
Zeitschrift: Elemente der Mathematik

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 48 (1993)

Artikel: In memoriam Peter Hess, 1941-1992

Autor: Amann, Herbert

DOI: https://doi.org/10.5169/seals-44632

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 15.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-44632
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


El. Math. 48 (1993) 0013-6018/93/040133-10S1.50 + 0.20/0
© 1993 Birkhauser Verlag, Basel

In memoriam Peter Hess, 1941-1992

^

Im Herbst des Jahres 1992 verbrachte Peter Hess einen Teil eines Forschungssemesters an
der Brigham Young University in Utah, wo er im Rahmen eines 'special year' mit
Fachkollegen aus den USA und Australien wissenschaftlich zusammenarbeitete. Während
eines Wochenendausflugs in das südliche Utah rutschte er im Canyonlands National
Park auf einem verschneiten Wegstück aus und stürzte über einen Felshang zu Tode. So

wurde er im Alter von 51 Jahren jäh aus einem aktiven und erfüllten Leben gerissen,
im Zenith seiner wissenschaftlichen Laufbahn, voller Pläne und Ideen für seine nähere
persönliche und mathematische Zukunft.

Peter Hess wurde am 1. September 1941 in Zürich geboren, wo er auch seine Kinder-
und Jugendjahre verbrachte. Im Jahre 1960 legte er an der kantonalen Oberrealschule
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die Maturitätsprüfung ab und entschied sich für das Studium der Mathematik, das er im
gleichen Jahr an der ETH Zürich aufnahm. Dieser Entschluss ist ihm nicht ganz leicht
gefallen, da seine Liebe, neben der Mathematik, der Musik gehörte und er sich längere
Zeit mit dem Gedanken trug, sich hauptberuflich dem Cello zu widmen. Nach dem
ersten Semester seines Mathematikstudiums war ihm jedoch klar, dass er die richtige
Wahl getroffen hatte. Dies bestätigte sich im Früjahr 1965, als er mit einer unter der

Leitung von Heinz Hopf angefertigten Arbeit das Diplom erwarb und ihm für seine

Noten eine Auszeichnung verliehen wurde.

Der Liebe zur Musik blieb er Zeit seines Lebens treu. Während seines Studiums nahm
er Cellounterricht am Konservatorium und erreichte auf diesem Instrument ein hohes
technisches und künstlerisches Niveau. Für viele seiner Freunde und Kollegen sind die
schönen Hauskonzerte, zu denen er und seine Frau Annalea, eine hervorragende und
begeisterte Amateurviolonistin, in späteren Jahren regelmässig einluden, unvergesslich
schöne Erlebnisse.

Da Hopf zu jener Zeit kurz vor seinem Rücktritt stand und keine Schüler mehr zur
Promotion führte, wandte sich Peter Hess nach dem Diplom von der Geometrie der

Analysis zu. Als Assistent am Lehrstuhl für höhere Mathematik an der ETH beschäftigte
er sich mit Fragen der Lösbarkeit nicht-selbstadjungierter linearer elliptischer
Differentialgleichungen und mit Abbüdungs- und Spektraleigenschaften unbeschränkter linearer
Operatoren in Banach- und Hilbertraumen. Das Zusammenspiel zwischen Funktionalanalysis

und partiellen Differentialgleichungen zieht sich wie ein Leitmotiv durch sein

gesamtes wissenschaftliches Werk, wobei er immer wieder die mit abstrakten Methoden

gewonnenen Resultate auf elliptische und parabolische partielle Differentialgleichungen
anwandte. Hierbei galt sein Interesse in erster Linie nicht-selbstadjungierten Problemen.
Während anfänglich das Schwergewicht seiner Publikationen im Bereich der abstrakten

Funktionalanalysis lag, verschob es sich in späteren Jahren mehr und mehr in das Gebiet
der elliptischen und parabolischen Randwertprobleme.

