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Beispiele zur Anwendung eines Computeralgebrasystems
in der Geometrie

Roland Stark

Roland Stirk studierte an der ETH Ziirich. Nach der Promotion zum Dr. sc. math.
im Jahre 1963 wurde er Lehrer an der Kantonsschule Schaffhausen. Er ist Verfasser
eines Lehrbuches der Darstellenden Geometrie. Sein mathematisches Lieblingsgebiet
ist die Elementargeometrie.

In néchster Zeit werden immer mehr auch algebraische Computerprogramme Einzug
in den Schulen halten, Systeme, wie zum Beispiel Mathematica oder Maple, die nicht
nur numerisch rechnen konnen, sondern auch imstande sind, algebraische Ausdriicke
zu bearbeiten. Der alte Vorbehalt gegeniiber der analytischen Geometrie, es sei eine

Es gibt wohl kaum ein Tétigkeitsfeld, das sich in den letzten Jahren durch den Einsatz
von Comiputern nicht tiefgreifend verdndert hat, und natiirlich ist auch die Schule von
diesen Umwilzungen betroffen worden. Beim Mathematikunterricht ist heute abzuse-
hen, dass sich die Verfiigbarkeit von leistungsstarken und dabei billigen Informatik-
mitteln in Zukunft noch vermehrt auf Form und Inhalt auswirken werden, In welcher
Weise dies geschehen wird, lasst sich allerdings jetzt, mitten in einer stiirmischen Ent-
wicklungsphase, noch nicht vorhersagen. Eine der Fragen, die zu kliiren sein wird,
ist der Stellenwert des numerischen Rechnens gegeniiber dem symbolischen. Obschon
bereits heute auch auf kieinen Rechnern Computeralgebrasysteme verfiigbar sind, wur-
den diese bisher in der Schule noch kaum eingesetzt. Die Zeit sollte genutzt werden,
sich mit der neuen Perspektive zu beschiftigen, Grundsatzfragen aufzugreifen und die
Gewichtung der Inhalte im Unterricht zu {iberdenken. Wie soll ein derartiges System
eingesetzt werden? Legt die Existenz solcher Systeme nahe, auf gewisse Unterrichts-
inhalte zu verzichten, und wenn ja, auf welche? Gibt es auch Unterrichtsgegenstinde,
auf die grosserer Nachdruck als bisher gelegt werden muss? Welchen Einfluss hat die
Beniitzung derartiger Systeme auf die Lernmotivation? Wie lehrt man die Benutzer,
der Computerantwort nicht blindlings zu vertrauen? usw. — Der vorliegende Beitrag
von Roland Stiirk behandelt einige Beispiele von Anwendungen eines Computeral-
gebrasystems. Es geht dabei um Probleme der analytischen Geometrie, die grossen
Recheneinsatz erfordern und die ohne Hilfe eines solchen Systems kaum zu bewilti-
gen wiren. Hier dient der Computer als Hilfsmittel, den bisherigen Erfahrungshorizont
in verschiedenen Richtungen zu durchbrechen. hrs/ust
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ewige Rechnerei, wird schwinden. Berechnungsaufgaben, denen man frither wegen ihres
Umfanges oder wegen ihrer Kompliziertheit ausgewichen ist, konnen heute computer-
unterstiitzt hiufig geradlinig und miihelos durchgefiihrt werden. Natiirlich macht der
Computer nicht alles allein. Der Anwender muss die Computerarbeit sorgfiltig planen,
iberwachen und lenken. Auch stellen sich Fragen nach der Zuverléssigkeit des Systems.

Die Moglichkeiten sind herrlich. Es sollen hier drei Beispiele vorgefiihrt werden, die von
Hand kaum zu bewiltigen sind. Sie wurden mit Hilfe von Mathematica [5] bearbeitet.

1 Eine Formel von Euler fiir das Tetraedervolumen

Euler hat in den Novi Commentarii Academiae Petropolitanae ad annum 1752 et 1753
[1] fiir das Volumen V eines Tetraeders die folgende Formel veroffentlicht:

144V 2 = +a2b%u? + a’wu? + a*02u? + a*c*u? + b2c*v? + b*u*v?
+b2w0? + b%a%v? + c2a*w? + c*v*w? + c*utw? + b w? W
—a2b%c? - a?wv? - buw? - 2oy’

2 2b4 2

—a*u* —u%a* - b*v* - v2b* - Pw* - w?c*.
Dabei sind a, b, c drei eine Seitenfliche begrenzende Kanten und u, v, w ihre Gegen-

kanten.

