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When is Zn the only Group of Order n?
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It is an immediate corollary of Lagrange's Theorem that Zn is the only group of order n
when n is pnme. In contrast, when n =pq, where p and q are primes, Zn may or may
not be the only group of order n. For example, Z15 is the only group of order 15 while
there are two groups of order 21. So, how does one teil if Zpq is the only group of order

pq1? The answer, as can be found in several undergraduate abstract algebra textbooks,
is if and only if q does not divide p-1 where p > q. (See, for instance, [7, p. 204].)
Moving to three primes, both [3, p. 213] and [4, p. 335] show that Z3517 is the only
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group of order 3 • 5 • 17 as an application of the Sylow theorems and [3, p. 215] gives
n 5 • 7 • 47 as an exercise. In contrast, there are four groups of order 2-311 (see [4,

p. 337]).

In view of these examples it would be quite natural in an abstract algebra class to raise
the following question: What is a necessary and sufficient condition on n so that Zn is
the unique group of order nl The answer is surprisingly simple and can be verified with
no more theory than that which is contained in some undergraduate abstract algebra texts.
As an added bonus for an instructor of an abstract algebra class, the proof illustrates
one of the most important techniques in finite group theory: an induction/factor group
argument.

Our result is not new. In fact, it was probably known in the 19th Century! (See [2, p.
200], [6, pp. 56-57, 182], [5] and [8].) However, the only references we could find for
it are in obscure sources in archaic English or German. Because of its potential for use
in an undergraduate classroom, we feit that an accessible proof in a readily available
source is desirable.

Before stating the condition we recall that if n - p\lp22 • • • p\* is the prime decomposition
of n9 then (p(n), the Euler phi-function of n (which gives the number of positive integers
less than or equal to n and relatively prime to n), is p\x~l(pi-l)p2~l(p2-l) • • • p\t~x(pt-l)
(see [1, p. 80]).

Theorem. For any positive integer n, Zn is the unique group of order n if and only if
gcd(n,<P(n)) l.
We first prove a lemma.

Lemma. A finite non-cyclic group G all of whose proper subgroups are cyclic has a
nontrivial proper normal subgroup.

Proof of Lemma. Suppose G does not have a nontrivial proper normal subgroup. If H
and K are any two distinct maximal subgroups of G then since H and K are cyclic,
the normalizer N(H DK) of H f\K contains both H and K and therefore is G. Thus,
H fl K is a proper normal subgroup of G and so must be trivial. Hence, any two
distinct maximal subgroups of G intersect in the identity. Now fix a maximal subgroup
H of G. Since H is not normal, its normalizer is H and so H f) x~lHx {e} for all
x & H. Thus, the number of nonidentity elements of H and its conjugates is (\H\ — 1)

\G : N(H)\ (\H\ - 1) \G : H\ \G\ - \G : H\ > |G|/2. Since \G : H\ > 2 and
the number of elements in H and its conjugate is|G|-|G:H| + l, there is at least

one element y not in H or any of its conjugates. Letting K be a maximal subgroup of
G containing y, we find at least |G|/2 nonidentity elements in K and its conjugates.
Because we have shown that any two maximal subgroups of G have only the identity
in common we have produced at least |G| nonidentity elements in G. This absurdity
completes the proof of the lemma.

Proof of Theorem. Suppose G is a noncyclic group of minimum order n such that
gcd(n, <p(n)) 1. Since every proper subgroup of G of order m satisfies gcd(m, <p(m))
1, every proper subgroup of G is cyclic. Thus, by the Lemma, G has a proper nontrivial
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normal subgroup H, and by the minimality of \G\ we know that both H and G/H are

cyclic. Since G/C(H) is isomorphic to a subgroup of Aut(H) and |Aut(H)| 0(|H|)
divides (p(n) (see [4, p. 165] and [4, p. 108]), we see that |G/C(H)| divides both n
and <p(n), so |G/C(H)| 1 and therefore H is central in G. But this implies that G is

abelian ([4, p. 152]). From the condition (n,(p{n)) 1, we know that n is square-free.
Thus G is a direct product of cyclic groups of prime order for distinct primes. It follows
that G is cyclic [4, p. 116]. This estabhshes sufficiency.

Conversely, suppose gcd(n,(p(n)) ^ 1. If there is a prime p for which p2 divides n,
then ZpxZi is not cyclic ([4, p. 116]). Thus we may now assume that n is square-free
and that there are prime divisors p and q of n such that q < p and q divides p-1.
Since U(p) {1,2, • • • ,p - 1} is a cyclic group under multiplication modulo p and has

order p-l, there is an element s in U(p) of order q (see [4, p. 123 and p. 70]). Then
H (a,b\ai -bv e,a~lba bs) is a non-abelian group of order pq (see [7, p. 204])
and H xZjl is a noncyclic group of order n. This completes the proof.

A refinement of our argument (but still requiring no additional theory) provides an answer
to the following natural generalization of the question we have just addressed: What is

a necessary and sufficient condition on n so that every group of order n is abelian? The
condition was given by Dickson [2, p. 200] 90 years ago: Every group of order n is

abelian if and only if the prime factorization of n has the form pxp2 • • • Piqxq2 • • -qf and

n is relatively prime to (px - l)(p2 - 1)- • -(px - l)(q\ - l)(q\ - 1)- • -(qj - 1).
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