Ein klassisches Problem der Theorie der partiellen Differentialgleichungen stellt die

Frage nach der Existenz von Funktionen u dar, welche den Gleichungen

siu f inf_ u 0 auf dCl (1)

genügen. Hierbei sind f_ ein beschränktes Gebiet des IRn und si ein Differentialoperator
der Form

n n

siu := - ^2 dj(ajkdku) + ^^ajdjU + aoU (2)

hk=i j=i

wobei ajk a}, ao und / gegebene (glatte) Funktionen auf Ö sind. Ausserdem sei si
"elliptisch", d.h. die Matrix [a}k] sei symmetrisch und positiv definit (gleichmässig in
x e f. Es ist bekannt, dass das "Randwertproblem" (1) bei gegebenem stetigem / im

allgemeinen keine "klassische", d.h. zweimal stetig differenzierbare Lösung u besitzt.
Es ist aber auch bekannt, dass man aus (1) ein "wohlgestelltes" Randwertproblem erhält,

wenn man den Lösungsbegriff dahingehend abschwächt, dass man von u nur verlangt,
dass es in einem geeignet verallgemeinerten Sinn — im Sinn der Distributionen —
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differenzierbar sei. Eine genauere Analyse führt dazu, dem Differentialoperator si eine
Bilinearform, nämlich die 'Dirichletform'

a(u9v) := / I ^2 ajkdjudkv + y^ajdjuv + apuv I dx (3)

zuzuordnen. Setzt man zur Abkürzung noch

(/,*):=//'/ fv dx

n

so wird man durch Überlegungen, die ihre Wurzeln in der klassichen Variationsrechnung
haben, dazu geführt, dem Randwertproblem (1) die folgende Aufgabe zuzuordnen:

Man bestimme u in Hx so, dass gilt:

a(u9 v) — (/, v) für alle v G Hx. (4)

Hierbei ist Hx ein geeigneter Hilbertraum von Funktionen auf f_, die so beschaffen
sind, dass a auf Hx eine wohldefinierte stetige Bilinearform darstellt, d.h. ein geeigneter
Sobolevraum von Distributionen über f.. Ausserdem sollen die Elemente v von Hx
auf du verschwinden.

Ist der Differentialoperator si "selbstadjungiert", d.h. gilt ax ••• an 0, so
stellt (4) die Eulersche Gleichung eines Variationsproblems dar. In diesem Fall kann die
Existenz einer Lösung von (4) — und damit einer "schwachen", d.h. verallgemeinerten
Lösung von (1) — relativ einfach durch Minimieren eines Integrals bewiesen werden.
Ist si nicht selbstadjungiert, versagt dieser Zugang. Unter geeigneten Wachstumsvoraussetzungen

an die Bilinearform a, unter "Koerzitivitätsvoraussetzungen", gelingt es

jedoch auch in dieser Situation, die Lösbarkeit der Gleichung (4), und damit einer schwachen

Lösung von (1), zu zeigen. In diesem Fall führen einfache Hilbertraummethoden,
nämlich das Lemma von Lax und Milgram, zum Ziel.

Die Bilinearform (3) ist naturgemäss in einem Sobolevraum von quadratisch integrierbaren

Funktionen definiert, deren erste (distributioneile) Ableitungen ebenfalls quadratisch
integrierbar sind. Dieser Raum Hx ist ein Unterraum des Hilbertraums H, der aus allen

quadratintegrierbaren Funktionen auf O besteht. Diese Beobachtung führt in natürlicher
Weise dazu, der auf Hx stetigen Bilinearform a einen unbeschränkten linearen Operator
A in H so zuzuordnen, dass das Problem (4) zu der abstrakten linearen Gleichung

Au f (5)

in H äquivalent ist. Auf diese Weise erhält man eine neue abstrakte Formulierung des

ursprünglichen Randwertproblems, welche den gut ausgebauten Methoden der Theorie
der unbeschränkten linearen Operatoren in Hilbert- und Banachraumen zugänglich ist.

