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Beispiele zur Anwendung eines Computeralgebrasystems
in der Geometrie

Roland Stärk

Roland Stark studierte an der ETH Zunch Nach der Promotion zum Dr sc math

im Jahre 1963 wurde er Lehrer an der Kantonsschule Schaffhausen Er ist Verfasser

eines Lehrbuches der Darstellenden Geometne Sem mathematisches Lieblingsgebiet
ist die Elementargeometne

In nächster Zeit werden immer mehr auch algebraische Computerprogramme Einzug
in den Schulen halten, Systeme, wie zum Beispiel Mathematica oder Maple, die nicht
nur numerisch rechnen können, sondern auch imstande sind, algebraische Ausdrücke
zu bearbeiten. Der alte Vorbehalt gegenüber der analytischen Geometrie, es sei eine

Es gibt wohl kaum ein Tätigkeitsfeld» das sich in den letzten Jahren durch den Einsatz
von Computern nicht tiefgreifend verändert hat, und natürlich ist auch die Schule von
diesen Umwälzungen betroffen worden* Beim Mathematikunteiricht ist heute abzusehen,

dass sich die Verfügbarkeit von leistungsstarken und dabei billigen Informatik-
mitteln in Zukunft noch vermehrt auf Form und Inhalt auswirken werden, In welcher
Weise dies geschehen wird* lässt sich allerdings jetzt» mitten in einer stüimischen Ent-
wieklungsphase* noch nicht vorhersagen. Eine der Fragen, die m klären sein wird»
ist der Stellenwert des numerischen Rechnens gegenüber dem symbolkchen, Obschon
bereits heute auch auf kleinen Rechnein Computeralgebmsysteme verfügbar sind, wurden

diese bisher tn der Schule noch kaum eingesetzt Die Zeit sollte genutzt weiden,
sich mit der neuen Perspektive zu besehiftigen, Gmndsatzfiragen aufeugreifen und die
Gewichtung der Inhalte im Unterricht zu überdenken, Wie soll ein derartiges System
eingesetzt werden? Legt die Existenz solcher Systeme nahe, auf gewisse Unterrichtsinhalte

zu verziehten, und wenn ja, auf welche? Gibt es auch Unterriehtsgegenstlnde»
auf die grösserer Nachdruck als bisher gelegt wertet muss? Weichen Einfluss hat die
Benützung derartiger Systeme auf die Lernmotivation? Wie lehrt man die Benutzer,
der Computerantwort nicht bMndhngs zu vertrauen? usw, — Der vorliegende Beitrag
von Roland Sllrk behandelt einige Beispiele von Anwendungen eines Computer^!-
gebrasystems. Es geht dabei um Probleme der analytischen Geometrie, die grossen
Reeheneinsatz erfordern und die ohne Hilfe eines solchen Systems kaum zu bewilligen

wirea Hier dient der Computer als Hilfsmittel, den bisherigen Erfahrungshori__ont
in verschiedenen Richtungen zu dnrchterechen. hrsiust
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ewige Rechnerei, wird schwinden. Berechnungsaufgaben, denen man früher wegen ihres

Umfanges oder wegen ihrer Kompliziertheit ausgewichen ist, können heute
computerunterstützt häufig geradlinig und mühelos durchgeführt werden. Natürlich macht der

Computer nicht alles allein. Der Anwender muss die Computerarbeit sorgfältig planen,
überwachen und lenken. Auch stellen sich Fragen nach der Zuverlässigkeit des Systems.

Die Möglichkeiten sind herrlich. Es sollen hier drei Beispiele vorgeführt werden, die von
Hand kaum zu bewältigen sind. Sie wurden mit Hilfe von Mathematica [5] bearbeitet.

1 Eine Formel von Euler für das Tetraedervolumen
Euler hat in den Novi Commentarii Academiae Petropolitanae ad annum 1752 et 1753

[1] für das Volumen V eines Tetraeders die folgende Formel veröffentlicht:

144V2 +a2b2u2 + a2w2u2 + a2v2u2 + a2c2u2 + b2c2v2 + b2u2v2

+ b2w2v2 + b2a2v2 + c2a2w2 + c2v2w2 + c2u2w2 + c2b2w2

- a2b2c2 - a2w2v2 - b2u2w2 - c2v2u2

-a2u4-u2a4- b2v4 - v2b4 - c2w4 - w2c4.

