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Die abc -Vermutung

Serge Lang

Serge Lang wurde 1927 in Pans geboren, wo er auch seine ersten Schuljahre
absolvierte Die weitere Ausbildung erhielt er dann allerdings in den Vereinigten Staaten,

wo er das California Institute of Technology (Caltech) und die University of
Pnnceton besuchte. Hier erhielt er das Doktorat in Mathematik im Jahre 1951 Nach
Aufenthalten am Institute for Advanced Study in Pnnceton und an der University

of Chicago war er von 1955 bis 1970 Professor an der Columbia University
in New York Gastprofessuren in Pnnceton und Harvard folgten, und 1972 wurde

er Professor an der Yale University Seine Interessen sind weitgespannt, aber sein
Hauptinteresse gehorte immer der Mathematik, besonders der Zahlentheone Bis
anhin hat er 34 Bucher und uber 70 Forschungsartikel veröffentlicht

Wir wollen mit einem Satz über Polynome beginnen. Wahrscheinlich glauben alle von
Ihnen, alles über Polynome zu wissen; sicherlich meinten bis vor kurzem die meisten

Mathematiker, ich selbst nicht ausgeschlossen, dass man alles über Polynome wisse.
Es war deshalb eine grosse Überraschung, als R.C. Mason 1983 einen neuen und sehr

Das berühmte Fermatsche Problem» die Frage also, ob die Gleichung xn+yn *&zn für
n _> 3 im Ring der ganzen Zahlen eine Lösimg besim, kennen wohl alte m Mathe*
matik Interessierte* Aber wer hat schon über das analoge Problem für andere Ringe
nachgedacht? Zum Beispiel: Oibt es komplexe Polynome x(t)9 %f(t)9 z(t)9 welche die
Gleichung x(i)n + y(t)n « %(tf erfüllen? Dies ist eine der Fmgen, mit denen sieh

Serge Lang im vorliegenden Beitrag beschäftigt. Eine Reihe von neueren Entwicklungen,

Vermutungen und Fragen, die sich um das Fermatsche Problem ranken, weiden
hier dargestellt Im Zentrum steht dabei die seit einigen Jahren intensiv diskutierte

a&>Vemntung>

Der Beitrag basiert auf einem Vortrag» det am 27. Mai 1992 vor einem aligemeineren
Pnbliknm an dm ETH Zürich gehalten wurde. Wir haien ihn auf Band aufgenommen

md ins Deutsche Öbeitragen, ^ortd der Text wurde anschliessend von Seige Lang
überabettet Wo immer möglich haben wir versucht* die direkte, Mormette Sprache des

Vortrags beizubehalten, Ate Geschriebenes kann den Enömsiasmns von Seige Lang,
seinen messenden VoitragsstH und die lebhafte, mehrspir^hige Interaktion mit dem

Pnblta» nw tmvoltattmen wiedergeben* Wir hoffen, dass ta diesem Beiimg totstem
etwas davon dni^hschtiiimeit mt
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interessanten Satz über Polynome entdeckte. Wir wollen zuerst diesen Satz formulieren
und ihn beweisen, bevor wir uns den ganzen Zahlen und der «bc-Vermutung zuwenden.

Der Satz handelt von komplexen Polynomen. Wir schreiben die Elemente von C[t] in
der Form

/(o=ci-n^-^)w' >

i=\

wobei ai,a2, ...,ar die (paarweise verschiedenen) Nullstellen des Polynoms f(t)
bezeichnen. Der Grad von f(t) ist dann gegeben durch grad/ mi + m2 + • • • + mr Die
Anzahl der (verschiedenen) Nullstellen des Polynoms / bezeichnen wir mit no(f), also

n0(f) r

Es ist offensichtlich, dass grad/ gross sein kann und gleichzeitig n0(/) klein. Zum
Beispiel besitzt f(t) (t - a)1000 den Grad 1000, aber es ist n0(f) 1. Für Polynome

f,g gilt allgemein tio(f) + fio(g) ^ «o(/ • g)> und wenn sie teilerfremd sind, gilt sogar
Gleichheit:

no(f) + n0(g) n0(f • g)

Der Satz von Mason [Ma 83, Ma 84] lautet wie folgt:

