: Wir zeigen, dass

#{beZn; bn~l 1} <(p-l)m. (*)

Da (wie man leicht nachrechnet) für p > 3 und m > 1 stets gilt

p2m - 1 n-1(p-l)m<^— —,
folgt aus (*) also unsere Behauptung.

Beweisskizze von (*): die Einheitengruppe Z*2 ist zyklisch von der Ordnung p(p — 1);

{ßeZ*p2; /?"-' !}
also hat die Menge

if{ a /_ _

genau d := ggT (p(p — l),n— l) Elemente. Da p ein Teiler von n ist, ist d ein Teiler
von p-1, also d < p — 1. Es sei n die kanonische Projektion von Zn auf Zpi; für jedes
ß G Zp2 hat n~l(ß) genau m Elemente; folglich hat {b £ Zn; bn~l 1} höchstens
dm < (p — l)m Elemente.

Auch für beliebiges ungerades zerlegbares n kann man die Anzahl der MR-Zeugen für
n explizit angeben und damit 2.5 beweisen (vgl. Theorem 5 und Proposition 1 in [10]).

Beweis von 4.1 Wenn n prim ist, dann gibt es wegen 6.3 im Körper Z„ ein Element b

der Ordnung n—l. Dieses b kann man für alle p nehmen. Zum Beweis der Umkehrung
genügt es zu zeigen, daß n - 1 ein Teiler von ord(Z*) ist. Dazu sei p ein Primfaktor
von n — l und a der Exponent von p in n — 1. Nach Voraussetzung gibt es ein b mit
bn~l e 1 ^ frl"-1)/?. Dann ist die Ordnung e von b in Z* ein Teiler von n—l, nicht

n n

aber von (n — l)/p; also ist pa ein Teiler von e und damit auch ein Teiler von ord(Z*),
da e die Ordnung von Z* teilt.

Beweis von 4.2 Die Gruppe Z* hat genau y?(n — 1) Elemente der Ordnung n-1 (vgl.
6.3). Wir müssen also zeigen, daß (n - l)/y>(n — 1) < 10 gilt, wenn n < 10100 eine

Primzahl ist (der Beweis für n < IO600 verläuft analog).

Dazu seien zunächst pi 2, p2 3,... ,^54 251 die ersten 54 Primzahlen. Es gilt
(Beweis durch brutales Nachrechnen)

ß
54 54

9 < -7¥T TT ~^T < 10 für R := TTP(7 « 6 • 10100 (**)

Es sei jetzt n < 10100 eine Primzahl, es seien qi < q2 < < qs die Primfaktoren von

n-1. Wegen (**) ist s < 54. Da pk < qk für 1 < k < s, folgt also mit 6.2

s s 54n-l yj qa tt Pa ^ TX V°
11 ^-1 l1^-! Li:Va-l<p(n-l) ±1^-1 "p,-l Alpff
(7= 1 '" a=lru a=l
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Beweis von 4.4 Es sei pi 2, p2 3, die Folge aller Pnmzahlen. Wegen (zum
Beweis dieser Aussage vgl. [16, Ch. VI, § 3, Lemma 5])

s\i1J- pi - 1 s\i^ kss\l x± V% - 1 s\_a=l r° N k>l

S

gibt es ein S £ N mit P Yl Pa/(Pa — l) > N Es bleibt zu zeigen, daß es eine Primzahl
cr=l

n gibt mit (n — l)/ip(n—l) > P dazu sei a := ITjt=i V* Wegen 6 4 gibt es ein v £ N fur
welches n va + 1 prim ist. Aus 6 2 ergibt sich jetzt (n — 1)/V(n - 1) > a/ip(a) — P.

Theorem 6.4 (Dinchlet) Es seien a, b teüerfremde natürliche Zahlen Dann enthalt die
arithmetische Progression {va + b, v £ H) unendlich viele Primzahlen

Zum Beweis vgl [16, Ch. VI].
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