(1)

Dabei sind a, b, c drei eine Seitenfläche begrenzende Kanten und u,v,w ihre
Gegenkanten.

Man erkennt auf der rechten Seite von (1) die Summe der Produkte "Kante im Quadrat
mal Kante im Quadrat mal Kante im Quadrat" für alle zwölf nichtgeschlossenen drei-
streckigen Kantenzüge des Tetraeders, dann davon subtrahiert die Produkte für die vier
begrenzenden Dreiecke und für alle sechs Kanten die Produkte "Kante im Quadrat mal
Gegenkante hoch vier".

Vor die Aufgabe gestellt, diese Formel zu verifizieren — es soll hier keine Herleitung
gegeben werden —, denkt man wohl in erster Linie an analytische Geometrie und an
ein Cartesisches Koordinatensystem. Wenn (xx/yt/Zt) (i 1, ...,4) die Koordinaten der
Tetraederecken sind, liefert die Formel

1 Xl yi Zl
1 1 X2 yi z2

6 1 x3 yi z3
1 X4 y* za

bekanntlich das Volumen V, und die Quadrate der Kanten berechnen sich mit

(Xj - xk)2 + (jfj - yk)1 + (Zj - zk)2.

Man braucht lediglich in (1) einzusetzen. Aber das gibt eine langwierige Rechnung. Das

Quadrat der Determinante hat rund dreihundert Glieder. Auch wenn man die Symmetrie
in den Eckkoordinaten berücksichtigt, ist die Arbeit kaum zu bewältigen. Und eine
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Ecke in den Nullpunkt setzen, wie das jeweils noch gemacht wird, bnngt auch keine

Erleichterung Das ist Arbeit fur den Computer, solche Rechnungen liegen ihm

Unser kurzes Rechnungsprogramm ist in der Fig 1 aufgelistet

/nf//'
Pi={ Xl,yl,zl};p2-{x2,y2,z2};p3-{x3a y3,2;3} ;p4={x4,y4,z4);
d[p_..q«]:=(p[[l]]-q[[l]])A2+

(p[[2]]-q[[2]])-2+
(p[[3]]-q[[3]])-2;

a=d|[p2,p3];b=d[p3,pl];o=d[pl,p2];
U^[pl.p4];^d[p2,p4);w=d[p3,p4];
?ol==1/6 Det[{Prepend[pl,l],

Prepend[p2,1],
Prepend[p3,1],
Prepend[p4,l]}];

Expand[a b u+a w u+a v u+a c u+b c ?+b u
b w T+b a v+c a w+c v w+c u W+C b ?-
a b o-a w v-b u w-o u-
a u~2-u a"2-b vÄ2-v b~2-c w *2-v c~2-
144volÄ2]

0ut[/]=
0

Fig 1

Zuerst werden die Eckpunkte pl, p2, als Koordinatentnpel eingeführt Dann wird
die Funktion d[ ] fur das Quadrat der Distanz zweier Punkte definiert Mit Pre-
pend [pl, 1] kann bei der Koordmatenhste fur p 1 eine 1 vorgehängt werden, und Det[ ]
berechnet die Determinante Expand [ ] schliesslich multipliziert alles aus Man
beachte, dass hier mit a d[p2,p3] schon das Quadrat der Kante in die Rechnung geht
Nach kurzer Zeit meldet der Computer die Richtigkeit der Formel

Eine Ergänzung Die Eulersche Formel kann mit V 0 auch fur plammetnsche Zwecke
verwendet werden Sie zeigt dann einen Zusammenhang zwischen den Seitenlangen a,
b, c eines Dreiecks ABC und den Eckentfernungen u, v, w irgend eines Punktes P
Setzt man z B mit dem halben Umfang s, u - s -a+x, v s-b + x,w s -c + x
ein, so ergibt sich eme, allerdings umfangreiche, quadratische Gleichung fur die Radien

x der Soddykreise des Dreiecks, also fur die Kreise, welche die Kreise um _4, ß, C mit
den Radien s -a, s -b,s-c berühren

Oder wenn fur P die Mitte der Seite BC gewählt wird, kann f fur v und w eingesetzt

werden, und fur u ergibt sich v2b2+2c2-a2
^ me bekamt Formel fur die Lange der

Schwerehme aus A Etwas allgemeiner Wenn P auf BC hegt, ist w2 (a -v)2, und
die Auflosung nach u2 ergibt

u2
av2 + (-a2 + b2 - c2)v + ac2
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Es seien nun (p1/P2/P3) die baryzentrischen Koordinaten eines Punktes P bezüglich des

