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Die abc-Vermutung

Serge Lang

Serge Lang wurde 1927 in Paris geboren, wo er auch seine ersten Schuljahre ab-
solvierte. Die weitere Ausbildung erhielt er dann allerdings in den Vereinigten Staa-
ten, wo er das California Institute of Technology (Caltech) und die University of
Princeton besuchte. Hier erhielt er das Doktorat in Mathematik im Jahre 1951. Nach
Aufenthalten am Institute for Advanced Study in Princeton und an der Universi-
ty of Chicago war er von 1955 bis 1970 Professor an der Columbia University
in New York. Gastprofessuren in Princeton und Harvard folgten, und 1972 wurde
er Professor an der Yale University. Seine Interessen sind weitgespannt, aber sein
Hauptinteresse gehorte immer der Mathematik, besonders der Zahlentheorie. Bis
anhin hat er 34 Biicher und iiber 70 Forschungsartikel veroffentlicht.

Wir wollen mit einem Satz iiber Polynome beginnen. Wahrscheinlich glauben alle von
Ihnen, alles iiber Polynome zu wissen; sicherlich meinten bis vor kurzem die meisten
Mathematiker, ich selbst nicht ausgeschlossen, dass man alles iiber Polynome wisse.
Es war deshalb eine grosse Uberraschung, als R.C. Mason 1983 einen neuen und sehr

Das berithmte Fermatsche Problem, die Frage also, ob die Gleichung x" +y" = z” fiir
n 2 3 im Ring der ganzen Zahlen eine Losung besitzt, kennen wohl alle an Mathe-
matik Interessierte. Aber wer hat schon iiber das analoge Problem fiir andere Ringe
nachgedacht? Zum Beispiel: Gibt es komplexe Polynome x(t), y(t), z(t), weiche die
Gleichung x(t)" + y(t)" = z(t)" erfilllen? Dies ist eine der Fragen, mit denen sich
Serge Lang im vorliegenden Beitrag beschéftigt. Eine Reihe von neueren Entwicklun-
gen, Vermutungen und Fragen, die sich um das Fermatsche Problem ranken, werden
hier dargestellt. Im Zentrum steht dabei die seit einigen Jahren intensiv diskutierte
abe-Vermutung, '

Der Beitrag basiert auf einem Vortrag, der am 27. Mai 1992 vor einem allgemeineren
Publikum an der ETH Ziirich gehalten wurde. Wir haben ihn auf Band aufgenom-
men und ins Deutsche fibertragen, und der Text wurde anschliessend von Serge Lang
iiberabeitet. Wo immer moglich haben wir versucht, die direkte, informelle Sprache des
Vortrags beizubehalten, Aber Geschriebenes karm den Enthusiasmus von Serge Lang,
seinen mitreissenden Vortragsstil und die lebhafte, mehrsprachige Interaktion mit dem
Publikium nur unvollkommen wiedergében. Wir hoffen, dass in diesem Beitrag trotzdem
etwas davon durchschimmert. us¢
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interessanten Satz iiber Polynome entdeckte. Wir wollen zuerst diesen Satz formulieren
und ihn beweisen, bevor wir uns den ganzen Zahlen und der abc-Vermutung zuwenden.

Der Satz handelt von komplexen Polynomen. Wir schreiben die Elemente von C[t] in
der Form

fhr=c-[]¢-a™,
i=1

wobei a1, m, ..., die (paarweise verschiedenen) Nullstellen des Polynoms f(t) be-
zeichnen. Der Grad von f (t) ist dann gegeben durch gradf = m; +my +---+m, . Die
Anzahl der (verschiedenen) Nullstellen des Polynoms f bezeichnen wir mit rng(f ), also

no(f)=r.

Es ist offensichtlich, dass gradf gross sein kann und gleichzeitig no(f) klein. Zum
Beispiel besitzt f(t) = (t — a)'%% den Grad 1000, aber es ist no(f) = 1. Fiir Polynome
f,g gilt allgemein no(f) + no(g) = no(f - g), und wenn sie teilerfremd sind, gilt sogar
Gleichheit:

no(f) +no(g) =no(f - g) .
Der Satz von Mason [Ma 83, Ma 84] lautet wie folgt:

Satz. Es seien f,g,h € C[t] nichtkonstante, teilerfremde Polynome mit f +g =h. Dann
gilt
max(gradf, grad g, gradh) <mno(f -g-h)—-1.