Man erkennt auf der rechten Seite von (1) die Summe der Produkte “Kante im Quadrat
mal Kante im Quadrat mal Kante im Quadrat” fiir alle zwolf nichtgeschlossenen drei-
streckigen Kantenziige des Tetraeders, dann davon subtrahiert die Produkte fiir die vier
begrenzenden Dreiecke und fiir alle sechs Kanten die Produkte “Kante im Quadrat mal
Gegenkante hoch vier”.

Vor die Aufgabe gestellt, diese Formel zu verifizieren — es soll hier keine Herleitung
gegeben werden —, denkt man wohl in erster Linie an analytische Geometrie und an
ein Cartesisches Koordinatensystem. Wenn (x;/y;/z;) (i = 1, ...,4) die Koordinaten der
Tetraederecken sind, liefert die Formel

1 X1 Y1 4y
l 1 X2 Y2 2Zp
6|1 x3 Y3 z3
1 x4 ya z4

bekanntlich das Volumen V, und die Quadrate der Kanten berechnen sich mit
(xj =22 + (1 — yi)* + (z — z)™.

Man braucht lediglich in (1) einzusetzen. Aber das gibt eine langwierige Rechnung. Das
Quadrat der Determinante hat rund dreihundert Glieder. Auch wenn man die Symmetrie
in den Eckkoordinaten beriicksichtigt, ist die Arbeit kaum zu bewiltigen. Und eine
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Ecke in den Nullpunkt setzen, wie das jeweils noch gemacht wird, bringt auch keine
Erleichterung. Das ist Arbeit fiir den Computer, solche Rechnungen liegen ihm.

Unser kurzes Rechnungsprogramm ist in der Fig. 1 aufgelistet.

nl1}=
pl={xl,yl,z1};p2={x2,v2,22};p3={x3,v3,2z3}.pe={x4,v4,2z4};
dip_.q_]:=(p[[1]]1-q[[1]])"2+
(pl[2]1]-all2]])"2+
(pl[3]]1-all3]1])"2;
a=d[p2,p3];b=d[p3,pl].c=d[pl, p2];
u=d [pl,p4].v=d([p2,p4].v=d[p3.p4].
vol=1/6 Det[{Prepend|pl,b 1],
Prepend[p2,1],
Prepend[p3,1]},
Prepend[p4,1]}].
Expand[a b u+a v uta v u+a ¢ u+b ¢ vib u v+
bw veib a v¢Cc 2 v+Cc V WV+Cc u w+Cc b v-
a bo-avwvv-buvw-0vu-
a u*2-u a“2-b v*2-v b"2-¢c v"2-wv ¢c"2-
144vol~2]

ot 1]=
0

Fig. 1

Zuerst werden die Eckpunkte pl1, p2, ... als Koordinatentripel eingefiihrt. Dann wird
die Funktion d[...,...] fiir das Quadrat der Distanz zweier Punkte definiert. Mit Pre-
pend [p1, 1] kann bei der Koordinatenliste fiir p1 eine 1 vorgehingt werden, und Det][...]
berechnet die Determinante. Expand]|...] schliesslich multipliziert alles aus. Man be-
achte, dass hier mit a = d[p2,p3] schon das Quadrat der Kante in die Rechnung geht.
Nach kurzer Zeit meldet der Computer die Richtigkeit der Formel.

Eine Ergidnzung: Die Eulersche Formel kann mit V' = 0 auch fiir planimetrische Zwecke
verwendet werden. Sie zeigt dann einen Zusammenhang zwischen den Seitenlidngen a,
b, ¢ eines Dreiecks ABC und den Eckentfernungen u, v, w irgend eines Punktes P.
Setzt man z.B., mit dem halben Umfang s, u =s—a+x,v=s-b+x,w =s—-c+x
ein, so ergibt sich eine, allerdings umfangreiche, quadratische Gleichung fiir die Radien
x der Soddykreise des Dreiecks, also fiir die Kreise, welche die Kreise um A, B, C mit
den Radien s —a, s — b, s — ¢ beriihren.