Satz. Es seien f,g,h e C[t] nichtkonstante, teilerfremde Polynome mitf +g =h. Dann
gilt

max(grad/, gradg, gradfr) < n0(f ¦ g • h) - 1

Der Satz besagt, dass die Relation f +g =h den Grad der Polynome f,g,h beschränkt
und zwar durch die Anzahl der verschiedenen Nullstellen der drei Polynome / ,g,h.
Bevor wir den Beweis des Satzes angeben, wollen wir eine Anwendung besprechen. Sie

vermittelt einen Eindruck davon, wie stark der Satz von Mason ist. Sie kennen wohl alle
die Fermatsche Vermutung:

Für n > 3 gibt es keine von Null verschiedenen ganzen Zahlen x,y,z mit

xn+yn =zn

Die analoge Aussage für komplexe Polynome wurde um die Jahrhundertwende mit Hilfe
von Argumenten aus der algebraischen Geometrie bewiesen. Hier wollen wir dafür einen
elementaren Beweis angeben, der vom Satz von Mason ausgeht.

Satz. Für n > 3 gibt es keine nichtkonstanten, teilerfremden Polynome x,y,z e C[t] mit

x(t)n+y(t)n=z(t)n

Beweis: Wir setzen f (t) x(t)n, g(t) y(t)n, h(t) z(t)n. Dann liefert der Satz von
Mason

gradx(t)n < n0 {x(t)n -y(t)n -z(t)n) - 1
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Aber gradx(t)n n • gradx(0, und n0(x(t)n) n0(x(t)) < gradx(0, so dass folgt

n • gradx(f) < gradx(0 + grady(0 + gradz(f)-1

Auf analoge Weise erhalten wir für y(t) und z(t) die Ungleichungen

n ¦ grady(t) < gradx(t) + grady(t) + gradz(t)- 1

n gradz(f) <gradx(f) + grady(0 + gi*adz(f)-1

Die Addition dieser drei Ungleichungen liefert

n • (gradx(0 + grady(t) + grad z(t))<3 (gradx(t) +grady(t) +gradz(t))-3

Es folgt
(n-3)- (gradx(f) + grady(t) + gradz(t)) < -3

was für n > 3 offensichtlich ein Widerspruch ist. Damit ist der "Satz von Fermat für
Polynome" bewiesen.

Der Beweis des Satzes von Fermat für Polynome ist ohne Kenntnis des Satzes von Mason

recht schwierig. Es ist von vornherein nicht klar, wie man eine derartige Aufgabe
überhaupt angehen würde. Sie können Ihren Freunden diese Frage als Herausforderung
stellen und zusehen, wie lange diese für einen Beweis benötigen. Unser Beweis mit Hilfe
des Satzes von Mason ist ganz kurz und einfach. Es existieren übrigens Verallgemeinerungen,

auf die wir später zurückkommen werden.

Beweis des Satzes von Mason: In der Aussage des Satzes haben wir links den Grad
und rechts no, also die Anzahl der verschiedenen Wurzeln eines Polynoms. Wir müssen
deshalb einen Weg finden, um die Vielfachheiten der Wurzeln in den Griff zu bekommen.
Aus diesem Grunde dividieren wir die Gleichung f +g =h durch h und erhalten

£.
+ £

h h

Setzen wir R f/h, S g/h, so folgt R + S 1, und die Ableitung nach t liefert
R' + S' 0. Diese Beziehung schreiben wir in der Form

Wir betrachten nun den Quotienten g/f. Mit unseren Bezeichnungen und mit der
Beziehung (1) lässt sich dieser durch

£ ^=-^ (2)
/ R S'/S

ausdrücken. Wir haben also g/f als Quotient von logarithmischen Ableitungen
F -^ F'/F schreiben können. Es stellt sich heraus, dass wir das mehrfache Auftreten

der Wurzeln damit unter Kontrolle gebracht haben. In der Tat hat - wie Sie wissen
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- die logarithmische Ableitung die angenehme Eigenschaft, Produkte in Summen
überzuführen:

(F • G)'
_

F' G^

FG " F
+

G '

Dies folgt direkt aus der Produktformel für die Ableitung. Dann gilt bekanntlich auch

(F/G)'
_

F' G'

F/G " F G '

Wenn wir unsere Polynome in der am Anfang angegebenen Form schreiben, also

f(t) ci-H(t-at)m>

g(t)=c2-H(t-ßj)n>,

h(t) c3']J(t-%)h

so erhalten wir für die logarithmischen Ableitungen die folgenden einfachen Ausdrücke

f ^t-ax '
g ^t-ßj ' h ^t-% '