Der Satz besagt, dass die Relation f + g = h den Grad der Polynome f, g,/ beschrinkt
und zwar durch die Anzahl der verschiedenen Nullstellen der drei Polynome f, g, h.

Bevor wir den Beweis des Satzes angeben, wollen wir eine Anwendung besprechen. Sie
vermittelt einen Eindruck davon, wie stark der Satz von Mason ist. Sie kennen wohl alle
die Fermatsche Vermutung:

Fiir n 23 gibt es keine von Null verschiedenen ganzen Zahlen x,y,z mit

Die analoge Aussage fiir komplexe Polynome wurde um die Jahrhundertwende mit Hiife
von Argumenten aus der algebraischen Geometrie bewiesen. Hier wollen wir dafiir einen
elementaren Beweis angeben, der vom Satz von Mason ausgeht.

Satz. Fiir n 2 3 gibt es keine nichtkonstanten, teilerfremden Polynome x,y,z € C[t] mit
x()'+y@)' =z(@)" .
Beweis: Wir setzen f(t) = x(t)*, g(t) =y(t)", h(t) = z(t)". Dann liefert der Satz von

Mason
gradx(t)" <mp (x@®)" -y®)" -z(#)") - 1.
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Aber gradx(t)" =n - gradx(t), und no(x(t)") = no(x(t)) < grad x(t), so dass folgt
n-gradx(t) <gradx(t)+grady(t)+gradz(t)—-1.
Auf analoge Weise erhalten wir fiir y(¢) und z(t) die Ungleichungen

n-grady(t) < gradx(t) + grady(t) + gradz(t)-1,
n-gradz(t) < gradx(t)+grady(t) +gradz(t)—-1.

Die Addition dieser drei Ungleichungen liefert

n-(gradx(t)+grady(t)+grad z(t)) <3-(gradx(t)+grady(t)+gradz(t))-3 .

Es folgt
(n—3)-(gradx(t) +grady(t) + gradz(t)) < -3,

was fiir n 2 3 offensichtlich ein Widerspruch ist. Damit ist der “Satz von Fermat fiir
Polynome” bewiesen.

Der Beweis des Satzes von Fermat fiir Polynome ist ohne Kenntnis des Satzes von Ma-
son recht schwierig. Es ist von vornherein nicht klar, wie man eine derartige Aufgabe
tiberhaupt angehen wiirde. Sie konnen Ihren Freunden diese Frage als Herausforderung
stellen und zusehen, wie lange diese fiir einen Beweis benotigen. Unser Beweis mit Hilfe
des Satzes von Mason ist ganz kurz und einfach. Es existieren iibrigens Verallgemeine-
rungen, auf die wir spiter zuriickkommen werden.

Beweis des Satzes von Mason: In der Aussage des Satzes haben wir links den Grad
und rechts ng, also die Anzahl der verschiedenen Wurzeln eines Polynoms. Wir miissen
deshalb einen Weg finden, um die Vielfachheiten der Wurzeln in den Griff zu bekommen.
Aus diesem Grunde dividieren wir die Gleichung f + ¢ =h durch /& und erhalten

fi8oy,

h h

Setzen wir R = f/h, S = g/h, so folgt R+S = 1, und die Ableitung nach t liefert
R’ + S’ = 0. Diese Beziehung schreiben wir in der Form

R’ S’

—R+—=-5=0. 1

R S (1
Wir betrachten nun den Quotienten g/f. Mit unseren Bezeichnungen und mit der Be-
ziehung (1) ldsst sich dieser durch

S R’/R

§_5__RIR @

f R 55
ausdriicken. Wir haben also g/f als Quotient von logarithmischen Ableitungen

F ~ F'|F schreiben konnen. Es stellt sich heraus, dass wir das mehrfache Auftre-
ten der Wurzeln damit unter Kontrolle gebracht haben. In der Tat hat — wie Sie wissen
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— die logarithmische Ableitung die angenehme Eigenschaft, Produkte in Summen iiber-

zufiithren:
(F -GY 3 F' G’

= —+—.
F-G F G
Dies folgt direkt aus der Produktformel fiir die Ableitung. Dann gilt bekanntlich auch

(F/GY F' G

F/IG " F G

Wenn wir unsere Polynome in der am Anfang angegebenen Form schreiben, also

ftry=c-[J¢-arm,
gty=c-[J¢-8)",
ht) =cs- [ [t —w)*

so erhalten wir fiir die logarithmischen Ableitungen die folgenden einfachen Ausdriicke

e m g |
7—Zt“ai ’ E—Zt‘]ﬂf ’ ﬁ—zt”ﬁk '

Mit R = f/h und S = g/h und indem wir die Regeln der logarithmischen Ableitung
verwenden, erhalten wir aus (2)

VLD Y i e
foogllg-mh M _ ’k
B D

Es sei nun D(t) das Polynom

D) =[Jt-a) [J¢t-8) [[¢t-w) -

Offensichtlich gilt grad D(t) = no(f - g - h) . Daraus folgt

D(t Dt Dt
grad( (a)l)-no(f g h)—l—grad(t_(ﬂi)=grad<r_£’—yk)~) .