Oder wenn fiir P die Mitte der Seite BC gewihlt wird, kann 5 fiir v und w einge-

setzt werden, und fiir # ergibt sich ————“’sz“zzcz““z, die bekannte Formel fiir die Lange der
Schwerelinie aus A. Etwas allgemeiner: Wenn P auf BC liegt, ist w? = (2 — v)?, und
die Auflésung nach u? ergibt:

, av?+(-a?+b%—cho +ac?
u’= .
a
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Es seien nun (p;/p2/ p3) die baryzentrischen Koordinaten eines Punktes P beziiglich des
Dreiecks ABC. Gemeint ist, wie man weiss, das homogene Zahlentripel, das zu den
orientierten Inhalten der Dreiecke PBC, PC A, P AB proportional ist. Der Schnittpunkt
Q der Geraden AP mit der Seite BC teilt diese im Verhiltnis -5;—, und es ist QB =

P%_| Setzt man oben ein, so erhilt man
pa+ps
07 - c2p? + (—a? + b2+ P)paps + b3
(P2 +p3)? ’
und daraus, wegen PA = ;1%2%; QA, die folgende Formel fiir die Eckentfernungen:
D a2 1 ( 2.2 2 12, A2 2.2
= 2p2 4 (—a® + b + PYpops + b ) @)

Entsprechendes fiir PB und PC durch zyklische Vertauschung.

2 Uber das Produkt der Entfernungen eines Punktes

von den Ecken eines Dreiecks
Zwei Punkte F, G heissen isogonalkonjugiert beziiglich eines Dreiecks ABC, wenn
ihre Ecktransversalen symmetrisch liegen beziiglich der Winkelhalbierenden des Drei-
ecks: FA symmetrisch zu GA beziiglich der Winkelhalbierenden durch A usw. (Eine
Einfiilhrung in diesen #dusserst fruchtbaren Begriff der Dreiecksgeometrie findet sich z.B.
in [2]). So sind z.B. der Umkreismittelpunkt U und der Hohenschnittpunkt H des Drei-
ecks zwei isogonalkonjugierte Punkte.

Hier soll zuerst bewiesen werden, dass fiir isogonalkonjugierte Punkte F, G gilt:

|[FA-FB-FC -sing; -sin¢g, -sin¢s| = |[GA-GB - GC -sin®,; -sin#, -sinys|, (3)
C

wobei ¢y, ¢, ¢; die Winkel BFC, CFA, AFB sind
und ¥, ¥, ¢35 die entsprechenden Winkel bei G
(Fig. 2).

Fiir U und H iiberpriift der Leser leicht die Richtigkeit
dieser Formel.

Der Inhalt Jppc des Dreiecks FBC ist §FB-FC sin ¢y.
Aus (3) wird, wenn man alle Winkel ersetzt:

8JrBcJrcalras 8Jcc]ccalcas
FA-FB-FC GA-GB-GC

Man sieht schnell ein, dass ein analytischer Beweis dieser Formel mit Hilfe eines Car-
tesischen Koordinatensystems kaum in Frage kommt, da es, selbst mit Computerun-
terstiitzung, sehr umsténdlich ist, aus den Cartesischen Koordinaten eines Punktes die

)
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Koordinaten seines isogonalkonjugierten zu berechnen. Baryzentrische Koordinaten sind
hier angebracht. Wenn (fi/f,/f3) und (g1/ g2/ £3) die Koordinaten von F und G sind, wird
die Isogonalkonjugiertheit elegant durch

a? b? c2
= —, = —, = — 5
81 f 82 h 83 2 5)

erfasst. Dabei sind a, b, ¢ die Dreiecksseitenldngen. Ferner gilt

___h
JrBC = m}AEC, (6)

und fiir die Eckentfernungen greift man auf die Formel (2) zuriick. Wird alles in die
quadrierte Gleichung (4) eingesetzt, so muss sich die Identitidt herausstellen. Von Hand
eine dusserst miihsame Sache, fiir den Computer kein Problem. Wenige Sekunden nach
der Eingabe zeigt er die Richtigkeit an.

Es stellt sich noch die Frage, ob es fiir den Ausdruck FA-FB-FC -sin ¢ - sin ¢, - sin ¢
und die Formel (3) irgend eine interessante geometrische Erkldrung gibt.