Mit R - f/h und S g/h und indem wir die Regeln der logarithmischen Ableitung
verwenden, erhalten wir aus (2)

Eft*i _ \^ h

_ „ ~,~ t-a, ^t-%
f g'lg-h'/h y- "; v~- h

Es sei nun D(t) das Polynom

D(0 JJ(* - a,) • l[(t - ß}) • l[(t - ^)

Offensichtlich gilt gradD(f) «0(/ -g -h) Daraus folgt

8rad (f~ö") "o(f '£ ' ft)~ Srad (fZfl") S™1

Erweitern wir den Bruch (3) mit D(f), so erhalten wir

(3)

D(0
r-Tlt

V^ ______ V^ _____
g _

2-~i t -a, 2-j t-% D(t) _ Polynom vom Grad < «o(/ • g • ^)- 1

/ y» ni
_ X^ '* ^O Polynom vom Grad < «o(f • g • h) - 1
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Damit ist g/f als Quotient von zwei Polynomen geschrieben, deren Grad höchstens

tto(f m g 'h) - 1 ist. Da / und g teilerfremd sind, folgt daraus, dass auch die Grade der

Polynome / und g höchstens no(f • g • h) - 1 sein können. Und schliesslich hat das

Polynom h, als Summe h / +g, ebenfalls höchstens diesen Grad. Damit ist der Satz

von Mason bewiesen.

Es ist zweifellos eine ganz merkwürdige Tatsache, dass ein solch einfacher und doch
starker Satz über Polynome erst im Jahre 1983 entdeckt worden ist.

Wir wollen nun diesen Satz in die ganzen Zahlen "übersetzen". Sie wissen natürlich, dass

es eine tiefe Analogie zwischen ganzen Zahlen und Polynomen mit Körperkoeffizienten
gibt; zum Beispiel besitzen beide Ringe einen Euklidischen Algorithmus, und damit gilt
in beiden Ringen die eindeutige Primfaktorzerlegung. Wir suchen nun für die ganzen
Zahlen etwas Entsprechendes zum Grad eines Polynoms und zur Grösse no- Bei der

Multiplikation von zwei Polynomen addieren sich die Grade dieser Polynome; dem
Grad eines Polynoms entspricht also bei ganzen Zahlen der Logarithmus des Betrages.
Bei der "Übersetzung" von tio hilft uns die folgende Bemerkung weiter. Für

f(t) H(t~ax)m>

definieren wir N0(/(O) JJ(* - <*t). Dann gilt

n0(/) gradN0(/(r)).

Was wird also für eine ganze Zahl m die "richtige" Definition für no(m) sein? Nehmen
wir an, m habe die Primfaktorzerlegung

m=pl;pl2'"Vlrr • (4)

Ein Student: Ich schlage vor, für n0(m) die Anzahl verschiedener Primfaktoren von m
zu nehmen, also no(m) r.

Serge Lang: Das ist keine schlechte Antwort, aber sie ist nicht ganz gut genug. Wenn

wir komplexe Polynome betrachten, dann haben alle irreduziblen Faktoren den Grad
eins. Aber über anderen Körpern können irreduzible Faktoren durchaus höheren Grad
besitzen. Dem Grad bei Polynomen entsprechend muss deshalb im Ring der ganzen
Zahlen die Primzahl p mit einem Gewicht versehen werden, nämlich logp. Für die Zahl
m mit Primfaktorzerlegung (4) ist also

n0(m) ^ log p,

i=i

zu setzen, was wir auch in der Form

tt0(m) ]Tlogp
p\m
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schreiben können. Konsequenterweise definieren wir

r

N0(m)=np=n^
p\m i=l

Was ist also für ganze Zahlen die Aussage, die dem Satz von Mason entspricht? Es ist
einfach, die Voraussetzungen zu übersetzen:

Es seien a,b,c von Null verschiedene teilerfremde ganze Zahlen mit a+b c.

Dann wollen wir eine Ungleichung der Form

max(|a|,|H|c|)<?.

Was soll auf der rechten Seite der Ungleichung stehen?

Ein Student: Vielleicht N0(abc)- 1

Serge Lang: Es ist nicht ganz so einfach. Zuerst zu -1: dies war im Falle der Polynome
ein Geschenk der Götter, und wir wollen hier, bei den ganzen Zahlen davon absehen.