Die obigen Betrachtungen illustrieren die engen Zusammenhänge zwischen der Theorie
der linearen elliptischen Randwertprobleme, der Theorie der beschränkten Bilinearfor-
men und der Theorie der unbeschränkten linearen Operatoren in Hilbertraumen. Mit
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diesen Zusammenhängen beschäftigte sich Peter Hess während seiner Assistentenzeit
an der ETH, angeregt durch einen Kolloquiumsvortrag des finnischen Mathematikers
LS. Louhivaara. Neben abstrakten Resultaten zur Theorie linearer Operatoren, welche

bezüglich einer indefiniten Bilinearform selbstadjungiert sind, und neben Störungssätzen
für unbeschränkte lineare Operatoren in Banachraumen untersuchte er Abbildungseigenschaften

linearer Operatoren, die, ähnlich wie A in (5), durch elliptische Randwertprobleme

beliebiger Ordnung induziert werden. Er promovierte im Frühjahr 1968 mit einer
Arbeit über das verallgemeinerte Dirichletproblem ([3] seines Schriftenverzeichnisses),
die mit der silbernen Medaille ausgezeichnet wurde. Im Gegensatz zur oben skizzierten
"klassischen" Theorie der schwachen Lösungen betrachtete er in seiner Dissertation
lineare elliptische Randwertprobleme beliebiger gerader Ordnung mit Koeffizienten, die

nur lokal quadratisch integrierbar sind. In diesem Fall ist die A entsprechende Bilinearform

nicht mehr stetig und der Satz von Lax-Milgram nicht mehr anwendbar. Dennoch
konnte er — durch Studium der (5) entsprechenden Operatorgleichung — die Gültigkeit
der Fredholmschen Alternative für derartige Randwertprobleme nachweisen.

In den frühen sechziger Jahren nahm ein neues Teilgebiet der Analysis, die nichtlineare

Funktionalanalysis, einen mächtigen Aufschwung. In jener Zeit entstand die Theorie der
monotonen Operatoren, die von G. Minty begründet und insbesondere von F. Browder
ausgebaut und popularisiert wurde. Bei der Theorie der monotonen Operatoren handelt

es sich um eine Verallgemeinerung der Theorie der Eulerschen Gleichungen konvexer

nichtquadratischer Funktionale, die aber, ähnlich wie die oben skizzierte schwache

Theorie der nicht-selbstadjungierten elliptischen Randwertprobleme, ohne Funktionale
auskommt. In dieser Theorie werden die lineare Gleichung (5) durch das nichtlineare
Problem

A(u) / (6)

der Hilbertraum H durch einen reflexiven Banachraum E und die Bilinearform a im
wesentlichen durch die nichtlineare Form

(A(ü)9v)9 u.veE,

ersetzt, wobei (w9v) den Wert der stetigen Linearform w € E' an der Stelle v e E

bedeutet. Eine Abbildung
_4:E-»E'

heisst dann "monoton", wenn gilt

(A(ü) - A(v)9w — z?) > 0, u,v € E

da diese Ungleichung im eindimensionalen Fall besagt, dass die Funktion A monoton
wachsend ist.

Ein fundamentaler, aus dem Jahr 1963 stammender Satz von Minty und Browder sagt,
dass die nichtlineare Gleichung (6) für jedes f e E lösbar ist, falls A ein stetiger
monotoner Operator ist, der einer geeigneten Koerzitivitätsbedingung genügt. Dieses

Theorem besitzt zahlreiche Anwendungen auf quasilineare elliptische und parabolische
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Randwertprobleme und auf nichtlineare Integralgleichungen. Da A nicht Ableitung eines
Funktionais sein muss, können damit insbesondere auch nicht-selbstadjungierte Probleme
behandelt werden, welche nicht Eulersche Gleichungen von Variationsproblemen sind.

Da die Theorie der monotonen Operatoren in gewissem Sinne eine Verallgemeinerung der
Theorie der nichtsymmetrischen Bilinearformen darstellt, ist es nicht verwunderlich, dass

Peter Hess nach seiner Promotion von diesem neuen Gebiet angezogen wurde. Im Herbst
1969 ging er — zuerst als Instructor for Mathematics, später als Nationalfondsstipendiat
— für zwei Jahre zu F. Browder an die University of Chicago. Das Nationalfondsstipendium

erlaubte ihm nach dieser Zeit den Wechsel an die University of California in
Berkeley zu T. Kato, einem weiteren Exponenten der Theorie der monotonen Operatoren
in jenen Jahren.