Dreiecks ABC. Gemeint ist, wie man weiss, das homogene Zahlentripel, das zu den
orientierten Inhalten der Dreiecke PBC,PCA, PAB proportional ist. Der Schnittpunkt
Q der Geraden AP mit der Seite BC teilt diese im Verhältnis -&-, und es ist QB

P3"
P2+P3

Setzt man oben ein, so erhält man

—2 _
c2p2 + (-a2 + b2 + c2)p2p3 + b2p2

QA (^^ '

und daraus, wegen PA ¦
P2+P3

pä2

P1+P2+P3

1

QA, die folgende Formel für die Eckentfernungen:

(c2p2 + (-a2 + b2 + c2)p2p3 + b2p2). (2)
(P1+P2+P3)2

Entsprechendes für PB und PC durch zyklische Vertauschung.

2 Über das Produkt der Entfernungen eines Punktes

von den Ecken eines Dreiecks

Zwei Punkte F, G heissen isogonalkonjugiert bezüglich eines Dreiecks ABC, wenn
ihre Ecktransversalen symmetrisch liegen bezüglich der Winkelhalbierenden des Dreiecks:

FA symmetrisch zu GA bezüglich der Winkelhalbierenden durch A usw. (Eine
Einführung in diesen äusserst fruchtbaren Begriff der Dreiecksgeometrie findet sich z.B.
in [2]). So sind z.B. der Umkreismittelpunkt U und der Höhenschnittpunkt H des Dreiecks

zwei isogonalkonjugierte Punkte.

Hier soll zuerst bewiesen werden, dass für isogonalkonjugierte Punkte F, G gilt:

\FAFB FC • sin0i • sin$2 • sin<^| \GA • GB • GC • sin^i

wobei (pi, fo, & die Winkel BFC, CFA, AFB sind
und tpi, ifa, tfo die entsprechenden Winkel bei G

(Fig. 2).

Für li und H überprüft der Leser leicht die Richtigkeit
dieser Formel.

Der Inhalt/fbc des Dreiecks FßC ist \FBFC sin^i.
Aus (3) wird, wenn man alle Winkel ersetzt:

sin ^2 • sin^fel,

C

(3)

SJfbcJfcaJfab

FAFBFC
SJgbcJgcaJgab

GAGBGC
(4)

¥2

Fig. 2

Man sieht schnell ein, dass ein analytischer Beweis dieser Formel mit Hilfe eines Car-
tesischen Koordinatensystems kaum in Frage kommt, da es, selbst mit Computerunterstützung,

sehr umständlich ist, aus den Cartesischen Koordinaten eines Punktes die
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Koordinaten seines isogonalkonjugierten zu berechnen. Baryzentrische Koordinaten sind
hier angebracht. Wenn (fi/f2/f3) und (gi/g2/g3) die Koordinaten von F und G sind, wird
die Isogonalkonjugiertheit elegant durch

a2 b2 c2
gi T g2 T g3 T (5)

n h h

erfasst. Dabei sind a, b, c die Dreiecksseitenlängen. Ferner gilt

Jfbc j—t—tJabc, (6)
/l +J2 + J3

und für die Eckentfernungen greift man auf die Formel (2) zurück. Wird alles in die

quadrierte Gleichung (4) eingesetzt, so muss sich die Identität herausstellen. Von Hand
eine äusserst mühsame Sache, für den Computer kein Problem. Wenige Sekunden nach
der Eingabe zeigt er die Richtigkeit an.

Es stellt sich noch die Frage, ob es für den Ausdruck FA • FB • FC • sin <px • sin & • sin fo
und die Formel (3) irgend eine interessante geometrische Erklärung gibt.

Auf der Suche nach Eigenheiten isogonalkonjugierter Punkte erinnern wir uns der
Tatsache, dass die beiden Brennpunkte jedes dem Dreieck ABC eingeschriebenen
Kegelschnitts (eines Kegelschnitts, der die Seitengeraden des Dreiecks berührt)
isogonalkonjugiert sind. Um es kurz zu machen: (5) hat etwas mit der Scheitelkrümmung des

Inkegelschnitts zu tun, von dem F und G die Brennpunkte sind. Dies soll gezeigt werden.