Wir wollen einfach die etwas schwächere Ungleichung

max(\a\,\b\,\c\)<N0(abc)

betrachten. Leider ist aber die Aussage in dieser Form falsch. Sie bleibt sogar auch dann

falsch, wenn auf der rechten Seite zusätzlich irgendeine noch so grosse multiphkative
Konstante K zugelassen wird: es gibt keine Konstante K, so dass die Ungleichung

max(\a\,\b\,\c\)<K'N0(abc)

für alle von Null verschiedenen, teilerfremden ganzen Zahlen a, b, c mit a + b c erfüllt
ist! Dies zeigt das folgende Beispiel, das von zwei Studenten der Yale University stammt,
Wojtek Jastrzebowski und Dan Spielman.

Wir betrachten die Gleichung an+bn cn mit an 32 bn -1 und

Cn 32 - 1

Indem man 3 1+2 schreibt, beweist man leicht mit Induktion nach n, dass 2n die

Zahl 32" - 1 teilt. Damit folgt

No(anbncn)<3'2'^

Die Ungleichung
l2n

32n<K.3 2~2n

kann aber nicht für alle n erfüllt sein, gleichgültig, wie gross die Konstante K gewählt
wird.
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Wird die obige, als falsch erkannte Aussage etwas modifiziert, so spricht man von der
öbc-Vermutung. Sie ist eine der interessantesten zahlentheoretischen Vermutungen der
neueren Zeit.

Die flfrc-Vermutung. (Masser, Oesterle, 1986) Zw e > 0 existiert eine Konstante K(e),
so dass für alle von Null verschiedenen, teilerfremden ganzen Zahlen a,b,c mit a + b -c
die Ungleichung

max(\a\,\b\,\c\)<K(e)\No(abc))x^

erfüllt ist.

Mit im wesentlichen dem selben Beweis wie oben für Polynome kann man zeigen, dass

aus dieser Vermutung die (ganzzahlige) Fermatsche Vermutung für grosse Exponenten
n folgt. Dazu können wir ohne Beschränkung der Allgemeinheit annehmen, dass a,b,c
positive ganze Zahlen sind, so dass wir die Absolutbeträge nicht schreiben müssen. Wir
nehmen dann an, dass wir positive, paarweise teilerfremde ganze Zahlen x,y,z haben,
welche der Gleichung

xn+yn=zn

genügen. Wir setzen a xn, b =yn und c =zn. Dann gilt

N0(xnynzn) N0(xyz) < xyz

Aus der abc-Vermutung folgt

xn « (xyz)l+e yn « (xyz)l+€ zn « (xyz)l+€ (5)

wobei wir der Kürze halber das Zeichen « verwendet haben, um auszudrücken, dass

es eine von e abhängige Konstante K(e) gibt, so dass die linke Seite kleiner oder gleich
dem Produkt der rechten Seite mit K(e) ist. Das Produkt der Ungleichungen (5) ergibt

(xyzf <<(xyz)3+e

weil wir in unserer Notation natürlich 3e wieder durch e ersetzen können. Logarithmieren
wir, so folgt

(tt-3-e)-log(xt/z)<logl<:

für eine gewisse Konstante K K(e). Wegen xyz > 2 liefert aber diese Ungleichung
eine Schranke für n, so dass die Fermatsche Vermutung für alle genügend grossen ganzen
Zahlen n bewiesen wäre.

Die Schranke für n hängt offensichtlich von der Konstanten K(e) ab. Über deren Grösse
bestehen bis heute keinerlei Vermutungen. Anzumerken bleibt auch, dass wir in der

obigen Überlegung e 1 hätten setzen können. Auf diese Weise hätten wir eine absolute,

von e unabhängige Schranke erhalten.

Ein Student: Hat man schon versucht, auf rechnerische Art Gegenbeispiele zur abc-
Vermutung zu finden?
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Serge Lang: Dies funktioniert nicht. Tabellen über die Primzahlzerlegung von Zahlen
scheinen die Vermutung allerdings zu bestätigen. Beachten Sie, dass der in der Ungleichung

vorkommende Exponent 1+e die Aussage sehr stark macht. Unter anderem besagt
die abc -Vermutung folgendes: Wenn in den Primzahlfaktorisierungen von a,b,c
Primzahlen mit hohen Exponenten vorkommen, dann müssen diese Primzahlen durch viele
kleine Primzahlen oder durch grosse Primzahlen, die nur mit Exponent eins vorkommen,
kompensiert werden. Zum Beispiel hat man Tabellen für die Primzahlfaktorisierung von
2n ± 1 (und von ähnlichen Zahlen) berechnet [BLSTW]. Diese Tabellen zeigen klar, dass

fast alle Primfaktoren nur mit Exponent eins vorkommen; treten kleine Primfaktoren mit
grösseren Exponenten auf, so kommen regelmässig auch grosse Primfaktoren vor, deren

Exponent eins ist.