Während seiner Aufenthalte in Chicago und Berkeley beschäftigte er sich intensiv mit der
Theorie der monotonen Operatoren. Konkrete Anwendungen auf partielle Differentialgleichungen

zeigten bald, dass der Satz von Minty und Browder für viele Anwendungen
nicht ausreichte, unter anderem, weil er restriktive Wachstumsbeschränkungen an die
Nichtlinearitäten implizierte. Dies führte zu zahlreichen Verallgemeinerungen der
abstrakten Theorie und zu Untersuchungen allgemeinerer Klassen von Operatoren. An dieser

Entwicklung beteiligte sich Peter Hess mit wichtigen Beiträgen. Insbesondere schuf
er eine Theorie von "Operatoren monotonen Typs bezüglich zweier Banachraume" [21],
welche ihm erlaubte, nichtlineare elliptische Randwertprobleme mit "starken Nichtlinearitäten"

zu behandeln.

Zum Wintersemester 1972 folgte Peter Hess einem Ruf auf ein Extraordinariat an das

Mathematische Institut der Universität Zürich, wo er 1978 zum Ordinarius befördert
wurde. An seiner neuen Wirkungsstätte entwickelte er eine fruchtbare Lehr- und
Forschungstätigkeit auf dem Gebiet der nichtlinearen Analysis. Als beliebter Lehrer gelang
es ihm, die Begeisterung, mit der er selber Mathematik betrieb, an seine Schüler
weiterzugeben.

Während der ersten Jahre an der Universität Zürich galt sein wissenschaftliches Interesse
in erster Linie der Anwendung der Theorie der monotonen Operatoren auf nichtlineare

elliptische Randwertprobleme. Hierbei standen Gleichungen mit starken Nichtlinearitäten
und nichtkoerzive Aufgaben im Vordergrund. Später wandte er sich mehr und mehr
nichtlinearen elliptischen Eigenwertproblemen zu.

Um die Theorie der monotonen Operatoren auf das (parameterabhängige) nichtlineare

Randwertproblem
s&u Xf(u) in ü m 0 auf oft, (7)

wobei A eine positive reelle Zahl ist, anwenden zu können, muss man im wesentlichen

voraussetzen, dass / eine fallende Funktion sei. Dann kann die eindeutige Lösbarkeit
von (7) garantiert werden. Erfüllt / diese Voraussetzung nicht, ist / zum Beispiel
wachsend, so ist bekannt, dass (7) im allgemeinen mehrere Lösungen besitzt. In diesem
Fall versagt die Theorie der monotonen Operatoren.

Weitreichende Aussagen über die Lösungsmenge des Problems (7) können — insbesondere

auch im nicht-selbstadjungierten Fall — mit Hilfe des Maxiumprinzips hergeleitet
werden. Dieses Prinzip erweist sich als äusserst flexibles und fruchtbares Hilfsmittel zum
Studium "nichtmonotoner" nichtlinearer Eigenwertprobleme der Form (7).
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Im Laufe seiner Forschungstätigkeit an der Universität Zürich wandte sich Peter Hess

mehr und mehr Problemen zu, in welchen topologische und — insbesondere — auf
dem Maximumprinzip beruhende ordnungstheoretische Methoden eine wichtige Rolle
spielen. Beim Studium der Existenz und Vielzahl positiver Lösungen von (7) kommt der

Linearisierung dieses Problems, welches ein lineares Eigenwertproblem der Form

siu Xmu in ft, u 0 auf oft (8)

darstellt, grosse Bedeutung zu. Insbesondere ist es wichtig zu wissen, dass (8) einen

positiven Eigenwert mit einer zugehörigen positiven Eigenfunktion besitzt. Ist die
Gewichtsfunktion m positiv, folgt dies aus dem Maximumprinzip und einem abstrakten
Theorem von Krein und Rutmann. Wechselt m das Vorzeichen, ist der Satz von Krein
und Rutmann nicht mehr direkt anwendbar. Zusammen mit T. Kato gelang es Peter Hess

in [55] zu zeigen, dass auch im Falle einer indefiniten Gewichtsfunktion m das Problem
(8) einen positiven Eigenwert und eine positive Eigenfunktion besitzt. Dieses "Hess-
Kato-Theorem" ist fundamental für das Studium positiver Lösungen des nichtlinearen

Eigenwertproblems (7), falls / nicht überall positiv ist.