Es sei k der Inkegelschnitt des Dreiecks, der die Brennpunkte F und G besitzt. Wir
beschränken uns hier auf den Fall, wo F im Innern des Dreiecks liegt, k ist dann eine

Ellipse. Es seien rx die grosse, r2 die kleine Halbachse von k. Bekanntlich ist bei einer

Ellipse das Quadrat der kleinen Halbachse gleich dem Produkt der Abstände der beiden

Brennpunkte von irgend einer Tangente. F und G haben die Abstände

/i 2Jabc g\ 2Jabc

/1+/2+/3 a
'

gi+g2+g3 a

von der Seite BC. Für r2 ergibt sich unter Berücksichtigung von (5):

r2 4Jabc 4s(s-g)(s-fr)(s-c)
2

(fl +fl +/3)(gl +g2 +g3) (fl +fl +f*)(g\ +g2+g3)
'

Ferner gilt
r2 r2+l-FG2, (8)

und
r2

x -2- (9)
n

ist der Krümmungsradius in den Ellipsenhauptscheiteln.
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Es fehlt noch eine baryzentrische Distanzformel zur Berechnung der Strecke FG, dann
kann unsere Vermutung, dass

SJfbcJfcaJfab
_

8/1/2/3/JBc _
FÄ-Fß. FC FÄFB'FC(fx+f2+f3)3

JABC'X

ist, verifiziert werden.

Um die Distanzformel zu entwickeln, geht man aus von der bekannten vektoriellen
Erklärung baryzentrischer Koordinaten: Für die Koordinaten (px/p2/p3) eines Punktes P

bezüglich des Dreiecks ABC gilt: px¥Ä + p2pt + p3¥lt 0.

Es sei Q irgend ein Punkt mit der Entfernung d von P. Aus

piQÄ2+p2QB2 + P3QC2

px(Qp + PÄ)2 +

pi(d2 + 2QpPÄ + PÄ2)+...

(pi +p2+ p3)d2 + 2Qp(piPÄ + p2P$ + p3¥t) + pxPÄ2 + p2PB2 + p3PC2

(Pi +P2 + P3)d2 + piPÄ2 + p2PB2 + P3PC2

ergibt sich

d2 ^ -—^-—{pi(QA2-PA2) + p2(QB2-PB2) + p3(QC2-PC2)
Pl+P2+P3\

Es ist also

M2
; J^ f/i(^2-FÄ2)+/2(Gß2-Fß2)+/3(GC2~FC2)Y (10)
/1+/2+/3V /

Nun setzt man sukzessive (2), (5), (7), (8), (9), (10) in die Gleichung

8/1/2/3JJBC ^ _/T vx2
,FÄ.Fß.FC(/1+/2+/3)3j -Qabc-x)

ein, bis schliesslich nur a, b, c, fx, f2, f3 in ihr verbleiben. Diese Arbeit überlässt man
dem Computer, mit Erfolg: Er stellt die Identität fest.

Erwähnt sei noch, dass die Rechnung sich ganz analog gestaltet, wenn k keine Ellipse,
sondern eine Hyperbel ist. Der Grenzfall der Parabel erfordert eine separate Behandlung,
da dann der zweite Brennpunkt ein Fernpunkt ist. Die Rechnungen führen alle zum selben
Resultat:

Satz: Es sei F ein Brennpunkt eines Kegelschnitts, der die Seiten eines Dreiecks ABC
mit dem Inhalt J berührt. Dann ist

FA • Fß • FC • sin«ßFC) • sin«CFA) • sin«AFB)
/

der Radius des Krümmungskreises im zu F gehörenden Scheitel des Kegelschnitts.