Auf der Suche nach Eigenheiten isogonalkonjugierter Punkte erinnern wir uns der Tat-
sache, dass die beiden Brennpunkte jedes dem Dreieck ABC eingeschriebenen Ke-
gelschnitts (eines Kegelschnitts, der die Seitengeraden des Dreiecks beriihrt) isogonal-
konjugiert sind. Um es kurz zu machen: (5) hat etwas mit der Scheitelkrimmung des
Inkegelschnitts zu tun, von dem F und G die Brennpunkte sind. Dies soll gezeigt werden.

Es sei k der Inkegelschnitt des Dreiecks, der die Brennpunkte F und G besitzt. Wir
beschrinken uns hier auf den Fall, wo F im Innern des Dreiecks liegt, k ist dann eine
Ellipse. Es seien r; die grosse, 1, die kleine Halbachse von k. Bekanntlich ist bei einer
Ellipse das Quadrat der kleinen Halbachse gleich dem Produkt der Abstidnde der beiden
Brennpunkte von irgend einer Tangente. F und G haben die Abstinde

fi 2] aBc g1 2JaBc
fith+fs a ' gitgtg a4

von der Seite BC. Fiir r; ergibt sich unter Beriicksichtigung von (5):

2 42 _ 4s(s-a)s- b)(s —c) )
2T (itht1+0+e) (th+H) g1+ +8y)
Ferner gilt
r2=r2+ %FEZ, @)
und 5
x=2 ©)
r

ist der Kriimmungsradius in den Ellipsenhauptscheiteln.
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Es fehlt noch eine baryzentrische Distanzformel zur Berechnung der Strecke F G, dann
kann unsere Vermutung, dass

8JrscJrcalFaB _ 8f1f2f3] A5
FA-FB-FC FA-FB -FC(fi+f,+f3)3
ist, verifiziert werden.

Um die Distanzformel zu entwickeln, geht man aus von der bekannten vektoriellen
Erkldrung baryzentrischer Koordinaten: Fiir die Koordinaten (p;/p,/p3) eines Punktes P

beziiglich des Dreiecks ABC gilt: plﬁ + pzp—ﬁ + pgl_’—a =0.-
Es sei  irgend ein Punkt mit der Entfernung d von P. Aus

PQA +pQB +pQC
= p1(QP +PAY + ...
= p1(d*+20BPPA+PA) + ...
= (p1 +p2+p3)d’ + 2@(}91]‘7{ + pzfg 5 pgﬁ) + plmz + pzﬁz + p3f’f2
= (p1 +p2 +p3)d* + pIP‘A"‘ +p2PB + ;7375—C_2
ergibt sich

= m (’” (@A -PA)+p@B -PB)+ps@QC” —176:"2))

=Japc - x

Es ist also
— 1 —_— =2 —2 =2 —2 =2
FG = ——— GA —-FA)+f(GB —FB )+f(GC —-FC")). 10
R hh (fl( )+ fo( )+ f3( )) (10)
Nun setzt man sukzessive (2), (5), (7), (8), (9), (10) in die Gleichung

< 8fifof] Apc
FA-FB 'FC(fl +f2 +f3)3
ein, bis schliesslich nur a, b, c, f;, f,, f3 in ihr verbleiben. Diese Arbeit iiberldsst man
dem Computer, mit Erfolg: Er stellt die Identitt fest.

Erwihnt sei noch, dass die Rechnung sich ganz analog gestaltet, wenn k keine Ellipse,
sondern eine Hyperbel ist. Der Grenzfall der Parabel erfordert eine separate Behandlung,
da dann der zweite Brennpunkt ein Fernpunkt ist. Die Rechnungen fiihren alle zum selben
Resultat:

2
) = (Jasc - x)*

Satz: Es sei F ein Brennpunkt eines Kegelschnitts, der die Seiten eines Dreiecks ABC
mit dem Inhalt | beriihrt. Dann ist

FA-FB -FC -sin(«BFC) - sin(<CF A) - sin(<AF B)
J

der Radius des Kriimmungskreises im zu F gehorenden Scheitel des Kegelschnitts.

Ein schoner Kegelschnittsatz, wie man ihn nicht alle Tage sieht. Man nehme als Beispiel
den Inkegelschnitt mit den Brennpunkten U und H. Fiir seinen (Haupt-)Scheitelkriim-
mungsradius ergibt sich Ilr3 sin(2a) sin(20) sin(2y) = 4r cos acos (3 cos .
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3 Der Dreifachwinkelpunkt eines Dreiecks

Wenn im folgenden von Winkeln die Rede ist, dann sind orientierte Winkel modulo
180° gemeint [2]. Der orientierte Winkel von einer Geraden f zu einer Geraden g,
abgekiirzt <f g, ist der nur modulo 180° bestimmte Drehwinkel, welcher nétig ist, um f
in g oder in parallele Lage zu g iiberzufiihren. Dabei wird der Drehwinkel, wie immer,
im Gegenuhrzeigersinn positiv, im Uhrzeigersinn negativ gemessen. Mit <P (R ist der
orientierte Winkel von der Geraden P(Q) zur Geraden QR gemeint.