Ein Student: Impliziert der "Grosse Satz von Fermat" die abc -Vermutung?

Serge Lang: Nein. Der Satz von Fermat ist einfach ein Speziallfall. Die abc-Vermutung ist
viel stärker und gibt viel mehr Informationen über die Art und Weise, wie die Exponenten
der Primzahlen beschränkt werden, die in der Faktorisierung von abc auftreten. Um dies
noch etwas klarer zu machen: Wir hätten, um den Satz von Fermat für grosse n zu
beweisen, ohne weiteres den Exponenten 1+e durch einen festen Exponenten ersetzen
können.

Ein Student: Wie wird man dazu geführt, eine solche Vermutung auszusprechen?

Serge Lang: Masser und Oesterle haben die Vermutung nicht als plötzliche Eingebung
gefunden, und auch nicht mit elementaren Überlegungen, wie wir sie hier durchgeführt
haben. Das Leben ist viel komplizierter. Die Vermutung entstand aus sehr tiefliegenden
Überlegungen in der algebraischen Geometrie und der Theorie der Modulfunktionen,
und nicht nur im Zusammenhang mit Masons Theorem. Diese Überlegungen sind zu

kompliziert, als dass ich sie hier darstellen könnte. Aber ich will trotzdem noch einige
Bemerkungen zu diesem Themenkreis machen.

Wir betrachten eine Gleichung der Form

u3 -v2 k

für teilerfremde ganze Zahlen u, v und k. Diese Gleichung wurde zuerst von M. Hall
[Ha] betrachtet; er hat darüber die folgende Vermutung ausgesprochen:

Vermutung von M. Hall. Für ganze Zahlen u, v undk mit u3 -v2 =k * 0 gilt

lui3«!*:!64* und \v\2 « \k\6+€

Hall hat allerdings die Vermutung ohne e hingeschrieben, da er damals die Notwendigkeit

dafür nicht erkannt hat. Aus dem gleichen Grund wie bei der abc-Vermutung ist
die ursprüngliche Form der Vermutung von Hall falsch. Die "Vermutung von Hall für
Polynome" war bereits 1965 von Davenport bewiesen worden [Da], und zwar sogar in
einer schärferen Form, nämlich ohne konstanten Faktor auf der rechten Seite.
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Satz von Davenport. Es seien f,g zwei nichtkonstante Polynome mit f3 -g2 & 0. Dann
gilt

grad(f3-g2)>ygradf-l
und

grad(f3-g2)>-gradg-l

Sie können diese Ungleichungen ohne weiteres mit Hilfe des Satzes von Mason beweisen,

falls die Polynome / und g teilerfremd sind. Es ist eine gute Übungsaufgabe in
Algebra, diese Ungleichungen auch für den Fall nicht teilerfremder Polynome / und g
zu beweisen. Dann haben Sie wiederholt einen gemeinsamen Faktor auszuklammern,
bis Sie beim Fall teilerfremder Polynome angelangt sind, und Sie müssen dann eine

Abschätzung für eine allgemeinere Gleichung der Form

Af3 + Bg2 h

betrachten. Die Schranken, die in den entsprechenden Ungleichungen für die Grade

vorkommen, werden natürlich von A und B abhängig sein.

Kehren wir zu den ganzen Zahlen zurück und betrachten wiederum die Gleichung

u3-v2 k

für teilerfremde ganze Zahlen u,v,k. Wendet man die abc-Vermutung darauf an, so

findet man Abschätzungen

|w|3 « (N0(k))6+e und \v\2 « (N0(k))6+€ (6)

Dies nachzurechnen ist eine nicht allzu schwierige Übungsaufgabe. Die Vermutung von
M. Hall folgt also (wenigstens für teilerfremde Zahlen) aus der abc-Vermutung, denn es

gilt No(fc) < k. Betrachten wir Gleichungen

Au3 + Bv2 k

mit von Null verschiedenen, ganzzahligen Koeffizienten A, B, so ergeben sich aus der

flbc-Vermutung die gleichen Abschätzungen wie in (6); natürlich sind dann die in den