Ein schöner Kegelschnittsatz, wie man ihn nicht alle Tage sieht. Man nehme als Beispiel
den Inkegelschnitt mit den Brennpunkten U und H. Für seinen (Haupt-)Scheitelkrüm-
mungsradius ergibt sich jr3 sin(2a) sin(2/3) sin(27) 4r cosacos ßcos7.
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3 Der Dreifachwinkelpunkt eines Dreiecks
Wenn im folgenden von Winkeln die Rede ist, dann sind orientierte Winkel modulo
180° gemeint [2] Der orientierte Winkel von einer Geraden / zu einer Geraden g,
abgekürzt <fg, ist der nur modulo 180° bestimmte Drehwinkel, welcher notig ist, um/
in g oder m parallele Lage zu g überzuführen Dabei wird der Drehwinkel, wie immer,
im Gegenuhrzeigersinn positiv, im Uhrzeigersinn negativ gemessen Mit <PQR ist der
orientierte Winkel von der Geraden PQ zur Geraden QR gemeint
Man kann somit sagen, so eigenartig das auch klingen mag Bei jedem Dreieck ABC ist
<BAC + <CBA + <ACB 0 Der einleuchtende Vorteil dieses Winkelbegriffs ist die
Tatsache, dass der geometnsche Ort aller Punkte P, fur welche <APB konstant gleich
ip (& 0) ist, bei festen Punkten A und ß, nicht ein Bogen ist, sondern ein ganzer Kreis,
der Fasskreis uber AB fur den Winkel ip

Es seien a <BAC, ß <CBA, 7 <ACB die Winkel eines Dreiecks ABC Fur den

Umkreismittelpunkt U des Dreiecks gilt <BUC 2a, <CUA 2/3, <AUB 27 U
ist der gemeinsame Punkt der Fasskreise uber den Seiten fur die doppelten Gegenwinkel
(Bei rechtwinkligen Dreiecken artet einer der Kreise zu einer Geraden aus)

Nun ist leicht einzusehen, dass auch fur em anderes ganzzahliges Vielfaches der Gegenwinkel

die Fasskreise uber den Seiten einen gemeinsamen Punkt besitzen

Fur eine ganze Zahl n (* 0,1) sei kßcn der Fasskreis uber der Seite BC fur den Winkel
na, und entsprechend seien kcAn und fc^ß n die Fasskreise uber CA und AB fur die
Winkel nß und n^ Ausgeschlossen sollen von jetzt an die speziellen Dreiecke sein,
bei denen gerade alle drei Kreise ausarten Die Kreise kgcn und kcAn* die den Punkt
C gemeinsam haben, schneiden sich noch in einem weiteren Punkt P Fur diesen gilt
<BPA <BPC + <CPA na + nß -nj, daa + ß + j 0 und n ganz ist
(Selbstverständlich alles modulo 180° gerechnet) Somit ist <APB wy, dh der Kreis
1<ab n geht auch durch den Punkt

Man nennt den gemeinsamen Punkt der Kreise kßcn, ^ca«, ^ab n den n -fach-Winkelpunkt

Pn des Dreiecks ABC P2 ist der Umkreismittelpunkt U P-X ist der Hohenschnittpunkt

H P-2 bekommt man, wenn man die Umkreise der Dreiecke BCU,C AU, AB U
an den Seiten BC,CA, AB spiegelt, usw (n 1 muss ausgeschlossen werden, da dann

die drei Fasskreise mit dem Umkreis von ABC zusammenfallen, und fur n 0 arten
alle drei Kreise aus

Hier mteressiert nun der Punkt P3, der Dreifachwinkelpunkt

des Dreiecks

Ausgangspunkt unserer Betrachtung ist der in [4] bewiesene

Satz, dass bei einem Dreieck ABC der Punkt Q, fur
welchen <QBA <BAC <ACQ gilt, auf der Eulergeraden
des Dreiecks hegt (Fig 3) Ebenso die zu den beiden
andern Seiten mit den jeweiligen Gegenwinkeln konstruierten
Punkte Fig 3

Dieser leicht konstruierbare Punkt Q gehört zum Fasskreis kßt 3, denn es ist <BQC
3<ß_4C Es stellt sich die Frage, ob der andere Schnittpunkt von kßc 3 mit der Eulergeraden

auch seine Besonderheiten hat Mit Überraschung stellt man fest (Fig 4), dass die
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zweiten Schnittpunkte der Kreise fcgc,3» fcc/4,3, ^ab,3 alle mit der Eulergeraden
zusammenfallen, d.h. dass der Dreifachwinkelpunkt auf der Eulergeraden liegt. Das soll hier
untersucht und bewiesen werden. Man vergleiche dazu auch [3].