Erweitern wir den Bruch (3) mit D(t), so erhalten wir

3)

I
Zt—a, t— T .D(t) _ Polynom vom Grad <no(f -g-h) -1
D(t) Polynom vom Grad <no(f - g -h)—1"
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Damit ist g/f als Quotient von zwei Polynomen geschrieben, deren Grad hochstens
no(f -g -h)—1ist. Da f und g teilerfremd sind, folgt daraus, dass auch die Grade der
Polynome f und g hochstens no(f - g - k) — 1 sein konnen. Und schliesslich hat das
Polynom h, als Summe h = f + g, ebenfalls hochstens diesen Grad. Damit ist der Satz
von Mason bewiesen.

Es ist zweifellos eine ganz merkwiirdige Tatsache, dass ein solch einfacher und doch
starker Satz iiber Polynome erst im Jahre 1983 entdeckt worden ist.

Wir wollen nun diesen Satz in die ganzen Zahlen “iibersetzen”. Sie wissen natiirlich, dass
es eine tiefe Analogie zwischen ganzen Zahlen und Polynomen mit Korperkoeffizienten
gibt; zum Beispiel besitzen beide Ringe einen Euklidischen Algorithmus, und damit gilt
in beiden Ringen die eindeutige Primfaktorzerlegung. Wir suchen nun fiir die ganzen
Zahlen etwas Entsprechendes zum Grad eines Polynoms und zur Grosse ng. Bei der
Multiplikation von zwei Polynomen addieren sich die Grade dieser Polynome; dem
Grad eines Polynoms entspricht also bei ganzen Zahlen der Logarithmus des Betrages.
Bei der “Ubersetzung” von 1 hilft uns die folgende Bemerkung weiter. Fiir

fey=1]¢-am
definieren wir No(f (t)) = H(t — ;). Dann gilt

no(f ) = grad No(f (t)) .

Was wird also fiir eine ganze Zahl m die “richtige” Definition fiir ng(m) sein? Nehmen
wir an, m habe die Primfaktorzerlegung

m=pip}-pr . )

Ein Student: Ich schlage vor, fiir no(m) die Anzahl verschiedener Primfaktoren von m
zu nehmen, also nyg(m) =r.

Serge Lang: Das ist keine schlechte Antwort, aber sie ist nicht ganz gut genug. Wenn
wir komplexe Polynome betrachten, dann haben alle irreduziblen Faktoren den Grad
eins. Aber iiber anderen Korpern konnen irreduzible Faktoren durchaus hoheren Grad
besitzen. Dem Grad bei Polynomen entsprechend muss deshalb im Ring der ganzen
Zahlen die Primzahl p mit einem Gewicht versehen werden, namlich log p. Fiir die Zahl
m mit Primfaktorzerlegung (4) ist also

no(m) =Y _logpi
i=1

zu setzen, was wir auch in der Form

no(m) = Z logp

pim
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schreiben konnen. Konsequenterweise definieren wir

Nom)=[[r=1]p: -

pim i=1

Was ist also fiir ganze Zahlen die Aussage, die dem Satz von Mason entspricht? Es ist
einfach, die Voraussetzungen zu iibersetzen:

Es seien a,b,c von Null verschiedene teilerfremde ganze Zahlen mita +b = c.
Dann wollen wir eine Ungleichung der Form

max(lal, [bl, lc) < ? .

Was soll auf der rechten Seite der Ungleichung stehen?

Ein Student: Vielleicht No(abc)—1 ?