Man kann somit sagen, so eigenartig das auch klingen mag: Bei jedem Dreieck ABC ist
<BAC + <CBA+ <ACB = 0. Der einleuchtende Vorteil dieses Winkelbegriffs ist die
Tatsache, dass der geometrische Ort aller Punkte P, fiir welche <<APB konstant gleich
9 (# 0) ist, bei festen Punkten A und B, nicht ein Bogen ist, sondern ein ganzer Kreis,
der Fasskreis iiber AB fiir den Winkel .

Es seien a = <BAC, = <CBA, ¥ = <ACB die Winkel eines Dreiecks ABC. Fiir den
Umkreismittelpunkt U des Dreiecks gilt: <BUC =2a, <CUA =28, <AUB =2v. U
ist der gemeinsame Punkt der Fasskreise iiber den Seiten fiir die doppelten Gegenwinkel
(Bei rechtwinkligen Dreiecken artet einer der Kreise zu einer Geraden aus).

Nun ist leicht einzusehen, dass auch fiir ein anderes ganzzahliges Vielfaches der Gegen-
winkel die Fasskreise iiber den Seiten einen gemeinsamen Punkt besitzen.

Fiir eine ganze Zahl n (# 0, 1) sei kpc ,, der Fasskreis iiber der Seite BC fiir den Winkel
na, und entsprechend seien kca, und kap, die Fasskreise iiber CA und AB fiir die
Winkel n3 und n-y. Ausgeschlossen sollen von jetzt an die speziellen Dreiecke sein,
bei denen gerade alle drei Kreise ausarten. Die Kreise kpc , und kc 4, die den Punkt
C gemeinsam haben, schneiden sich noch in einem weiteren Punkt P. Fiir diesen gilt
<BPA = «BPC + <CPA = na+np = -nvy, da a+p+v = 0 und n ganz ist
(Selbstverstandlich alles modulo 180° gerechnet). Somit ist <APB = n+y, d.h. der Kreis
kap » geht auch durch den Punkt.

Man nennt den gemeinsamen Punkt der Kreise kgc », kcan, kapn den n-fach-Winkel-
punkt P,, des Dreiecks ABC. P, ist der Umkreismittelpunkt U . P_; ist der Hohenschnitt-
punkt H. P_, bekommt man, wenn man die Umkreise der Dreiecke BCU, CAU, ABU
an den Seiten BC, C A, AB spiegelt; usw. (n = 1 muss ausgeschlossen werden, da dann
die drei Fasskreise mit dem Umkreis von ABC zusammenfallen, und fiir n = 0 arten
alle drei Kreise aus.)

Hier interessiert nun der Punkt P;, der Dreifachwinkel-
punkt des Dreiecks. C

Ausgangspunkt unserer Betrachtung ist der in [4] bewiesene

Satz, dass bei einem Dreieck ABC der Punkt Q, fiir wel-

chen <QBA = <BAC = q<ACQ gilt, auf der Eulergeraden Q
des Dreiecks liegt (Fig. 3). Ebenso die zu den beiden an- A

dern Seiten mit den jeweiligen Gegenwinkeln konstruierten

Punkte. Fig. 3

Dieser leicht konstruierbare Punkt Q gehort zum Fasskreis kpc 3, denn es ist <BQC =
34BAC. Es stellt sich die Frage, ob der aqdere Schnittpunkt von kgc 3 mit der Eulerge-
raden auch seine Besonderheiten hat. Mit Uberraschung stellt man fest (Fig. 4), dass die
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zweiten Schnittpunkte der Kreise kpc 3, kcaj, kap3 alle mit der Eulergeraden zusam-
menfallen, d.h. dass der Dreifachwinkelpunkt auf der Eulergeraden liegt. Das soll hier
untersucht und bewiesen werden. Man vergleiche dazu auch [3].

kAB,B
C
% ;
A kBC,3

KCA,3

Fig. 4

Fiir die Rechnung empfehlen sich wieder baryzentrische Koordinaten. Im Dreieck ABC
mit den Seiten 4, b, c, hat U bekanntlich die Koordinaten (a%(-a? +b? +¢?)/.../...),
H die Koordinaten ( :ETI;;W/ .../ ) und der Schwerpunkt S die Koordinaten (1/1/1).