Ungleichungen implizit vorkommenden Konstanten von den Koeffizienten A und B

abhängig. Noch allgemeiner können wir eine Gleichung von höherem Grad betrachten,

Aun+Bvm =k ;

dabei setzen wir für die (ganzzahligen, positiven) Exponenten n, m nur mn * m+n
voraus. Es ist dann nicht schwierig, die Abschätzung

mn(l +e)

\u\n«(No(k))mn-(m+n^
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nachzuweisen, und eine entsprechende fur |z?|m Wie oben sind dabei naturlich die in
den Ungleichungen implizit vorkommenden Konstanten von A und B abhangig Kehren

wir zu ra 3, n 2 zurück Hier gibt es spezielle Werte fur A und B, die besonderes
Interesse verdienen, zum Beispiel A - -4 und B -21 Dann ist

-4u3-27z;2 A

bekanntlich die Disknmmante des Polynoms

X3+uX+v

Fur diese speziellen Werte von _4 und B bilden die vermuteten Ungleichungen die
verallgemeinerte Vermutung von Szpiro Szpiro hat allerdings ursprünglich nicht mit No
sondern mit einer komplizierteren Invariante N gearbeitet, die aus der Theone der

elliptischen Kurven und der Gleichung

Y2 X3 + uX+v

stammt Diese Theone ist schwieng zu erklaren, und wir wollen hier nicht naher darauf

eingehen Jedenfalls wurde Szpiro durch tiefliegende Überlegungen in der algebraischen
Geometne und der Zahlentheone zu dieser Vermutung gefuhrt Indem ich No so definiert
habe wie in diesem Vortrag und indem ich die abc-Vermutung nur mit dem Satz von
Mason in Zusammenhang gebracht habe, bin ich ganz und gar nicht der histonschen
Entwicklung gefolgt In diesem Sinne habe ich eigentlich eine Unwahrheit erzahlt, da ich die
Existenz des zugrunde liegenden grossen mathematischen Gebäudes ganz verschwiegen
habe Ich habe aus der ganzen Theone einfach das herausgenommen, was auf einfache
Weise und innerhalb einer Stunde dargestellt werden kann Aber die Mathematiker, die
diese Vermutungen formuliert haben, sind nicht auf so direkte Weise darauf gestossen,
sondern erst im Laufe intensiver Beschäftigung mit diesen tiefen und umfangreichen
Theonen l)
Ich will zum Abschluss noch erwähnen, dass die ursprungliche Vermutung von Szpiro
nicht aus den Ungleichungen (6) sondern nur aus der etwas schwächeren Ungleichung

|A|«(N0(A))6+e (7)

besteht Die stärkeren Ungleichungen (6), welche sogar \u\ und \v\ selbst beschranken
und nicht nur |A|, wurden erst spater formuliert Dies ist der Grund, weshalb wir oben

von der verallgemeinerten Szpiro-Vermutung gesprochen haben

Sie sehen, es hat in der Entwicklung der abc-Vermutung eine lange Zeit gebraucht, bis
ihre zentrale Stellung voll erkannt worden ist Die Geschichte verlief nicht gradlinig,
sondern auf seltsamen Umwegen, wobei verwandte Satze fur Polynome, wie der Satz

von Davenport, eine Rolle spielten, und auch die Vermutung von Hall, deren erstmalige
Formulierung sich sogar als falsch herausgestellt hat Aber dies ist genau die Art und
Weise, wie sich die Mathematik entwickelt'

1) Für Anwendungen der abc Vermutung auf die Theone der elliptischen Kurven sowie fur weitere Bemer

kungen vergleiche man [La] Dort ist auch eine umfangreichere Bibliographie zu finden
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In der neuesten Auflage seines Buches

Serge Lang: Undergraduate Algebra, Second Edition, Undergraduate Texts in
Mathematics, Springer Verlag 1990

hat der Autor die abc -Vermutung und die verschiedenen damit zusammenhängenden
zahlentheoretischen Sätze und Vermutungen sowie den Satz von Mason für Polynome
bereits berücksichtigt (siehe Chapter IV, §9, p. 165-170). Nur wenige Jahre nach

ihrer Entdeckung haben diese Resultate also bereits Eingang in die Lehrbuchliteratur
gefunden.
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