Serge Lang: Es ist nicht ganz so einfach. Zuerst zu —1: dies war im Falle der Polynome
ein Geschenk der Gotter, und wir wollen hier, bei den ganzen Zahlen davon absehen.
Wir wollen einfach die etwas schwichere Ungleichung

max(|al, |bl, |c]) £ No(abc)

betrachten. Leider ist aber die Aussage in dieser Form falsch. Sie bleibt sogar auch dann
falsch, wenn auf der rechten Seite zusitzlich irgendeine noch so grosse multiplikative
Konstante K zugelassen wird: es gibt keine Konstante K, so dass die Ungleichung

max(Jal, |b], |c]) < K - No(abc)

fiir alle von Null verschiedenen, teilerfremden ganzen Zahlen a,b,c mit a +b = c erfiillt
ist! Dies zeigt das folgende Beispiel, das von zwei Studenten der Yale University stammt,
Woijtek Jastrzebowski und Dan Spielman.

Wir betrachten die Gleichung a, + b, = ¢, mit a, = 32" b, =-1 und
Cn = 32" - 1 .

Indem man 3 = 1 + 2 schreibt, beweist man leicht mit Induktion nach #, dass 2" die
Zahl 32" — 1 teilt. Damit folgt

c
N()(anann) S 3 * 2 * 5"':"‘ .

Die Ungleichung
37 <K-3-2- —

kann aber nicht fiir alle #n erfiillt sein, gleichgiiltig, wie gross die Konstante K gewihit
wird.
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Wird die obige, als falsch erkannte Aussage etwas modifiziert, so spricht man von der
abc-Vermutung. Sie ist eine der interessantesten zahlentheoretischen Vermutungen der
neueren Zeit.

Die abc-Vermutung. (Masser, Oesterlé, 1986) Zu € > 0 existiert eine Konstante K (¢),
so dass fiir alle von Null verschiedenen, teilerfremden ganzen Zahlen a,b,c mita +b =c
die Ungleichung

max(lal, |b], lc]) < K (¢) - (No(abc))'*¢
erfiillt ist.

Mit im wesentlichen dem selben Beweis wie oben fiir Polynome kann man zeigen, dass
aus dieser Vermutung die (ganzzahlige) Fermatsche Vermutung fiir grosse Exponenten
n folgt. Dazu konnen wir ohne Beschrinkung der Allgemeinheit annehmen, dass a,b, ¢
positive ganze Zahlen sind, so dass wir die Absolutbetridge nicht schreiben miissen. Wir
nehmen dann an, dass wir positive, paarweise teilerfremde ganze Zahlen x,y,z haben,
welche der Gleichung

xn +y7‘l =Zn

geniigen. Wir setzen a =x", b = y" und ¢ = z". Dann gilt
No(x"y"z") = No(xyz) < xyz .
Aus der abc-Vermutung folgt
x" << (xyz)*e, Yy << (xyz)'*e, 2" << (xyz)*€, (5)

wobei wir der Kiirze halber das Zeichen << verwendet haben, um auszudriicken, dass
es eine von € abhidngige Konstante K (¢) gibt, so dass die linke Seite kleiner oder gleich
dem Produkt der rechten Seite mit K (¢) ist. Das Produkt der Ungleichungen (5) ergibt

(xyz)" << (xyz)**¢ ,

weil wir in unserer Notation natiirlich 3¢ wieder durch € ersetzen konnen. Logarithmieren
wir, so folgt
(n—-3-¢) -logxyz) <logK

fiir eine gewisse Konstante K = K(€). Wegen xyz 2> 2 liefert aber diese Ungleichung
eine Schranke fiir n, so dass die Fermatsche Vermutung fiir alle geniigend grossen ganzen
Zahlen n bewiesen wire.

Die Schranke fiir n héngt offensichtlich von der Konstanten K (¢) ab. Uber deren Grosse
bestehen bis heute keinerlei Vermutungen. Anzumerken bleibt auch, dass wir in der
obigen Uberlegung € = 1 hiitten setzen konnen. Auf diese Weise hitten wir eine absolute,
von € unabhingige Schranke erhalten.

Ein Student: Hat man schon versucht, auf rechnerische Art Gegenbeispiele zur abc-
Vermutung zu finden?
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Serge Lang: Dies funktioniert nicht. Tabellen iiber die Primzahlzerlegung von Zahlen
scheinen die Vermutung allerdings zu bestitigen. Beachten Sie, dass der in der Unglei-
chung vorkommende Exponent 1+¢ die Aussage sehr stark macht. Unter anderem besagt
die abc-Vermutung folgendes: Wenn in den Primzahlfaktorisierungen von a,b,c Prim-
zahlen mit hohen Exponenten vorkommen, dann miissen diese Primzahlen durch viele
kleine Primzahlen oder durch grosse Primzahlen, die nur mit Exponent eins vorkommen,
kompensiert werden. Zum Beispiel hat man Tabellen fiir die Primzahlfaktorisierung von
2" £+1 (und von dhnlichen Zahlen) berechnet [BLSTW]. Diese Tabellen zeigen klar, dass
fast alle Primfaktoren nur mit Exponent eins vorkommen; treten kleine Primfaktoren mit
grosseren Exponenten auf, so kommen regelmaissig auch grosse Primfaktoren vor, deren
Exponent eins ist.