Fiir einen Punkt P = (p;/p./p3) auf der Geraden U S, der Eulergeraden, kann man den

Ansatz
pr=a’(-a*+b*+c?) +x

pr = b2(-b*+c? +a®) +x (11)
p3 =cA(—c*+a* +bH) +x
machen. Im Dreieck ABC gilt

4] aBc 2 16s(s —a)(s —b)(s —c)
s A

tana = (12)

giory T
Die gleiche Formel auf das Dreieck PBC angewendet:

4Jppc
—a2+PB +PC"
Wenn nun P zum Fasskreis kpc 3 gehoren soll, kann 3a fiir <BPC eingesetzt werden.
Somit wird aus der letzten Formel:

tan(<BPC) =

3 —tan®

tan 9 —mmm———
1-3tan2

(-a2+PB +PC’) = 4Jpac. (13)
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Nach (6) ist Jppc = ;71—;%;55 Jasc. Setzt man (12) schon teilweise in (13) ein, so kann

noch mit 4]4pc gekiirzt werden:

- 2 I S
L 3-awa o pp P — P
-a2+b2+c?2 1-3tan’a pL+p2+p3

Damit ist die Gleichung fiir den Computer préipariert. Mit (11), (2) und (12) fiihrt er sie
iiber in
(b%c? + x)(a%b?c? - 2a%b*c? +a?b%c? — 2a*b?c* - 2a%b*c* + ab2ch

+a%x —a*b®x —a?b*x +b8x —a*c’x —b*c®x —a*ctx —b2ctx + %) =0

(Mathematica liefert gerade die Faktorzerlegung). Die Losungen sind

16a%b%c?] 2,
a%+b® +c® —a*b? —a?b* - b4c? —b2c* —a%c* - c2a*
Die erste Losung gehort zum oben erwihnten Punkt Q. Die zweite ist, wie man sieht,
invariant bei zyklischer Vertauschung der Seiten. Der zugehorige Punkt wiirde sich auch
bei zyklisch vertauschter Rechnung ergeben. Es muss der Dreifachwinkelpunkt P; sein.
Setzt man in (11) ein, so ergeben sich fiir P;3 die Koordinaten

a%@* +b* +c* —2ab* - 2a%c? + b*c?)

s [,

x =-b%? und x=

Aus den Koordinaten von U, H und P; ladsst sich leicht noch das Teilverhiltnis be-
rechnen, in welchem P; die Strecke U H teilt. Ein auf solche Rechnungen abgerichteter
Computer meldet sofort:

a2b?c? _ 1
(a2 + b2 +c2)@2 - b2 +c2)(@? +b2—c?)  8cosacos Bcosy’

Und noch eine Uberraschung: Es stellt sich heraus, dass die Polare von H beziiglich
des Umkreises, welche die (Geraden-)Koordinaten ( = +ZZ — + az_f; TS e ns ) hat, durch
den Punkt P; geht! '

Satz: Der Dreifachwinkelpunkt eines (nicht gleichseitigen) Dreiecks, mit dem Umkreismit-
telpunkt U , dem Héhenschnittpunkt H und den Winkeln a, (3, v, ist der Schnittpunkt der

Eulergeraden mit der Polaren von H beziiglich des Umkreises. Er teilt UH im Verhdlt-
; 1
ni

§ 8cosacosFcosy”
Sicher wire es reizvoll, fiir diesen einfachen Sachverhalt nachtriglich auch eine synthe-
tische Herleitung zu suchen.

Man fragt sich noch, ob auch andere Mehrfachwinkelpunkte des Dreiecks sich so elegant
in den Verein der merkwiirdigen Punkte einordnen. P_;, zum Beispiel, liegt auf der Ge-
raden durch den Lemoinepunkt und den Fermatpunkt. P4 ist mit U und P_; kollinear. P,
und P;_, sind isogonalkonjugiert ... Dem Liebhaber merkwiirdiger Punkte des Dreiecks
erdffnen sich interessante Perspektiven.
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