AB

CA CA.3

Fig. 4

Für die Rechnung empfehlen sich wieder baryzentrische Koordinaten. Im Dreieck ABC
mit den Seiten a, b, c, hat U bekanntlich die Koordinaten (a2(-a2 + b2 + c2)/.../...),
H die Koordinaten (_.a_+|,_+c_/.../¦••) und der Schwerpunkt S die Koordinaten (1/1/1).
Für einen Punkt P (px/p2lp3) auf der Geraden US, der Eulergeraden, kann man den

Ansatz
p{ -a2(-a2 + b2 + c2) + x

p2 b2^b2 + c2+a2) + x

p3 c2(-c2+a2 + b2) + x

machen. Im Dreieck ABC gilt

4Jabc __2 16s(s ~ a)(s ~ b)(s - c)

(11)

tana tan2 a-a2 + b2 + c2 ' (-a2 + b2 + c2)2

Die gleiche Formel auf das Dreieck PBC angewendet:

4]pbc

(12)

tan«ß PC
-a2 + PB2+PC2

'

Wenn nun P zum Fasskreis kßc,3 gehören soll, kann 3a für <BPC eingesetzt werden.
Somit wird aus der letzten Formel:

tana,3 *f? (-^2 + Fß2 + PC2) 4JPBC.
1-3 tan-' a

(13)
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Nach (6) ist Jpbc Pl+l+pJabc > Setzt man (12) schon teilweise in (13) ein, so kann

noch mit 4]abc gekürzt werden:

1 3-tan2a 0 ——2 -=^2, px-(-a2+PB +PC v
-a2 + b2 + c2 l-3tan2a P1+P2+P3

Damit ist die Gleichung für den Computer präpariert. Mit (11), (2) und (12) führt er sie

über in

(b2c2 + x)(a6b2c2 - 2a4bV + a2b6c2 - 2a4b2c4 - 2a2b4c4 + a2b2c6

+ a6x - a4b2x - a2b4x + b6x - a4c2x - b4c2x - a2c4x - b2c4x + c6x) 0

(Mathematica liefert gerade die Faktorzerlegung). Die Lösungen sind

,22 !6a2b2c2jLc
x —bc und x AbL

a6 + b6 + c6 - a4b2 -a2b4- b4c2 - b2c4 -a2c4- c2a4'

Die erste Lösung gehört zum oben erwähnten Punkt Q. Die zweite ist, wie man sieht,
invariant bei zyklischer Vertauschung der Seiten. Der zugehörige Punkt würde sich auch
bei zyklisch vertauschter Rechnung ergeben. Es muss der Dreifachwinkelpunkt P3 sein.

Setzt man in (11) ein, so ergeben sich für P3 die Koordinaten

a2(a4 + b4 + c4-2a2b2- 2a2c2 + b2c2)

-a2 + b2 + c2 /.../...
Aus den Koordinaten von U, H und P3 lässt sich leicht noch das Teilverhältnis
berechnen, in welchem P3 die Strecke UH teilt. Ein auf solche Rechnungen abgerichteter
Computer meldet sofort:

a2b2c2 1

(-a2 + b2 + c2)(a2 -b2 + c2)(a2 + b2- c2) 8 cos acos ß cos 7'

Und noch eine Überraschung: Es stellt sich heraus, dass die Polare von H bezüglich

des Umkreises, welche die (Geraden-)Koordinaten ^1^2 + ^zp^i»...,...) hat, durch

den Punkt P3 geht!

Satz: Der Dreifachwinkelpunkt eines (nicht gleichseitigen) Dreiecks, mit dem Umkreismittelpunkt

U, dem Höhenschnittpunkt H und den Winkeln a, ß, 7, ist der Schnittpunkt der
Eulergeraden mit der Polaren von H bezüglich des Umkreises. Er teilt UH im Verhältnis

8 cos a cos ß cos 7 *

Sicher wäre es reizvoll, für diesen einfachen Sachverhalt nachträglich auch eine synthetische

Herleitung zu suchen.

Man fragt sich noch, ob auch andere Mehrfachwinkelpunkte des Dreiecks sich so elegant
in den Verein der merkwürdigen Punkte einordnen. P_2, zum Beispiel, liegt auf der
Geraden durch den Lemoinepunkt und den Fermatpunkt. P4 ist mit U und P_2 kollinear. Pn

und Pi_„ sind isogonalkonjugiert Dem Liebhaber merkwürdiger Punkte des Dreiecks
eröffnen sich interessante Perspektiven.
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