Ein Student: Impliziert der “Grosse Satz von Fermat” die abc-Vermutung?

Serge Lang: Nein. Der Satz von Fermat ist einfach ein Speziallfall. Die abc-Vermutung ist
viel stérker und gibt viel mehr Informationen iiber die Art und Weise, wie die Exponenten
der Primzahlen beschriankt werden, die in der Faktorisierung von abc auftreten. Um dies
noch etwas klarer zu machen: Wir hitten, um den Satz von Fermat fiir grosse n zu
beweisen, ohne weiteres den Exponenten 1 + € durch einen festen Exponenten ersetzen
konnen.

Ein Student: Wie wird man dazu gefiihrt, eine solche Vermutung auszusprechen?

Serge Lang: Masser und Oesterlé haben die Vermutung nicht als plotzliche Eingebung
gefunden, und auch nicht mit elementaren Uberlegungen, wie wir sie hier durchgefiihrt
haben. Das Leben ist viel komplizierter. Die Vermutung entstand aus sehr tiefliegenden
Uberlegungen in der algebraischen Geometrie und der Theorie der Modulfunktionen,
und nicht nur im Zusammenhang mit Masons Theorem. Diese Uberlegungen sind zu
kompliziert, als dass ich sie hier darstellen konnte. Aber ich will trotzdem noch einige
Bemerkungen zu diesem Themenkreis machen.

Wir betrachten eine Gleichung der Form
ul-v?=k

fiir teilerfremde ganze Zahlen u, v und k. Diese Gleichung wurde zuerst von M. Hall
[Ha] betrachtet; er hat dariiber die folgende Vermutung ausgesprochen:

Vermutung von M. Hall. Fiir ganze Zahlen u, v und k mit u®> —v? =k # 0 gilt

ul? << k[®*¢ und |v]* << [k[6*€ .

Hall hat allerdings die Vermutung ohne ¢ hingeschrieben, da er damals die Notwendig-
keit dafiir nicht erkannt hat. Aus dem gleichen Grund wie bei der abc-Vermutung ist
die urspriingliche Form der Vermutung von Hall falsch. Die “Vermutung von Hall fiir
Polynome” war bereits 1965 von Davenport bewiesen worden [Da], und zwar sogar in
einer schirferen Form, ndmlich ohne konstanten Faktor auf der rechten Seite.
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Satz von Davenport. Es seien f,g zwei nichtkonstante Polynome mit f3 — g2 # 0. Dann
gilt

1
grad (f> - g% > 5 gradf —1
und
325 1
grad(f° —g°) 2 3 -gradg—1.
Sie konnen diese Ungleichungen ohne weiteres mit Hilfe des Satzes von Mason bewei-
sen, falls die Polynome f und g teilerfremd sind. Es ist eine gute Ubungsaufgabe in
Algebra, diese Ungleichungen auch fiir den Fall nicht teilerfremder Polynome f und g
zu beweisen. Dann haben Sie wiederholt einen gemeinsamen Faktor auszuklammern,

bis Sie beim Fall teilerfremder Polynome angelangt sind, und Sie miissen dann eine
Abschitzung fiir eine allgemeinere Gleichung der Form

Af>+Bg*=h

betrachten. Die Schranken, die in den entsprechenden Ungleichungen fiir die Grade
vorkommen, werden natiirlich von A und B abhingig sein.

Kehren wir zu den ganzen Zahlen zuriick und betrachten wiederum die Gleichung
ul-v?=k

fiir teilerfremde ganze Zahlen u,v,k. Wendet man die abc-Vermutung darauf an, so
findet man Abschétzungen

lul® << (No(k)®*€ und [o[* << (No(k))®* . (6)

Dies nachzurechnen ist eine nicht allzu schwierige Ubungsaufgabe. Die Vermutung von
M. Hall folgt also (wenigstens fiir teilerfremde Zahlen) aus der abc-Vermutung, denn es
gilt No(k) < k. Betrachten wir Gleichungen