Den Maximumprinzipien und positiven Lösungen von Randwertproblemen gehörten
das wissenschaftliche Interesse von Peter Hess in späteren Jahren. Neben elliptischen
Randwertproblemen untersuchte er in zunehmendem Mass "periodisch-parabolische
Probleme" der Gestalt

dtu + si(t)u f(t, w) in ft, w 0 auf oft u(-, 0) w(-, T), (9)

wo si(t) für jedes t e U ein elliptischer Operator der Form (2) ist, dessen Koeffizienten,

ebenso wie die Nichtlinearität /, in der Zeitvariablen T-periodisch sind. Einerseits
handelt es sich bei (9) um ein nicht-selbstadjungiertes Randwertproblem, welches

Maximumprinziptechniken zugänglich ist. Andererseits stellt (9) ein Evolutionsproblem dar
und erzeugt ein "diskretes monotones dynamisches System". Aus diesem Grund hat er —
teilweise in Zusammenarbeit mit N. Dancer und P. Poläcik — die Theorie der diskreten

monotonen dynamischen Systeme vorangetrieben, wobei abschliessende Resultate erzielt
wurden. Einen grossen Teil seiner Beiträge zur Theorie der periodisch-parabolischen
Probleme — die wohl immer mit seinem Namen verbunden sein wird — hat er in der
schönen Monographie [86] zusammenfassend dargestellt.

Durch seine rege Forschungstätigkeit hat Peter Hess weit über die Universität Zürich
hinaus gewirkt. Er hatte viele Freunde und Kollegen in aller Welt, zu denen er
wissenschaftliche Beziehungen unterhielt. Viele von ihnen sind im Laufe der letzten Jahre für
kürzere oder längere Aufenthalte nach Zürich gekommen, was wesentlich zum
wissenschaftlichen Leben am Mathematischen Institut der Universität beitrug.

Peter Hess leistete zahlreichen Einladungen zur Teilnahme an wissenschaftlichen
Konferenzen und zu längeren und kürzeren Forschungsaufenthalten Folge, bei denen er stets

einem grösseren Publikum seine neuesten Resultate vorstellen konnte. Darüber hinaus

fand er internationale Anerkennung durch seine Wahl in die Herausgebergremien mehrerer

Fachzeitschriften. Insbesondere gehörte er während einiger Jahre dem Redaktionskomitee

der Commentarii Mathematici Helvetici an.
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Neben seiner wissenschaftlichen Tätigkeit war er stets bereit, die weiteren Aufgaben
zu übernehmen, welche die vielfältigen Pflichten eines Hochschullehrers mit sich bringen.

Dabei hatte er stets das Interesse der Sache im Auge und war bestrebt, auch in
schwierigen Situationen gute Lösungen zu finden. Neben seinem Einsatz im Fachbereich

Mathematik hat er auch Aufgaben übernommen, die dem Interesse der Wissenschaft

im allgemeinen dienen. So nahm er z.B. im Frühjahr 1991 das Amt des Sekretärs
der Schweizerischen Mathematischen Gesellschaft an und wurde damit ihr designierter
Präsident.

Mit dem tragischen Tod von Peter Hess haben seine engeren Bekannten einen guten
Freund und zuverlässigen Kollegen, die Universität Zürich einen engagierten Lehrer und
Forscher und die mathematische Gemeinschaft ein aktives und angesehenes Mitglied
verloren.

Herbert Amann,
Mathematisches Institut
Universität Zürich
Rämistrasse 74
CH-8001 Zürich
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