Au’+Bv? =k

mit von Null verschiedenen, ganzzahligen Koeffizienten A, B, so ergeben sich aus der
abc-Vermutung die gleichen Abschitzungen wie in (6); natiirlich sind dann die in den
Ungleichungen implizit vorkommenden Konstanten von den Koeffizienten A und B
abhéngig. Noch allgemeiner konnen wir eine Gleichung von hoherem Grad betrachten,

Au" + Bv" =k ;

dabei setzen wir fiir die (ganzzahligen, positiven) Exponenten n, m nur mn # m +n
voraus. Es ist dann nicht schwierig, die Abschétzung

mn(l+¢)
u|" << (No(kyymn —(m+n)
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nachzuweisen, und eine entsprechende fiir |v|”. Wie oben sind dabei natiirlich die in
den Ungleichungen implizit vorkommenden Konstanten von A und B abhéngig. Kehren
wir zu m = 3, n = 2 zuriick. Hier gibt es spezielle Werte fiir A und B, die besonderes
Interesse verdienen, zum Beispiel A = —4 und B = -27. Dann ist

~4u® =270 = A
bekanntlich die Diskriminante des Polynoms

X3+uX+v .

Fiir diese speziellen Werte von A und B bilden die vermuteten Ungleichungen die ver-
allgemeinerte Vermutung von Szpiro. Szpiro hat allerdings urspriinglich nicht mit Ny
sondern mit einer komplizierteren Invariante N gearbeitet, die aus der Theorie der el-
liptischen Kurven und der Gleichung

Y2=X3+uX+v

stammt. Diese Theorie ist schwierig zu erklidren, und wir wollen hier nicht nidher darauf
eingehen. Jedenfalls wurde Szpiro durch tiefliegende Uberlegungen in der algebraischen
Geometrie und der Zahlentheorie zu dieser Vermutung gefiihrt. Indem ich Ny so definiert
habe wie in diesem Vortrag und indem ich die abc-Vermutung nur mit dem Satz von
Mason in Zusammenhang gebracht habe, bin ich ganz und gar nicht der historischen Ent-
wicklung gefolgt. In diesem Sinne habe ich eigentlich eine Unwahrheit erzihlt, da ich die
Existenz des zugrunde liegenden grossen mathematischen Gebdudes ganz verschwiegen
habe. Ich habe aus der ganzen Theorie einfach das herausgenommen, was auf einfache
Weise und innerhalb einer Stunde dargestellt werden kann. Aber die Mathematiker, die
diese Vermutungen formuliert haben, sind nicht auf so direkte Weise darauf gestossen,
sondern erst im Laufe intensiver Beschiftigung mit diesen tiefen und umfangreichen
Theorien.!)

Ich will zum Abschluss noch erwihnen, dass die urspriingliche Vermutung von Szpiro
nicht aus den Ungleichungen (6) sondern nur aus der etwas schwicheren Ungleichung

|Al << (No(A))* (7)

besteht. Die stirkeren Ungleichungen (6), welche sogar |u| und |v| selbst beschrinken
und nicht nur |A|, wurden erst spiter formuliert. Dies ist der Grund, weshalb wir oben
von der verallgemeinerten Szpiro-Vermutung gesprochen haben.

Sie sehen, es hat in der Entwicklung der abc-Vermutung eine lange Zeit gebraucht, bis
ihre zentrale Stellung voll erkannt worden ist. Die Geschichte verlief nicht gradlinig,
sondern auf seltsamen Umwegen, wobei verwandte Sétze fiir Polynome, wie der Satz
von Davenport, eine Rolle spielten, und auch die Vermutung von Hall, deren erstmalige
Formulierung sich sogar als falsch herausgestellt hat. Aber dies ist genau die Art und
Weise, wie sich die Mathematik entwickelt!

1) Fiir Anwendungen der abc-Vermutung auf die Theorie der elliptischen Kurven sowie fiir weitere Bemer-
kungen vergleiche man [La]. Dort ist auch eine umfangreichere Bibliographie zu finden.
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In der neuesten Auflage seines Buches

Serge Lang: Undergraduate Algebra, Second Edition, Undergraduate Texts in
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hat der Autor die abc-Vermutung und die verschiedenen damit zusammenhéngenden
zahlentheoretischen Sitze und Vermutungen sowie den Satz von Mason fiir Polynome
bereits beriicksichtigt (sieche Chapter IV, §9, p. 165-170). Nur wenige Jahre nach
ihrer Entdeckung haben diese Resultate also bereits Eingang in die Lehrbuchliteratur
gefunden.
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